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1. Introduction 

First-order analysis of the Timoshenko beam is routine in practice: the principle of virtual work yields accurate 

results and is easy to apply. Unfortunately, second-order analysis of the Timoshenko beam cannot be modeled 

with the principle of virtual work. Pirrotta et al. [1] presented an analytical solution for a Timoshenko beam 

subjected to a uniform load distribution with various boundary conditions. Sang-Ho et al. [2] presented a 

nonlinear finite element analysis formulation for shear in reinforced concrete Beams: that formulation utilizes 

an equilibrium-driven shear stress function. Abbas et al. [3] suggested a two-node finite element for analyzing 

the stability and free vibration of Timoshenko beam: interpolation functions for displacement field and beam 

rotation were exactly calculated by employing total beam energy and its stationing to shear strain. Hayrullah et 

al. [4] performed a buckling analysis of a nano sized beam by using Timoshenko beam theory and Eringen’s 

nonlocal elasticity theory: the vertical displacement function and the rotation function are chosen as Fourier 

series. Onyia et al. [5] presented a finite element formulation for the determination of the critical buckling load 

of unified beam element that is free from shear locking using the energy method: the proposed technique 

provides a unified approach for the stability analysis of beams with any end conditions. Jian-Hua Yin [6] 

proposed a closed-form solution for reinforced Timoshenko beam on elastic foundation subjected to any 

pressure loading: the effects of geosynthetic shear stiffness and tension modulus and the location of the 

pressure loading were investigated. In stability analysis Timoshenko and Gere [7] proposed formulas to account 

for shear stiffness by means of calculation of buckling loads of the associated Euler–Bernoulli beams. Hu et al. 
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[8] used matrix structural analysis to derive a closed-form solution of the second-order element stiffness matrix: 

the buckling loads of single-span beams were also determined.  

In this paper a material law combining bending and shear is presented: this material law describes the 

relationship between the curvature, the bending moment, the bending stiffness, the shear force, and the shear 

stiffness. Based on this material law closed-form expressions of efforts and deformations are derived, as well as 

first-order and second-order element stiffness matrices. Stability analysis is conducted, the buckling lengths of 

single-span systems being determined on the basis of shear factor. 

2. Materials and Methods  

2.1   Governing equations  

2.1.1   Statics 

The sign conventions adopted for the loads, bending moments, shear forces, and displacements are illustrated 

in Figure 1 

 
Figure 1.  Sign convention for loads, bending moments, shear forces, and displacements 

Specifically, M(x) is the bending moment in the section, V(x) is the shear force, w(x) is the deflection, and q (x) 

is the distributed load in the positive downward direction. 

 

In first-order analysis the equations of static equilibrium of an infinitesimal element are as follows: 

                                                      (1)                                                                                                                                

                                                                                        (2)                                                                                                                                

According to the Timoshenko beam theory, the bending moment and the shear force are related to the 

deflection and the rotation (positive in clockwise) of cross section (x) as follows: 

                                                                                             

(3) 

                                                                                            (4)     

In these equations E is the elastic modulus, I is the second moment of area,  is the shear correction factor, G is 

the shear modulus, and A is the cross section area.  

Equations (1), (3), and (4) also apply in second-order analysis.                                                                                                                                                      
 

2.1.2   Material and geometric equations 

Equation (4) can be formulated as follows  

             (5)                                                 
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  Differentiating both sides of Equation (5) with respect to x results in the following equation:                                           

                                 (6)

 Substitution of Equation (3) into Equation (6) yields the following: 

                                                                                                                                         (7)                                                                                                                                                                                                                                                                                                                                             

Equation (7) yields the following material law combining bending and shear for the Timoshenko beam:                                                                                         



(8)   For a beam with a constant cross section along segments, substituting Equation (1) into Equation (8) yields,  

                       (9)     

                                                                                                                                                                                                                                                          
For  For a continuously varying cross section along segments of the beam, substituting Equation (1) into Equation (8) 

yiel yields, 

                                                                                                                                              



In the case of non-uniform heating, the material law (Equation (9)) becomes: 



Rotation of the cross section (Equations (1) and (5)) yields the following:                                                                       



The governing equations are the equation of static equilibrium (Equation (2)) and the material law (Equation (9) 

or Equation (10)).  

The shear force – bending moment relationship (Equation (1)), and the rotation of the cross section (Equation 

(12)) are used to satisfy the boundary conditions and the continuity equations. 

Equations (5) to (12) apply as well in first-order analysis and in second-order analysis.                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                      

2.1.3   Summary of Timoshenko and Euler-Bernoulli beam equations 

Table 1 summarizes the fundamental Timoshenko beam equations and compares them to the Euler–Bernoulli 

beam equations.  

Table 1.  Summary of equations for Timoshenko and Euler–Bernoulli beams 
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Geometry 

  

Material law 

  

Non uniform 

heating 

  

 

The bending shear factor is defined as follows:   

                                                                   


 

 

2.2   First-order analysis of the Timoshenko beam 

2.2.1   Beam without elastic Winkler foundation 

The application of Equation (2) yields the following formulation of the bending moment:  

                                                                                                                                         (14)                                                                                             

Substitution of Equations (2) and (14) into the material law (Equation (9) for a beam with constant cross section) 

yields: 

                                                                                                         (15)                                                                                                                                                          

The integration constants Ci (i = 1, 2, 3, and 4) are determined using the boundary conditions and continuity 

equations and combining the deflections, the cross section rotations (Equation (12)), the bending moments, and 

the shear forces (Equation (1)). 

 

2.2.2   Element stiffness matrix 

The sign conventions for bending moments, shear forces, displacements, and rotations adopted for use in 

determining the element stiffness matrix in local coordinates is illustrated in Figure 2. 

 

Figure 2.  Sign conventions for moments, shear forces, displacements, and rotations for stiffness matrix 

Let us define following vectors, 

                                                                                                            (16)                                                                                                                                                                                                                                                                                                                          

                         (17)                                                            

( ) 1 ( )
( )

dw x dM x
x

dx GA dx



= − 

( )
( )

dw x
x

dx
 =

2

2

( ) ( ) ( )
0

d w x M x d V x

dx EI dx GA

 
+ − = 

 

2

2

( ) ( )
0

d w x M x

dx EI
+ =

2 2

2 2

( ) ( ) 1 ( )

0T

d w x M x d M x

dx EI GA dx

T

d





+ −


+ =

2

2

( ) ( )
0T Td w x M x

dx EI d

 
+ + =

1 2( ) ( )M x q x dxdx C x C= − + +

3 4( ) ( ) ( )
EI

EI w x q x M x dxdx C x C
GA

 
 = − + + + 

 


 

 

; ; ;

; ; ;

T

i i k k

T

i i k k

S V M V M

V w w 

=

=

2

EI

l GA



=

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 November 2020                   doi:10.20944/preprints202011.0457.v1

https://doi.org/10.20944/preprints202011.0457.v1


 

The element stiffness matrix in local coordinates of the Timoshenko beam is denoted by KTbl. 

The relationship between the aforementioned vectors is as follows:  

             (18)                                                                                                                                                                                                                                                                                                                      

Application of Equations (12), (14) and (15) yields the following (there is no distributed load): 

                                                                                                  (19)    

                                                                                                                                                (20)                                                            

                            (20a)                                        

Considering the sign conventions adopted for bending moments and shear forces in general (see Figure 1) and 

for bending moments and shear forces in the element stiffness matrix (see Figure 2), we can set following static 

compatibility boundary conditions in combination with Equations (1) and (19):    
                  (21)                                                                                                                                                                                                                                                       

             (22)                                                                                                                                                                                                                                                                                                                                                                                                      

             (23)                                                                                                                                                                                                                                                                                                                                                                                                         



Considering the sign conventions adopted for the displacements and rotations in general (see Figure 1) and for 

displacements and rotations in the member stiffness matrix (see Figure 2), we can set following geometric 

compatibility boundary conditions in combination with Equations (20) and (20a):      







                                                                                       (28)  

                                                               
The combination of Equations (16) to (18) and Equations (21) to (28) yields the first-order element stiffness 

matrix of the Timoshenko beam:    

                                                                                           

             (28a

The development of Equation (28a) yields the following widely known formulation of the first-order element 

stiffness matrix of the Timoshenko beam: 
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Where                              



 

 
Assuming the presence of a hinge at the right end, the sign convention for bending moments, shear forces, 

displacements, and rotations is illustrated in Figure 3. 

 

Figure 3.  Sign conventions for moments, shear forces, displacements, and rotations for stiffness matrix 

The vectors of Equations (16) and (17) become 



                                                             (32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

The element stiffness matrix can be expressed as follows: 



Where  

                                        (34)     

        

 



3 2 3 2

2

3 2

12 6 12 6

1 1 1 1

4 6 2

1 1 1

12 6

1 1

4

1

Tbl

EI EI EI EI

l l l l

EI EI EI

l l l
K

EI EI

l l

EI
sym

l

   

 

  

 





− 
 + + + +
 

+ − − 
 + + +
 =

− 
 + +
 

+ 
 + 

 

 

; ;

; ;

T

i i k

T

i i k

S V M V

V w w

=

=

3 2 3

2

3

3 3 3

1 ' 1 ' 1 '

3 3

1 ' 1 '

3

1 '

Tbl

EI EI EI

l l l

EI EI
K

l l

EI
sym

l

  

 



 −
 
+ + +

 
 −

=  
+ +

 
 
 

+ 

2

12EI

l GA



=

2

3
'

EI

l GA



=

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 November 2020                   doi:10.20944/preprints202011.0457.v1

https://doi.org/10.20944/preprints202011.0457.v1


 

2.2.3   Beam resting on an elastic Winkler foundation 

For a beam resting on a Winkler foundation with stiffness Kw, Equation (2) of static equilibrium becomes,                                                             



Differentiating Equation (35) twice with respect to x, combined with the material law (Equation (9)), yields the 

following:        


The solution of Equation (36) yields the formulation of M(x) with four integration constants. Combining M(x) 

with Equation (35) yields the following equations:  

                  




                                                                                                                                                         
The application of Equation (1) to M(x) yields the shear force, and the combination of M(x) with Equations (12) 

and (38) yields the rotations of the cross section. 

 
2.3     Second-order analysis of the Timoshenko beam 

2.3.1   Beam without elastic Winkler foundation 

A beam with constant cross section is considered. The axial force N (positive in tension) is assumed to be 

constant in segments of the beam. The equation of static equilibrium is as follows:                                                                                           

 


Combining Equation (39) with the material law (Equation (9)) yields the following: 

                                                                                             (40) 

 

The solution of Equation (40) yields M(x), which contains the integration constants C1 and C2. The combination 

of M(x) with Equation (39) yields following equations: 
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The transverse force T(x) is determined as follows: 
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By applying Equations (1) and (41), the transverse force T(x) can be expressed as follows: 
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The combination of M(x), Equations (12) and (41) yields the rotation of the cross section as follows:                                                                                                                                                                                                              
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2.3.2   Element stiffness matrix 

The sign conventions for bending moments, transverse forces, displacements, and rotations adopted for use in 

determining the element stiffness matrix in local coordinates is illustrated in Figure 4. 

 
Figure 4.  Sign conventions for bending moments, transverse forces, displacements, and rotations for 

stiffness matrix 

Let us define following vectors, 
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The combination of Equation (40), the bending shear factor (Equation (13)), Equation (47), and the absence of a 

distributed load yields the following: 
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The solution of Equation (48) is as follows, with the parameter 1 defined as shown:       
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The combination of Equation (12) for the rotation of the cross section with Equations (49) and (51) yields the 

following, with the parameter 2 defined as shown: 
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By applying Equations (1), (43), (49), and (51), the transverse force T(x) yields: 
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Considering the static compatibility boundary conditions (Equations (21) to (34)), whereby the shear forces are 

replaced by the transverse forces, the geometric compatibility boundary conditions, and Equations (49) to (55), 

the following equations are obtained: 

 

                                                                                              (56a)                                                                                                                                                                                                                                                  
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                                                                                                  (56h)                                                                                                                                                                                                                                                  

The combination of Equations (18), (45), (46), and (56a) to (56h) yields the element stiffness matrix: 

                            (57)    

The development of Equation (57) yields the following formulation:  
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Case 2:  Tensile force or compressive force with k  -1                                                                                                                                                                                                                

The solution of Equation (48) is as follows, with the parameter 3 defined as shown: 

                                                                                                     (60)                                                                                                                                                                                                                                                                                                                                                                                                          

             (61)                                                                                                                                                                                                                                                                                                                                             

Combining Equations (39) and (60) and integrating with respect to x yields the following: 



                                                                                               (63)   

Combination of Equation (12) for the rotation of the cross section, with Equations (60) and (62) yields the 

following: 



                                                                                                                                     (65)                                                                            

The parameter 4 (Equation (65)) has a positive value in the case of tension and a negative value in the case of 

compression with k  -1. 

By applying Equations (1), (43), (60), and (62), the transverse force T(x) yields the following: 

                                   T(x) = NC2                    (66)   
 

Considering the static compatibility boundary conditions (Equations (21) to (24)), whereby the shear forces are 

replaced by the transverse forces, and the geometric compatibility boundary conditions, and Equations (60) to 

(66), the element stiffness matrix can be expressed as follows: 

        

             (67)   

The development of Equation (67) yields the following formulation:  

                                                                                                                                                            (68)   
                                                                                                 (68d)                                                                    

 

                                                                    
                                                                                                 (68e)                                                                    
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Accordingly, the element stiffness matrix of the beam with a hinge present is as follows: 

             (69a)   
(69b)   

             (70)                

2.3.3   Beam resting on an elastic Winkler foundation with an axial load 

In the equation of static equilibrium, the axial force N (the value of which is positive in tension) is assumed to 

be constant in segments of the beam. The stiffness of the Winkler foundation is denoted by Kw.                                                                                                                                                                                                                     

      

                                                                                                 (71)                                                                                                                                                                                                                               

The combination of Equation (71) with the material law (Equation (9)) yields the following: 

                                                                                             (72)                                                                                                                                                                                                                                                                                                          

Differentiating twice both sides of Equation (72) with respect to x and combining the result with the material 

law (Equation (9)) yields the following: 

           
                                                                                 (73)                                                                                                                                                                                                                                                                                                                                                                                   

The solution of Equation (73) yields the formulation of M(x) with four integration constants. From M(x), 

combined with Equations (1) and (72), the shear force V(x) and the deflection w(x) can be deduced. The 

application of Equations (12) and (43) yields the transverse forces T(x) and the rotations of the cross section (x).  
 

2.3.4   Stability of the Timoshenko beam 

The equation of static equilibrium (Equation (39)), the material law (Equation (9) or Equation (10)), the bending 

moment M(x), the deflection w(x), the rotation of the cross section (x), and the transverse force T(x) are used to 

determine the buckling load, at which the transverse loading q(x) is equal zero. 

For k  -1, Equations (13) and (47) define the parameters  and k, and Equations (49) to (55) are considered to 

satisfy the boundary conditions and continuity conditions.  

For k  -1, Equations (60) to (66) are considered to satisfy the boundary conditions and continuity conditions.  

The resulting eigenvalue problem is solved to determine the buckling loads. 

3. Results 

3.1   First-order analysis of Timoshenko beams 

3.1.1   Beams subjected to uniformly distributed load 

Example 1:  Let us calculate the responses of a beam with a constant cross section, simply supported at its ends, 

and subjected to a uniformly distributed load as shown in Figure 5. 

 

K11 = -k4cosh3/ 

K12 = -ksinh3/ 

 = sinh3-4cosh3 

 

 

2 2

2 2

( ) ( )
( ) ( )w

d M x d w x
N K w x q x

dx dx
+ − = −

2

2

( )
( ) (1 ) ( ) ( )w

N d M x N
K w x M x q x

GA dx EI
= + − +

4 2 2

4 2 2

( ) ( ) ( )
(1 ) ( ) ( )w wK KN d M x N d M x d q x

M x
GA dx EI GA dx EI dx 

+ − + + = −

11 12 113 2 3

12 12 2

11 3

Tbl

EI EI EI
K K K

l l l

EI EI
K K K

l l

EI
sym K

l

 
− 

 
 = −
 
 
 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 November 2020                   doi:10.20944/preprints202011.0457.v1

https://doi.org/10.20944/preprints202011.0457.v1


 

 

Figure 5.   Beam subjected to a uniformly distributed load             

The characteristics are as follows:  p = 10 kN/m, L = 10 m, b = 0.3 m, H = 0.5m, E = 34.5106 kN/m²,  = 0.3, and  

= 5/6  

The application of Equations (14) and (15), and the appropriate boundary conditions yields the closed-form 

equation of the deflection curve as follows: 

     


The calculation of the deflections with the principle of virtual work is presented in Appendix A.  

Details of the results are presented in the supplementary material “Spreadsheet S1.” 

Closed-form expressions of single-span systems for various support conditions are presented in Appendix B. 

Table 2 lists the results obtained with the principle of virtual work and those obtained in the present study. 

Table 2.   Deflections of the beam: Principle of virtual work, and present study  

Node position 
Principle of virtual work 

(exact results) 
Present study 

0.0 0.00000 0.00000 

1.0 0.00382 0.00382 

2.0 0.00722 0.00722 

3.0 0.00988 0.00988 

4.0 0.01157 0.01157 

5.0 0.01215 0.01215 

6.0 0.01157 0.01157 

7.0 0.00988 0.00988 

8.0 0.00722 0.00722 

9.0 0.00382 0.00382 

10.0 0.00000 0.00000 

 

3.1.2   Beams subjected to concentrated load 

Example 2: Let us calculate the responses of a beam with a constant cross section fixed at its left end, simply 

supported at its right end, and subjected to a concentrated load, as shown in Figure 6. 

2
4 3 2 31

( ) ( )
24 12 2 24 2

p pl pl
EI w x x x x pl x


 = − − + +
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     Figure 6.  Beam under concentrated load 

Details of the analysis and results are listed in Appendix C and in the supplementary material “Spreadsheet 

S2.” 

Table 3 lists the moments at the fixed end (MFEM) and under the load (MuL) for different values of the bending     

shear factor, calculated as described in this paper and according to the principle of virtual work (exact values). 

 
Table 3.  Moments in beam subjected to a concentrated load   

= EI/GAl²= 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 

Calculations as described in this paper 

MFEM = -12.89 -11.99 -11.21 -10.52 -9.92 -9.38 -8.89 

MuL = 13.92 14.25 14.55 14.80 15.03 15.23 15.42 

Calculations according to the principle of virtual work (exact values) 

MFEM = -12.89 -11.99 -11.21 -10.52 -9.92 -9.38 -8.89 

MuL = 13.92 14.25 14.55 14.80 15.03 15.23 15.42 

 

3.2   Second-order analysis of Timoshenko beams 

3.2.1   Stability of beams  

We determine the buckling loads of single-span beams with various support conditions for different values of 

the bending shear factor. 

Details of the analysis and results are listed in Appendix D and in the supplementary materials “Spreadsheet 

S3,” “Spreadsheet S4,” “Spreadsheet S5,”and “Spreadsheet S6.” 

The buckling load Ncr is defined as follows: 



Values of the buckling factor  are listed in Table 4. Closed-form expressions of the matrices expressing the 

boundary conditions are presented in Appendix D. To determine the buckling loads the determinants of those 

matrices are set to zero. Closed-form expressions of the buckling factors for a pinned–pinned beam and a fixed–

free beam are also presented in Appendix D. 

Table 4.   Buckling factors for Timoshenko beam with various support conditions  

 = EI/GAl² = 0.000 0.025 0.050 0.075 0.100 0.1250 0.150 

Both ends simply supported (SS–SS) 

 = = 1.0000 1.1163 1.2220 1.3192 1.4096 1.4946 1.5750 

Left end fixed and right end simply supported (F–SS) 

 == 0.6992 0.8716 1.0146 1.1392 1.2510 1.3530 1.4474 

Left end fixed and right end free (F–FR) 

 == 2.0000 2.0608 2.1198 2.1772 2.2332 2.2877 2.3410 

Both ends fixed (F–F) 

 == 0.5000 0.7048 0.8623 0.9951 1.1122 1.2181 1.3155 

2 2/( )crN EI l = −
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We recall that the exact values of the buckling factors  for = 0.0 (corresponding to the Euler–Bernoulli beam) 

for the conditions SS–SS, F–SS, F–FR and F–F are 1.00, 0.700, 2.00, and 0.500, respectively. 

 

3.2.2   Beams subjected to uniformly distributed load 

Example 3:  Let us calculate the responses of a beam with a constant cross section, simply supported at its ends 

and subjected to a uniformly distributed load and an axial force, as shown in Figure 7. 

 
Figure 7.    Beam subjected to a uniformly distributed load and an axial force 

The moments at position L/2 are calculated for different values of k (Equation (47)) and  (Equation (13)).  

Closed-form expressions of the moments are presented in Appendix E.   

The formulations for the moments at position L/2 in the case of a compressive force with k  -1 (Equation (76)) 

and in the case of a tensile force or compressive force with k  -1 (Equation (77)) are presented below.   

The limits of k corresponding to buckling are listed in the supplementary material “Spreadsheet S3”. 

Details of the results are presented in the supplementary material “Spreadsheet S7”
Table 5 lists the values of the moments.  

 



                            (77)                                                              

Table 5.   Moments at position L/2 for different values of shear factor and axial load  

 = 0.025  = 0.05  = 0.075  = 0.10 

k = MMP /pl² = k = MMP /pl² = k = MMP /pl² = k = MMP /pl² = 

-7.50 2.4474 -6.50 7.8536         

-6.00 0.5278 -6.00 1.3947 -5.50 4.2593     

-5.00 0.3453 -5.00 0.5242 -5.00 1.0825 -4.50 1.3635 

-4.00 0.2561 -4.00 0.3215 -4.00 0.4316 -4.00 0.6553 

-3.00 0.2032 -3.00 0.2313 -3.00 0.2684 -3.00 0.3197 

-2.00 0.1683 -2.00 0.1804 -2.00 0.1944 -2.00 0.2108 

-1.00 0.1435 -1.00 0.1477 -1.00 0.1522 -1.00 0.1570 

0.00 0.1250 0.00 0.1250 0.00 0.1250 0.00 0.1250 

1.00 0.1107 1.00 0.1083 1.00 0.1060 1.00 0.1038 

2.00 0.0993 2.00 0.0955 2.00 0.0920 2.00 0.0887 

3.00 0.0900 3.00 0.0854 3.00 0.0812 3.00 0.0774 

4.00 0.0822 4.00 0.0772 4.00 0.0727   
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3.2.2a   Beams subjected to concentrated load 

Example 4: Let us calculate the responses of a beam with a constant cross section, fixed at its left end, 

simply supported at its right end, and subjected to a concentrated load and an axial load, as shown in Figure 8. 

 
   Figure 8.  Beam under concentrated load and axial load 

Details of the analysis and the results are listed in Appendix F and in the supplementary material “Spreadsheet 

S8”. Table 6 lists the moments at the fixed end (MFEM) and under the load (MuL) for different values of the 

bending shear factor and axial force

Table 6.  Moments in beam subjected to a concentrated load and an axial force 

 Coefficient of axial force  k = -4.0 Coefficient of axial force  k = -6.0 

= EI/GAl²= 0.0000 0.0250 0.0500 0.0000 0.0250 0.0500 

MFEM = -15.65 -16.99 -18.98 -17.60 -21.58 -29.28 

MuL = 16.73 19.72 23.70 18.72 24.68 35.46 

 Coefficient of axial force  k = 4.0 Coefficient of axial force  k = 6.0 

= EI/GAl²= 0.0000 0.0250 0.0500 0.0000 0.0250 0.0500 

MFEM = -11.04 -9.31 -7.98 -10.32 -8.39 -6.98 

MuL = 12.03 11.27 10.60 11.29 10.22 9.35 

 

3.2.3   Element stiffness matrix 

Let us calculate the element stiffness matrix of a beam with the following characteristics:  

k = -1.5 (Equation (47)),   = 0.05 (Equation (13)), and length L = 4.0 m.  

The matrix is calculated using Equations (57) and (58). Details of the results are presented in the supplementary 

material “Spreadsheet S9”.  

The calculation of the element stiffness matrix of this Timoshenko beam yields the following: 

 

 

                                                                                               
     (78)                                      


 

Let us now calculate the element stiffness matrix of the beam with the formula presented by Hu et al. [8]: 

 

 

 
    (79)                                                                                                                                
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and                                      

Details of the calculations are presented in the supplementary material “Spreadsheet S9”. 

 

                                                                                               
     (80)                                      

 

 

 

The results are identical.  
In fact, both formulas are identical since following equivalences exist between the parameters considered by Hu 

et al. [8] (, ), and those considered in the present study (k,, 1, 2 ): 

 = 1+ k,  = 1,  = 2, (/L)2 = -k/L2 

The equations for the determination of the buckling loads (see Appendix D) are also identical to those of Hu et 

al. [8] (Table 1 of [8]). 

However, the formula presented by Hu et al. [8] only applies for compressive forces with k  -1.  

 

For the same beam subjected to a tensile force k = 1.5 (Equation (47)), the stiffness matrix is calculated with 

Equation (67): 

 

                                                                                               
  (81)                                      

 

 

4. Discussion 

The material law developed in this study enables the derivation of closed-form solutions for first-order analysis, 

second-order analysis, and stability of Timoshenko beams.  

The results show that the calculations conducted as described in this paper yield accurate results for first-order 

and second-order analysis of Timoshenko beams. Closed-form expressions of second-order element stiffness 

matrices (the axial force being tensile or compressive) in local coordinates were determined.  

The determination of element stiffness matrices (ESM) enables the analysis of systems with the direct stiffness 

method. We showed that ESM can also be determined by the presence of hinges (Equations (33), (59), and (69a) 

to (70)).   

Calculation of bending moments and shear forces: 

Influence of tensile force: With increasing tensile force, bending moments decrease (in absolute values), 

and with increasing bending shear factor, bending moments decrease (in absolute values).  

Influence of compressive force:  With increasing compressive force, bending moments increase (in 

absolute values), and with increasing bending shear factor, bending moments also increase (in absolute 

values).  

Stability of the beam: With increasing bending shear factor, the buckling load decreases (increase of the 

buckling length). 

The following aspects not addressed in this study could be examined in future research: 

✓ Analysis of linear structures, such as frames, through the transformation of element stiffness matrices 

from local coordinates in global coordinates. 

✓ Second-order analysis of frames free to sidesway with consideration of P- effect. 

✓ Use of the direct stiffness method, since element stiffness matrices are presented.    

✓ Closed-form expressions of bending moments and deflections for second-order analysis.  

✓ Analysis of positions of discontinuity (interior supports, springs, hinges, abrupt change of section), 

since closed-form expressions of bending moments, shear or transverse forces, rotation of cross sections, 

and deflection are known. 
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✓ Beams resting on Pasternak foundations, the Pasternak soil parameter can be considered as a tensile 

force.  

5. Conclusions 

6. Patents 

Supplementary Materials: The following files are uploaded during submission:  

Spreadsheet S1: Deflection calculation of a beam with the principle of virtual work.  

Spreadsheet S2: Analysis of a fixed-pinned beam under concentrated load 

Spreadsheet S3: Buckling analysis of a pinned-pinned beam  

Spreadsheet S4: Buckling analysis of a fixed-pinned beam  

Spreadsheet S5: Buckling analysis of a fixed-free beam  

Spreadsheet S6: Buckling analysis of a fixed-fixed beam  

Spreadsheet S7: Bending analysis of a pinned-pinned beam subjected to a uniformly distributed load and an 

axial force   

Spreadsheet S8: Bending analysis of a fixed-pinned beam subjected to a concentrated load and an axial force   

Spreadsheet S9: Element stiffness matrix of a beam   
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Appendix A Deflection calculation at position x0 with the principle of virtual work    

                                                                                             (A1) 

M(x), V(x) are the bending moment and shear force due to the distributed load, respectively. m(x), v(x) are the 

bending moment and shear force due to a virtual unit load at the point of interest x0, respectively.  

M(x) = px(l-x)/2 V(x) = p(l/2-x)   

m(x) = x(l-x0)/l  for x  x0   m(x) = x0(l-x)/l  for x  x0    (A2) 

v(x) = 1-x0/l  for x < x0   v(x) = -x0/l  for x > x0 

The application of Equations (A2) into Equation (A1) yields,  

 

                                                                                                (A3) 

 

Details of the results are presented in the supplementary material “Spreadsheet S1.” 

Appendix B Closed-form expressions of single-span systems for various support conditions and loadings 

Beam with boundary conditions SS–SS (simply supported at both ends) 

Application of Equations (14) and (15) and the corresponding boundary conditions yields the following: 

• Application of a triangular distributed load (zero at x = 0, and p at x = l) 

                                                                                                    (B1)                                                                   

                                                                                                    (B2)                                                                     
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Beam with boundary conditions F–FR (fixed at the left end (x = 0) and free at the right end) 

Application of Equations (14) and (15) and the corresponding boundary conditions yields the following: 

• Application of a uniformly distributed load p 

                                                                                                    (B3) 

                                                                                         (B4)                                                                                                                                                                                                                     

Application of a triangular distributed load (zero at x = 0, and p at x = l) 

                                                                                                    (B5) 

                                                                                                   (B6) 

 

Boundary conditions F–SS (fixed at the left end (x = 0) and simply supported at the right end (x = l)) 

Application of Equations (14) and (15) and the corresponding boundary conditions yields the following: 

• Application of a uniformly distributed load p 

                                                                                                    (B7) 

                                                                                                   (B8)                                                                                                                                                                                                                                                                                                              

                                                                                                   (B9) 

 

• Application of a triangular distributed load (zero at x = 0, and p at x = l)                                                                                              

            (B10) 

            (B11) 

                                                                                                 (B12) 

Boundary conditions F–F (fixed at both ends) 

Application of Equations (14) and (15) and the corresponding boundary conditions yields the following: 

• Application of a uniformly distributed load p 

 

                                                                                                  (B13) 

                                                                                                  (B14)                                                                                                                                                                                                                                                                                                           
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• Application of a triangular distributed load (zero at x = 0, and p at x = l) 

                                                                                                  (B15)                                                                           

                                                                                                 (B16)      

                                                                                                  (B17) 

Appendix C Fixed-pinned Timoshenko beam subjected to a concentrated load 

Equations (19), (20), and (20a) are applied on both sides of the concentrated load, x1 at the left side (x1  a) and 

x2 at the right side (x2  b): 

                                                                                                       (C1) 

                                                                                                       (C2) 

                                                                                                       (C3) 

 

Similar equations are applied on the right side (with the variable x2). 

Following boundary conditions and continuity conditions (see also Equation (1)) are applied:  

✓ w(x1 = 0) = 0:    D1 = 0       (C4) 

✓ (x1 = 0) = 0:    C1 - l²×A1= 0     (C5) 

✓ w(x1 = a) = w(x2 = 0):   -A1/6×a3 - B1/2×a2 + C1×a + D1 = D2   (C6) 

✓ (x1 = a) = (x2 = 0):   -A1/2×a2 - B1×a + C1 - l²×A1= C2 -l²×A2  (C7) 

✓ M (x1 = a) = M (x2 = 0):  A1× a + B1 = B2     (C8) 

✓ Q (x1 = a) - Q (x2 = 0) = P:      A1 - A2 = P      (C9) 

✓ M(x2 = b) = 0:    A2× b + B2 = 0     (C10) 

✓ w(x2 = b) = 0:    -A2/6×b3 - B2/2×b2 + C2×b + D2 = 0   (C11) 

The unknowns are determined by solving of the system of equations, and the moments can be calculated.  

For calculation with the principle of virtual work the fixed-end moment and the moment under the load can be 

expressed as follows: 

 

                                                                                                     (C12) 

                                                                                                     (C13)                                                                                                                                          

Appendix D Buckling loads of single-span beams with various support conditions 

The combination of Equations (50) and (54) yields the following:  

     1  2 = -k       (D1) 

 

For the case of a pinned–pinned beam (SS–SS), the results are presented in the supplementary material 

“Spreadsheet S3”. To determine the buckling load, the determinant of the matrix expressing the boundary 

conditions is set to zero. The matrix, the determinant equation, and the buckling factor  are as follows: 
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-1,00 0,00 0,00 1,00 

1,00 0,00 0,00 0,00 

cos1 sin1 0,00 0,00 

-cos1 -sin1 1,00 1,00 

      sin1=0                                        (D2)                                                                                                                    

                                                            (D3)                                                                                                                                                                                                               

For a fixed–pinned beam (F–SS), the results are presented in the supplementary material “Spreadsheet S4”, with 

the matrix and the equation as follow: 

-1,00 0,00 0,00 1,00 

0,00 -2 1,00 0,00 

cos1 sin1 0,00 0,00 

-cos1 -sin1 1,00 1,00 
 
2  cos1 - sin1 = 0 →  1  sin1 + k  cos1= 0                   (D4) 

For the case of a fixed–free beam (F–FR), the results are presented in the supplementary material “Spreadsheet 

S5”, with the matrix, the equation and the buckling factor  as follows 

-1,00 0,00 0,00 1,00 

0,00 -2 1,00 0,00 

cos1 sin1 0,00 0,00 

0,00 0,00 1,00 0,00 

      cos1=0                                        (D5)                                                                                                                           

                                                                         (D6)                                                                                                                                                                                                                                    

For the case of a fixed–fixed beam (F–F), the results are presented in the supplementary material “Spreadsheet 

S6”, with the matrix and equation as follows: 

-1,00 0,00 0,00 1,00 

0,00 -2 1,00 0,00 

-cos1 -sin1 1,00 1,00 

2sin1 -2cos1 1,00 0,00 

  

  (1- cos1)2 - sin1(2- sin1) = 0 →  2- 2cos1 + k/1 sin1 = 0  (D7) 

Appendix E Timoshenko beam subjected to a uniformly distributed load and an axial force 

In the case of a compressive force with k  -1, the bending moment (Equations (40) and (49)) is expressed as 

follows: 

                                                                                                  (E1)                                                            
 

The boundary conditions are described by Equations (E1) and (52). The resulting bending moment is expressed 

as follows:  

                                                                                                  (E2)                                                                                                                                                            
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In the case of a tensile force or a compressive force with k  -1, the bending moment (Equations (40) and (60)) 

is expressed as follows: 

                                                                                           (E3)                                                                                                                                                                                                                                              

 

The boundary conditions are described by Equations (E3) and (63). The resulting bending moment is expressed 

as follows:                                                                                                                                     

                                                                                                  (E4)                                                                                                                                                                                                                                                                                                                        

For k = -1, with Equations (40) and (47), the bending moment is M(x) = pl²/k = -pl².  

For k = 0 (first-order analysis), the bending moments do not depend on . The value at the position L/2 is pl²/8. 

 

Appendix F Fixed-pinned Timoshenko beam subjected to a concentrated load and an axial force 

Equations (49) to (55) are applied in case of a compressive force with k  -1, and Equations (60) to (66) are 

applied in case of a tensile force or a compressive force with k  -1.  

Case of a compressive force with k  -1: following boundary conditions and continuity conditions are applied:  

 

✓ w(x1 = 0) = 0:   -A1 + ND1= 0       (F1) 

✓ (x1 = 0) = 0:   -B12 + NC1×l = 0      (F2) 

✓ w(x1 = a) = w(x2 = 0):  -A1cos1a/l - B1 sin1a/l + NC1×a + ND1 = -A2 + ND2 (F3) 

✓ (x1 = a) = (x2 = 0):  A12sin1a/l - B12 cos1a/l + NC1×l = -B22 + NC2×l (F4) 

✓ M (x1 = a) = M (x2 = 0): A1cos1a/l + B1 sin1a/l = A2     (F5) 

✓ T (x1 = a) - T (x2 = 0) = P:     NC1 – NC2 = P      (F6) 

✓ M(x2 = b) = 0:   A2cos1b/l + B2 sin1b/l = 0     (F7) 

✓ w(x2 = b) = 0:   -A2cos1b/l - B2 sin1b/l + NC2×b + ND2 = 0  (F8) 

 
Case of a tensile force or a compressive force with k  -1: following boundary conditions and continuity 

conditions are applied:  

✓ w(x1 = 0) = 0:    -A1 + ND1= 0      (F9) 

✓ (x1 = 0) = 0:    -B14 + NC1×l = 0     (F10) 

✓ w(x1 = a) = w(x2 = 0):     -A1cosh3a/l - B1 sinh3a/l + NC1×a + ND1 = -A2 + ND2  (F11) 

✓ (x1 = a) = (x2 = 0):     -A14sinh3a/l - B14 cosh3a/l + NC1×l = -B24 + NC2×l  (F12) 

✓ M (x1 = a) = M (x2 = 0): A1cosh3a/l + B1 sinh3a/l = A2     (F13) 

✓ T (x1 = a) - T (x2 = 0) = P:     NC1 – NC2 = P      (F14) 

✓ M(x2 = b) = 0:   A2cosh3b/l + B2 sinh3b/l = 0    (F15) 

✓ w(x2 = b) = 0:   -A2cosh3b/l - B2 sinh3b/l + NC2×b + ND2 = 0  (F16) 

The unknowns are determined by solving of the system of equations, and the moments can be calculated.  
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