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Abstract: Changes in crude oil price affect the shipping freight market in three different channels. 

This study explores the dependence structure between oil prices and maritime freight rates to 

identify the effective channel. Therefore, it investigates the relationship between oil prices and three 

major maritime freight rates; the Baltic Dry Index (BDI), the Baltic Dirty Tanker Index (BDTI), and 

the Baltic Clean Tanker Index (BCTI). We employ the decomposition method, not studied in the 

existing literature, and the copula approach which can identify the time-varying effects and 

asymmetry in the tail dependence structure between oil prices and freight rates. The main results of 

this analysis are as follows. The decomposed components display different conditional dependence 

patterns, and asymmetry is revealed in the upper and lower tail dependence. In the long run, we 

find more dependence in extreme periods like the financial crises. In short-run fluctuations, we find 

the dependence increases in an economic boom. The implications of the results suggest that 

dependence can vary over time and may change depending on extreme events, implying that the 

complementary strategies of the long run and short run should be different. 
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1. Introduction 

Recently, over 80% of the global goods trade is conveyed by sea using maritime transport [1]. 

Marine transportation is known to be the most efficient and cheapest way to transport goods in large 

quantities. Since the 1960s, containerization has greatly cut down the costs of international trade of 

commercial goods and increased its speed [2]. 

Although the global seaborne trade volume recorded an annual average increase of 2.95% over 

the last decade, from 8,230 tons in millions in 2008 to 11,005 tons in millions in 2018, the global 

shipping capacity showed an annual average increase of 5.66% in the same period, from 1,118 million 

of dwt in 2008 to 1,938 million of dwt in 2018 [3]. This resulted in persistent global overcapacity in 

the shipping freight markets. Due to weak demand and overcapacity in maritime transport, low 

freight rates have been observed continuously in recent years, resulting in significant challenges for 

shipping companies in their business conditions and decision-making. 

Theoretically, crude oil price changes affect the shipping freight market in three channels. The 

first channel is related to shipping companies’ transportation costs. According to Lyridis and 

Zacharioudakis [5], transportation costs in the shipping freight market can be classified as capital 

costs, running costs, and voyage costs. Voyage costs may vary, depending on the voyage distance 

and the selected route. The study also considered fuel costs, tugging, and port and canal costs. For a 

company in the freight market, bunker fuel is a considerable cost, which is a product of crude oil, and 

thus, its price is linked to oil price. The shipping industry is highly affected by fuel prices. Bunker 

fuel is one of the largest operating expenses of any shipowner, accounting for almost 50% of voyage 

costs, even greater than crew wages [4]. As bunker (fuel oil) prices are highly connected to crude oil 
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prices, an unanticipated increase in oil price inevitably increases costs and worsens the shipowners’ 

profitability. In this channel, oil price moves in the same direction as the freight rate.  

The second channel is related to crude oil demand due to global economic fluctuation. If there 

is an increase in economic activity in the global economy, more energy is used, and the demand and 

price of oil will increase. The shipping industry is highly connected to international trade. Therefore, 

it would be highly sensitive to fluctuations in global consumption and production of commercial 

goods and raw materials, separated in location. If the maritime freight volume increases, the freight 

rate will increase simultaneously. Shipowners may charge a higher freight rate to recompense the 

increased fuel expense of their vessels. Therefore, the oil price and freight rates comove due to global 

economic fluctuations.  

Finally, the third channel is related to crude oil transport services due to oil supply shocks. Oil 

prices directly affect global oil transportation operation, mainly served by ocean tankers. If crude oil 

supply reduces unexpectedly, the volume of crude oil transport services decreases, and the freight 

rate of oil tankers decreases. In this case, oil price moves in the direction opposite to the freight rate.  

The effectiveness of the three channels is determined only by experience and can be time-

varying. Thus, the purpose of this study is to explore the dependence structure between oil prices 

and maritime freight rates to empirically identify the channel. 

This study provides three major contributions to the existing relevant literature. First, it 

investigates and compares the linkage between oil prices and all main sectors of maritime freight 

rate: the BDI, freight rates for the transport of raw materials such as iron ore, coal, and grain; the 

BDTI, freight rates for oil tankers, and the BCTI, freight rates for the transport of petroleum products 

such as gasoline and diesel. Second, this study employs the decomposition method, not studied in 

the existing literature. There is a lack of research showing systematic relationships by classifying 

patterns and movements seen in time series. Thus, our study has a new perspective in analysing the 

dependence between crude oil and freight rates of time series components. Third, we identify the 

time-varying relationship between different shipping freight markets and crude oil. In analysing the 

relationship between multivariate time series, it is necessary to investigate temporal patterns in each 

univariate series and their joint behavior. Accordingly, we employ the copula approach. The use of 

time-varying Student’s t and SJC copulas has many advantages over the conventional methods. It 

best captures the conditional dependence and asymmetric tail dependence structures between oil 

prices and freight rates. The time-varying effects in the dependence can be well identified in the 

copula modelling. Thus, this method allows us to grasp the time-path behavior more clearly in the 

marine freight market. This study contributes to the relevant literature to uncover the asymmetric 

tail dependence structure between the oil market and maritime transport markets by focusing on the 

above three aspects.  

The main findings of our analysis are as follows. The decomposed components have different 

conditional dependence patterns, and we discovered asymmetry in the upper and lower tail 

dependence. In the long run, more dependence has been found in extreme periods like financial 

crises. In the short-run fluctuations, we found that the dependence increases in an economic boom. 

The implications of the results suggest that dependence can vary over time and may change 

depending on extreme events. This means that the corresponding strategy of the long- and short runs 

should be different. A deep understanding of freight rate behaviors is important to maritime 

forecasting, portfolio diversification, and risk management in shipping freight markets. As a source 

of energy fuel to propel ships, oil is one of the major operating expenses of any shipowner. The 

shipping companies and policymakers in the maritime transport industry should reduce possible 

uncertainty and risk in shipping freight markets’ cost and revenue. Thus, our empirical results can 

be used as important and necessary information to uncover the linkage between the oil price and 

shipping freight rates, the main source of uncertainty and risk in the industry. 

The remaining sections of this paper are as follows. A literature review is presented in Section 

2. In Section 3, the methodology used in this study is summarized. The preliminary analysis of sample 

data and empirical findings are presented in Section 4. Section 5 concludes the analysis. 

2. Literature review  
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Many studies analyzed the relationship between oil price and freight using several methods. 

Most studies reported evidence of the relationship between oil and maritime freight markets. Among 

others, Kavussanos [6] discovered that tanker spot prices are negatively connected to the oil price 

and positively to their volatility by employing the general autoregressive conditional 

heteroscedasticity (GARCH) model. Glen and Martin [7] explained that an ambiguous connection 

between freight rates and oil prices could be possible. They insisted that oil price change could be 

driven by supply and demand variations, which influence the freight rates in opposite directions. 

Notteboom and Vernimmen [8] analyzed how shipping lines have adapted their service schedules to 

cope with increased bunker costs using a cost model. They found that shipping lines respond to 

higher bunker costs late. Poulakidas and Joutz [9] showed that tanker demand comes from the oil 

demand, and thus tanker rates respond highly to the oil prices. El-Masry et al. [10] explored the 

influence of macroeconomic factors, including oil prices on shipping firms’ stock returns. They found 

that the increase in oil prices significantly influences the minority of shipping companies. UNCTAD 

[11] investigated the impact of oil prices on maritime freight rates for containerized goods and found 

that the elasticity of container freight rates to oil prices increased since 2004. Shi et al. [12] examined 

the linkage between fluctuations in the freight rates and oil prices, employing a structural vector 

autoregressive model. They found that oil supply shocks have a significant influence on the maritime 

freight market. Yang et al. [13] analyzed the spillover effects of the oil market on the tanker market 

using a VAR-BEKK-GARCH model. They found that oil market volatility has a significant influence 

on the tanker market. Gavriilidis et al. [14] discovered that considering oil demand shocks 

significantly improves the forecasting accuracy of tanker freight rate volatility, while considering oil 

supply shocks has a very limited influence on the volatility forecasting results. Maitra et al. [15] 

investigated the volatility transmission between oil and liner shipping stock returns using the 

dynamic conditional equicorrelations and the directional spillover index approach. They found that 

the linkage between stock returns of crude oil and liner shipping companies became more volatile. 

Siddiqui and Basu [16] explored the cross-correlation between pairs of oil and freight price cycles to 

uncover the non-linear linkage between them by employing the decomposition method. They found 

ever-enhancing relations in medium to longer terms, which are mostly induced by oil prices.  

Contrary to the above studies, Alizadeh and Nomikos [17] examined the dynamic linkage 

between crude oil prices and tanker freight rates across two major tanker routes. They found no 

evidence supporting the tanker freight rates and spot-futures price differentials in the oil market.  

Some studies employed the copula approach to analyze maritime freight rates. Among others, 

Zhang [18] developed copula-based models for analyzing oil price and tanker freight rates and 

revealed weak dependence between the two variables at the time of high oil prices. Li et al. [19] 

examined the connectedness among different shipping freight rates by using GARCH-copula models 

and found non-linear dynamic linkages among freight rate returns. Bai and Lam [20] investigated 

dynamic interdependence between liquefied petroleum gas (LPG) freight rate and oil price 

employing a conditional copula-GARCH approach and found that the price linkage between crude 

oil and Baltic LPG freight rate is relatively weak and mostly positive. Sun et al. [21] addressed the 

extreme risk transmission from the commodity market to the maritime market employing a GARCH-

copula-CoVaR approach. They found evidence regarding risk spillovers from oil to the maritime 

markets. 

Few studies analyzed asymmetric tail dependence. Reboredo and Ugolini [22] examined 

downside and upside price spillovers between precious metals by employing a vine copula model 

and measuring downside and upside value-at-risk and conditional value-at-risk. They revealed that 

the interdependency is different across precious metals, showing different average and tail 

dependence features. Jondeau [23] explored the tail dependence between the US equity portfolios 

and discovered asymmetry in the lower and upper tail dependence.  

However, these two studies analyzed asymmetric tail dependence of precious metals and 

equities and did not focus on the interdependence between oil price and freight rates. Thus, our study 

is the first to analyze asymmetric tail dependence between oil price and maritime freight rates.  
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3. Methodology 

A copula function decouples the multivariate distribution function from its marginal 

distribution function. A copula method is useful for modelling correlated random variables. 

Traditional dependence measures pairwise dependence, but a copula measures the dependence 

structure among all random variables. This method can construct a more flexible multivariate 

distribution without the limitation of the marginal distribution selection and describe how marginals 

are combined in the joint distribution. Thus, we can model the dependence structure and marginal 

separately. The copula approach is applied to model the dependence and tail dependence of the 

monthly crude oil price and freight rates.  

A copula function is divided into marginal and joint distributions. This paper uses the original 

index value to transform marginal distribution first. Then copula approaches are employed to explore 

the time-varying dependence between oil and freight rates. 

We used the time-varying Student’s t and symmetrized Joe-Clayton (SJC) copulas, proposed by 

Patton [24]. The time-varying Student’s t copula was used to capture dependence. The time-varying 

SJC copula was employed to capture the tail dependence. It is commonly used because it allows for 

symmetrical or asymmetrical dependence on the tail. First, the time-varying Student’s t copula is 

briefly discussed below. 

 

𝜌𝑡 = Λ (𝜔𝜌 + 𝛽𝜌𝜌𝑡−1 + 𝛼𝜌
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Here Λ(∙) ≡
(1−𝑒−𝑥)

(1+𝑒−𝑥)
 , a transformation function, holds the parameter 𝜌𝑡 within (-1,1) interval. 

𝑇−1(∙) is the inverse of Student’s t CDF. 𝜌𝑡  is the conditional dependence. 𝜌𝑡−1 is the previous 

conditional level and represents the persistence effect. 𝛼𝜌 captures the variability of dependence. 

This model assumes the functional form by following the ARMA (1,10) process. 

Additionally, to estimate the upper-lower tail dependence, we use the SJC copula [24]. We 

assume that time-varying SJC copula follows the ARMA (1,10) process. Thus, the time-varying SJC 

copula that follows this process is as given below: 
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where 𝜏𝑈  is the upper tail and 𝜏𝐿  indicates the lower tail dependence. Λ(∙) ≡ (1 + 𝑒−𝑥)−1  is the 

logistic transformation function, which holds the 𝜏𝑈 and 𝜏𝐿 in the range (0,1).  

4. Empirical analysis and results 

4.1. Sample data and decomposition 

Although the shipping freight rates are low and volatile nowadays, they behave differently in 

different shipping freight markets. As Clarksons Research [25] explained, there is usually another 

strong one when one market performs weakly, highlighting the need to study shipping freight rates 

by shipping freight markets. Thus, we use the data of three sub freight markets of maritime transport; 

Baltic Dry Index (BDI), Baltic Clean Tanker Index (BCTI), and Baltic Dirty Tanker Index (BDTI), 
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published by the Baltic Exchange in London. We used the monthly data of Brent crude oil, BDI, BCTI, 

and BDTI, during the period January 2007–May 2020, which gives 160 observations for each variable. 

We collected the data from Informax.  

The decomposition of the time series can classify the characteristics of patterns and components 

seen in the time series. It separates them into ‘trend’, ‘seasonal’, and ‘remainder’ components. The 

trend component identifies trends in the long run; it describes the long-run increases or decreases. 

Seasonal components have a constant cycle and identify patterns that change repeatedly. Finally, the 

remainder component represents the short-run fluctuation. In this paper, Brent and freight rate are 

decomposed using the seasonal and trend decomposition (STL) method by Cleveland et al. [26]. STL 

is a method that decomposes trend and seasonality using Loess. This method handles any kind of 

seasonality, including monthly or quarterly data, unlike SEATS and X11. 

 

 
(a) Brent 

 
(b) BDI 

 
(c) BCTI 

 
(d) BDTI 

Figure 1. Time series plot and decomposed components of Brent, BDI, BCTI, and BDTI. 

The graphical representation of time series and decomposed components of Brent, BDI, BCTI, 

and BDTI is illustrated in Figure 1. In Figure 1, the movement of the Brent oil prices show that prices 

rose sharply and fell sharply during 2008–2010. The price has fallen after maintaining a high price 

from 2012–2015. The maritime freight rates had increased at the beginning of the sample period but 

fell sharply in 2009. These rates had little rise and fall during the 2010–2020, but recently, BCTI and 

BDTI have increased sharply.   

The maritime freight rates are showing similar movements, but BCTI and BDTI have been rising 

recently. There are relatively many short-run fluctuations in BDTI, looking at the remainder 

component.  

Comparing the decomposed components, the linkage between crude oil prices and maritime 

freight rates trend components are dissimilar, while BCTI and BDTI show similar patterns. Also, the 

seasonal and remainder component patterns are different in each variable. Overall, the decomposed 
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component results show that each component in the time series is different, indicating that it is 

important to analyze the decomposed components’ dependency. 

 

4.2. Time-varying dependence results 

Based on the estimates of copula parameters presented in Table 1, the descriptive statistics of the 

time-varying dependence are displayed in Table 2. Figures 2–4 depict the evolution of dependence 

between maritime freight rates and crude oil over time. As in panel A of Table 2, the average time-

varying dependence between Brent and BDI is negative (-0.1164), and between Brent and BDI and 

BCTI is positive (0.0850, 0.1011). It was found that the dependence between Brent and BDTI was the 

strongest. From a long-term perspective, the negative dependence between Brent and BDTI means 

that a rise in crude oil prices will reduce the volume of transport services, leading to lower freight 

rates. However, crude oil and BDI and BCTI are found to have a positive relationship, which means 

that rising crude oil prices and demand for crude oil will result in higher fares due to increased costs 

and increased maritime freight volume. Thus, this implies that BDI and BCTI are related to shipping 

companies’ transportation costs and crude oil demand, but BDTI is related to crude oil transportation 

services 

The dynamic dependence between Brent and BDTI is the largest standard deviation (0.4399), 

while the dynamic dependence between Brent and BCTI is the lowest standard deviation (0.3426). 

Overall, all pairs were found to be highly volatile.  

As panel B of Table 2 indicates, the average dependence between Brent and BCTI and BDTI are 

negative (-0.0633, -0.6452), respectively, and between Brent and BDI is positive (0.6115). We found 

that the pair between Brent and BDTI has the strongest dependence, and BDTI and BDI present 

opposite results. The volatility for the dynamic dependence between Brent and BCTI is the largest 

standard deviation (0.0.3535), while the dynamic dependence between Brent and BCTI is the lowest 

standard deviation (0.458). For the seasonal component, the same explanation as the conclusion of 

the trend component holds. 

Finally, as shown in panel C of Table 2, unlike other components, the average dependence of all 

pairs is positive. The dependence between Brent and BDTI is the highest. However, lesser volatility 

was found compared to other components. From the short run fluctuation, the rise in crude oil prices 

leads to an immediate rise in costs, which leads to higher freight rates. 

 

Table 1. Results of the time-varying Student’s 𝑡 copula 

Panel A. Trend  

 𝝎𝝆 𝜷𝝆 𝜶𝝆 𝛎 AIC 

Brent/BDI 
-0.1630 

(0.3537) 

1.5808*** 

(0.4244) 

-0.2376 

(0.8305) 

14.9998* 

(8.0601) 
-102.2742 

Brent/BCTI 
-0.1157 

(0.3073) 

0.9636*** 

(0.3355) 

0.0457 

(1.1056) 

14.9997* 

(8.3743) 
-65.8172 

Brent/BDTI 
-0.1436 

(0.1736) 

0.9497* 

(0.5008) 

0.9622 

(1.0593) 

14.9998** 

(6.7026) 
-62.9485 

Panel B. Seasonal 

Brent/BDI 
0.3055 

(0.6772) 

0.2598 

(0.2598) 

1.4525 

(1.1548) 

5.0000*** 

(0.9755) 
-75.7933 

Brent/BCTI 
-0.7078*** 

(0.2050) 

-1.6066** 

(0.6948) 

0.8567** 

(0.4192) 

5.0000*** 

(1.2945) 
-30.6770 

Brent/BDTI 
-0.1826 

(0.5602) 

-0.3885 

(0.2722) 

2.6546*** 

(0.5999) 

5.0000*** 

(1.2323) 
-94.9353 

Panel C. Remainder 
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Brent/BDI 
0.7835* 

(0.4673) 

0.3915** 

(0.1837) 

-1.7059*** 

(0.6459) 

4.9965** 

(2.5402) 
-41.1588 

Brent/BCTI 
0.3445 

(0.4326) 

0.4127* 

(0.2190) 

-1.9730*** 

(0.2293) 

3.5917*** 

(1.3121) 
-33.9082 

Brent/BDTI 
0.7939* 

(0.4365) 

0.2321 

(0.1847) 

-1.6537 

(1.2006) 

3.3368*** 

(1.2849) 
-34.5164 

Notes: Standard errors are in parentheses for all parameters. The minimums of the AIC values fit the best copula 

function. ***, **, and * indicate the 1%, 5%, and 10% levels of significance, respectively. 

 

Figures 2–4, based on equations (2) and (3) and the parameter estimates shown in Table 1, plot 

the time path of the dependence between oil and freight rates during the sample period. The 

dependence between oil and freight rates differs patterns and behavior in the decomposed 

components. Figure 2 reports the time-varying dependence of the trend component. In the middle of 

2008, Brent and freight rates show a strong positive. Then the dependence for all pairs is negative 

during 2010–2011 and 2013–2014, having the highest dependence in 2016 due to the impact of Brexit, 

weak growth, and choppy markets. The time-varying dependence for seasonal components between 

Brent and freight rates is shown in Figure 3. The dependence between Brent and BCTI shows that the 

variation is higher than in other pairs. Finally, as in Figure 4, the remainder components move 

similarly in all pairs. The highest dependence is seen between 2009 and 2010, which implies that the 

relationship between variables increased during the US financial crisis. Overall, when an extreme 

event happens, it shows a strong dependence. Compared to the decomposed components’ results for 

the trend component, while dependence reacts sensitively to extreme events, the seasonal component 

does not. 

 

Table 2. Descriptive statistics of the dynamic dependence 

Panel A. Trend 

 Mean Median Maximum Minimum Std. Dev. 

Brent/BDI 0.0850 0.0196 0.9948 -0.7657 0.4369 

Brent/BCTI 0.1011 0.0224 0.9442 -0.6040 0.3426 

Brent/BDTI -0.1164 -0.1065 0.7344 -0.8763 0.4399 

Panel B. Seasonal 

Brent/BDI 0.6115 0.6036 0.8870 0.5451 0.0458 

Brent/BCTI -0.0633 0.0381 0.5839 -0.6691 0.3535 

Brent/BDTI -0.6452 -0.6415 -0.4441 -0.8081 0.0767 

Panel C. Remainder 

Brent/BDI 0.2625 0.2297 0.8321 0.0898 0.0130 

Brent/BCTI 0.1328 0.0898 0.7101 -0.1770 0.1480 

Brent/BDTI 0.2546 0.2301 0.6185 0.1158 0.0896 
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(a) Brent/BDI 

 
(b) Brent/BCTI 

 
(c) Brent/BDTI 

Figure 2. Dependence of trend component for pairs 
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(a) Brent/BDI 

 
(b) Brent/BCTI 

 
(c) Brent/BDTI 

Figure 3. Dependence of seasonal component for pairs 
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(a) Brent/BDI 

 
(b) Brent/BCTI 

 
(c) Brent/BDTI 

Figure 4. Dependence of remainder component for pairs 

 

4.2. Time-varying tail dependence results 

Tail dependencies are very useful for analysing the influence of extreme events.  Lower tail 

dependence means co-movements increase more in extreme events, such as a financial crisis, or the 

Brexit. However, the upper tail dependence means co-movements increase more in economic boom 

periods. Based on the copula parameters presented in Table 3, the descriptive statistics of the time-

varying tail dependence are shown in Tables 4–6. Figures 5–7 depict the time path of tail dependence 

between freight rates and crude oil, which present time-varying characteristics over time. Table 4 

shows the descriptive statistics for the tail dependence of the trend component. The freight rates had 

positive lower tail dependence with crude oil. However, the upper tail dependence was close to zero 

during the sample period. We found that there is an asymmetric tail dependence. We found that the 

pair between Brent and BDI has the strongest dependence (0.4602), with the pair of Brent and BCTI 

being the lowest in mean level (0.2432). In terms of volatility, lower tail dependence between Brent 

and BDI had the largest standard deviation. Overall, our findings have shown a lower tail 

dependence in all pairs of trend components. If crude oil prices fall, freight rates fall. These results 

mean the existence of asymmetric tail dependence between oil and freight rates, which indicates a 

higher dependence on a recession and crash than on an expansion and boom. 
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Table 3. Results of the time-varying SJC copula 

Panel A. Trend 

 Brent/BDI Brent/BCTI Brent/BDTI 

𝜔𝑈 -10.4073(2.4523)*** -9.9001(2.8714)*** -4.9053(1.8031)*** 

𝛽𝑈 -0.5923(2.1069) -9.4402(5.3444)* -9.9836(2.1519)*** 

𝛼𝑈 0.0045(1.0001) 0.1998(0.9679) -1.4274(0.0571)*** 

𝜔𝐿 5.3496(0.0829)*** 3.2528(0.7102)*** 1.2914(0.0393)*** 

𝛽𝐿 -14.3559(3.6421)*** -9.9999(5.3147)* -9.9999(0.0754)*** 

𝛼𝐿 -3.8566(0.4930)*** -2.3200(0.7949)*** 1.1606(0.0453)*** 

AIC -114.9619 -76.7813 -17.8445 

Panel B. Seasonal 

𝜔𝑈 -2.8822(6.0745) -15.4850(228.2767) -15.9229(44.1790) 

𝛽𝑈 4.9929(30.2431) -1.9252(67.1816) -0.0126(1.1915) 

𝛼𝑈 3.7201(1.8230)** 0.0063(1.1358) 0.0350(2.0439) 

𝜔𝐿 -2.9914(5.2964) -14.3271(60.4751) -15.2534(65.6691) 

𝛽𝐿 4.9950(27.8251) -1.0149(20.7762) -0.7769(39.5632) 

𝛼𝐿 4.0796(0.2375)*** 0.0093(1.0463) 0.0305(1.8479) 

AIC -76.8316 -5.5420 2.3875 

Panel C. Remainder 

𝜔𝑈 -0.8485(1.1235) -0.3306(5.3986) 1.2178(1.4987) 

𝛽𝑈 -4.9999(4.1836) -4.9997(8.7713) -4.9985(6.0124) 

𝛼𝑈 3.2467(1.3242)** 0.7359(16.8868) -1.6328(2.8994) 

𝜔𝐿 -0.6895(0.7630) -1.4432(3.6187) -4.9984(4.7115) 

𝛽𝐿 -5.0000(3.0861) -4.9997(12.5020) -4.9975(7.4477) 

𝛼𝐿 2.8619(0.8451)*** 4.6257(5.6482) -0.1557(1.0587) 

AIC -50.3479 -29.5475 -41.2468 

Notes: Standard errors are in parentheses for all parameters. The minimums of the AIC values fit the best copula 

function. ***, **, and * indicate the 1%, 5%, and 10% levels of significance, respectively. 

 

Table 4. Descriptive statistics of the dynamic tail dependence of trend component 

Panel A. Lower tail dependence 

 Mean Median Maximum Minimum Std. Dev. 

Brent/BDI 0.4602 0.4637 0.8630 0.0033 0.2699 

Brent/BCTI 0.4467 0.4624 0.7594 0.0091 0.2087 

Brent/BDTI 0.2432 0.1908 0.7476 0.0000 0.2281 

Panel B. Upper tail dependence 

Brent/BDI 0.0010 0.0010 0.0010 0.0000 0.0000 

Brent/BCTI 0.0010 0.0010 0.0010 0.0000 0.0000 

Brent/BDTI 0.0015 0.0013 0.0035 0.0000 0.0000 
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Table 5. Descriptive statistics of the dynamic tail dependence of seasonal component 

Panel A. Lower tail dependence 

 Mean Median Maximum Minimum Std. Dev. 

Brent/BDI 0.4469 0.4489 0.6258 0.2372 0.0882 

Brent/BCTI 0.0009 0.0010 0.0010 0.0000 0.0000 

Brent/BDTI 0.0009 0.0010 0.0010 0.0000 0.0000 

Panel B. Upper tail dependence 

Brent/BDI 0.3437 0.3388 0.3940 0.2626 0.0256 

Brent/BCTI 0.0009 0.0010 0.0010 0.0000 0.0000 

Brent/BDTI 0.0000 0.0010 0.0010 0.0000 0.0000 

Table 6. Descriptive statistics of the dynamic tail dependence of the remainder component 

Panel A. Lower tail dependence 

 Mean Median Maximum Minimum Std. Dev. 

Brent/BDI 0.2390 0.1937 0.5897 0.0448 0.1511 

Brent/BCTI 0.1033 0.0882 0.3122 0.0182 0.0701 

Brent/BDTI 0.0030 0.0028 0.0060 0.0000 0.0008 

Panel B. Upper tail dependence 

Brent/BDI 0.2283 0.1708 0.6501 0.0385 0.1643 

Brent/BCTI 0.1827 0.1878 0.3487 0.0533 0.0710 

Brent/BDTI 0.3540 0.3523 0.5402 0.2106 0.0677 

 

 

Table 5 shows a tail dependence between Brent and BDI, while other pairs had no tail 

dependence. The results also show higher dependence on the lower tail dependence between Brent 

and BDI. In the tail dependence between Brent and BDI, these results are asymmetrical tail 

dependence, implying that co-movements increase more in extreme events.  

Table 6 shows the results of tail dependence on the remainder component. The lower tail 

dependence between Brent and BCTI was found to be the highest at the mean level. The upper tail 

dependence showed that the pair of Brent and BDTI was the highest at the mean level. These results 

show that asymmetrical tail dependence exists. The pair of Brent and BDI and BDTI had higher upper 

tail dependence, meaning that when it is a good extreme event or boom, it becomes more dependent. 

However, Brent and BCTI have the opposite result, which means that dependence is higher when a 

bad extreme event or recession happens.  The descriptive statistics of tail dependence show extreme 

events could spread risk transmission between crude oil and shipping freight rates.  

Figures 5–7 present the time path for the lower and upper tail dependence between decomposed 

crude oil and freight rates. As in Figure 5, during extreme events (the US financial crisis, European 

debt crisis, and trade war), the lower tail dependence between the trend component of crude oil and 

freight rates is high. However, this phenomenon is not persistent.  

Figure 6 shows the plot in time paths between the tail dependencies’ seasonal component 

showed that only a pair of Brent and BDI existed. The upper tail dependence increases during the 

sample period; however, dependence is almost stable over time, regardless of extreme events. When 

compared to the trend component, it suggests that each seasonality component is a little relevant. 
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Thus, these tail dependence results are not important for the analysed variables. The tail dependence 

of the remainder component reflects more market movements resulting from short-term fluctuations. 

As in Figure 7, comparing the trend and seasonal component, the upper tail dependence of the 

remainder component is stronger than weaker tail dependence. This is a new finding and an opposite 

result. That is, when a boom or good event happens, tail dependence increases, when crude oil prices 

increase, freight rates go up. Generally speaking, it has been shown that decomposed components 

have asymmetric tail dependence. The trend component is highly dependent on extreme events such 

as the financial crisis, and the remainder component has a strong dependence on the economic boom. 

 

(a) Brent/BDI of lower tail dependence (b) Brent/BDI of upper tail dependence 

(c) Brent/BCTI of lower tail dependence 

 

(d) Brent/BCTI of upper tail dependence 

 

(e) Brent/BDTI of lower tail dependence 

 

(f) Brent/BDTI of upper tail dependence 

Figure 5. Lower and upper tail dependency of trend component for pairs 
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(a) Brent/BDI of lower tail dependence 

 

(b) Brent/BDI of upper tail dependence 

 

(c) Brent/BCTI of lower tail dependence 

 

(d) Brent/BCTI of upper tail dependence 

 

(e) Brent/BDTI of lower tail dependence 

 

(f) Brent/BDTI of upper tail dependence 

Figure 6. Lower and upper tail dependency of seasonal component for pairs 
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(a) Brent/BDI of lower tail dependence 

 

(b) Brent/BDI of upper tail dependence 

 

(c) Brent/BCTI of lower tail dependence 

 

(d) Brent/BCTI of upper tail dependence 

 

(e) Brent/BDTI of lower tail dependence 

 

(f) Brent/BDTI of upper tail dependence 

Figure 7. Lower and upper tail dependency of remainder component for pairs 

5. Conclusions 

This study investigates the dynamics of asymmetric tail dependence and the downside and 

upside risk spillovers between oil prices and maritime freight rates along with three sub freight 

markets (BDI, BCTI, and BDTI). We draw empirical results using the decomposition method and 

estimate symmetric and asymmetric time-varying bivariate copula models.  

The empirical findings indicate that time-varying copula methods can explain the dependence 

structure between crude oil and freight rates. The main findings of our analysis are as follows. The 

decomposed components have different conditional dependence patterns. The pair of trend 

components have a stronger dependence on extreme events than other components. Also, we 

discovered the presence of asymmetric tail dependence. The trend component is more dependent in 

extreme periods like the financial crisis. That is, in the long run, a fall in prices is likely to lead to a 

fall in freight rates. We found that the dependence increased in an economic boom for the remainder 

component. In other words, the short-run fluctuations have the effect of raising prices.  

The implications of the results suggest that dependence can vary over time and may change 

depending on extreme events. This suggests that the corresponding strategy for the long run and 

short run should be different. Maritime transport companies and policymakers should consider large 

fluctuations in the international oil price when determining their freight pricing and maritime 

transportation decisions. 
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table 

S1: title, Video S1: title.  
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