
 1 

TreeVibes: Modern tools for global monitoring of trees against borers 

 
Iraklis Rigakis,1Ilyas Potamitis,2Nicolaos-Alexandros Tatlas,1bStelios Potirakis,1c and Stavros 
Ntalampiras3 

1 Department of Electrical and Electronics Engineering, University of West Attica, Athens, 12244, Greece. 
2 Department of Music Technology & Acoustics, Hellenic Mediterranean University, Rethymno, 74100, Greece 
3Department of Computer Science, University of Milan, Milan, 20133, Italy 
 
Key message 
Remote, automatic monitoring of probed trees against borers at global scales is currently 
technologically feasible. Vibroacoustic recorders transmit short clips on cloud services where deep 
learning networks screen that data.  
 
 
Abstract. Is there a wood-feeding insect inside a tree or wooden structure? We investigate several 
ways on how deep learning approaches can massively scan recordings of vibrations stemming from 
probed trees to infer their infestation state with wood-boring insects that feed and move inside 
wood. The recordings come from remotely controlled devices that sample the internal soundscape 
of trees on a 24/7 basis and wirelessly transmit brief recordings of the registered vibrations to a 
cloud server. We discuss the different sources of vibrations that can be picked up from trees in 
urban environments and how deep learning methods can focus on those originating from borers. 
Our goal is to match the problem of the accelerated—due to global trade and climate change— 
establishment of invasive xylophagus insects by increasing the capacity of inspection agencies. We 
aim at introducing permanent, cost-effective, automatic monitoring of trees based on deep learning 
techniques, in commodity entry point as well as in wild, urban and cultivated areas in order to effect 
large-scale, sustainable pest-risk analysis and management of wood boring insects such as those from 
the Cerambycidae family (longhorn beetles). 
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I. INTRODUCTION 
The establishment of pest populations outside their native ranges is facilitated by climatic change 
and global trade [1]. Larvae of non-native invasive species breed in wooden pallets and are 
accidentally transported through ports, handling facilities or truck roads in places that are not 
biologically adapted to regulate their multiplication (i.e. low plant resistance and absence of natural 
enemies) [2].  
In Europe alone, wood boring species of the coleopteran family Cerambycidae (longhorn beetles) 
native at various parts of Asia, are now considered established or establishing in Spain, Italy, Austria, 
Germany, Finland, France, Montenegro, Switzerland and Turkey. Longhorn beetles are attacking at 
least 140 different tree species including citrus and stone fruits(peach, nectarines, plums, cherries 
and apricots) as well as forest woodland (infested trees become unsuitable for pulp and wood 
exploitation). Stone fruit production and production of roundwood for industrial uses is estimated 
to several billions, and, therefore, the cost of damages to these products is significant as well as the 
cost of eradication efforts and control of these invading insects [1]. Cerambycid female borers lay 
their eggs under the bark or in physical cavities or wounds/cracks of their host trees. Newly hatched 
borers chew directly into the heartwood. Chewing under the bark in living wood severely damages 
water- and sap-conducting tissues. Adults emerge from infested trees in spring or summer after 
penetrating the bark, therefore causing an additional problem: the exiting tunnels become the entry 
points for several plant pathogens. The repeated tunneling from many borers, over many 
generations, gradually weakens the health of the tree, causes structural instability (wind breakage), 
drop of fruits and leads to the decline and eventual death of susceptible trees. 
There is a wide bibliography [3] on optical [4-5], laser vibrometry [6], piezoelectric sensors, and 
accelerometers [7-10], used to detect locomotion and feeding sound of larvae or adult pests inside 
the tree trunk. A mildly intrusive and widely applied method for inspection of commodities is based 
on inserting a piezoelectric probe in the tree trunk to listen for potential internal audio activity due 
to feeding and locomotion (i.e. passive acoustic detection) [11-18]. The feeding activity is audible 
[12-17] in two of the biological stages of the insect a) when the mature larvae tunnel into the 
sapwood or heartwood to form a pupal chamber (February-April), and b) after their exoskeleton is 
fully hardened and the adults dig emergence tunnels through the bark to exit the trunk (late spring to 
summer). The larva activity has lower audio imprint than adult activity whereas during the egg and 
pupation stages in the pupal chamber the pest is inaudible. In brief, the benefit of a piezoelectric 
probe is that it is portable and practical, has lower cost than competitive methods (e.g. vibrometry), 
is much more sensitive than microphones, does not require mains supply, calls for minor training 
and there are commercial products available for practitioners. 
Currently, all detection methods are manually applied. A trained technician must examine and decide 
in situ on the state of the infestation. The current manual approach has several shortcomings: 
a) Field visits and frequent manual inspection of trees and plants is costly, cumbersome and 
impractical to be scaled to large numbers of trees. 
b) The listener has limited time to inspect a single tree and the larvae could be present but inactive 
during the inspection time for several reasons: for example, the pest may happen to be in an 
inaudible biological stage (e.g. egg or pupa) but will evolve in the short run, or the trunk may have 
low infestation load and the pest may not be chewing during the inspection’s time-slot.  
We have shown in [18] that a piezoelectric device can record and transmit the vibrations picked by a 
probe inserted in a tree. The emphasis of this work is not on hardware implementation but on the 
nature of this particular vibrational signal and its classification in the presence of other vibrational 
interferences commonly existing in the field. We introduce fast, automatic screening of vibrational 
records based on deep-learning models looking at the spectrogram of the internal vibrations that can 
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extend for weeks to months before reaching a decision on the infestation state of the tree (see Fig.1 
for a depiction of the main idea). We have used a commercial version of a piezoelectric device and 
recorded several thousand transmitted recordings extending over a period of six months mostly in 
urban environments. We train various deep learning approaches each one having its own merits. The 
database (the first of its kind for this kind of problem) is available for download at 
http://www.kaggle.com/potamitis/treevibes along with the associated deep learning code. 
Our vision is ambitious: remote, automatic surveillance of trees against borers at global scales based 
on deep nets. 
In this work, we demonstrate that this vision is technologically feasible; it creates services currently 
inexistent and is hampered only by the current cost of materials that can only drop in the future. 
The structure of this work is as follows: We first examine the signal of wood-boring insects based on 
the example of Xylotrechus chinensis (Coleoptera: Cerambycidae - Tiger longicorn beetle), an Asian 
woodborer, causing high mortality of Morus trees (mulberries) in Greece. In the context of this work, 
audio is based on the vibrations caused by the pests cracking the tree fibres. It is possible that 
elsewhere, different types of wood and different borers produce sounds with different spectral 
content but extended literature of the field (see [12-24] and the references therein) show that 
acoustic emission cannot be avoided. We then examine the vibrational soundscape of trees in urban 
spaces and forests and analyse the practical benefit of automatic remote surveillance of trees against 
borers. Subsequently, we describe deep learning techniques as applied to the spectrogram of 
vibrations originating from piezoelectric probes inserted in tree trunks. Finally, we conclude on 
future prospects especially on how our approach can be connected to the internet of things (IoT) 
reaching global scales. 

 

Figure 1. The concept of screening massively transmitted snippets of vibrations stemming from 
inside the tree due to the feeding or moving sounds of larvae.  
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II. MATERIALS AND METHODS 
In this section we start with basic principles of vibrational recorders and the nature of the signal 
recorded under different environmental conditions. 

The device 
The core of the sensor we used for listening to vibrations caused by borers is the piezoelectric 
crystal. This is an electromechanical system (the crystal and an embedded amplifier) that reacts to 
compression by converting it to a fluctuation of an electrical charge. Therefore, it is closer to the 
concept of a seismometer than that of a microphone. In the context of our application, compression 
is inflicted by any vibration inside the wood, while the electrical fluctuation can easily be converted 
to an audio signal that can be stored, compressed and transmitted. A metal waveguide (see Fig. 2-
left) is a metal bar, functioning as a sound coupler between the wood and the sensor probe.  
The circuit is constantly in sleep mode, wakes up on a predefined time schedule (e.g. 20 sec every 
hour) and takes a recording before going to sleep again. The recording duration and the density of 
the sampling is configurable through the reporting server. This means that there is a bidirectional 
wireless communication between the deployed devices and the reporting cloud server. The 
recordings are stored in the SD card, and the time-stamp is passed to the filename. All audio 
recordings are compressed using the open source opus compressor prior to sending them over the 
communication channel (see Fig. 2-right for a field application). The bit rate is 24KBPS at a 
sampling frequency of 8 kHz. The device uses a global SIM card, therefore any tree can be tracked 
from anywhere in the world. There is no need to recharge the device as it has an embedded solar 
panel that provides enough power for its low-power electronics. Therefore, it can stay on a tree for 
an indefinite time-period, sampling and transmitting the internal vibrations of the tree. The location 
of the device appears on the world map of the server as the device carries a global positioning 
system decoder (GPS). All data are communicated through the mobile network. Further details of a 
proof of concept of this approach can be found in [18].  
 

    
Figure 2. Left: The device is a recorder of vibrations that are picked up by the metal probe. Right:  
The device attached to a mulberry listening for the cerambycid pest Xylotrechus chinensis. 

The signal 
Back in 2017, in the island of Crete, Greece, and in Spain, it was observed [25-26] that several 
mulberries appeared to bear exit tunnels (see Fig. 3-left) that had not been observed before. 
Suspicious trunks were sliced and the larvae found were subjected to polymerase chain reaction 
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(PCR) analysis that showed that they belonged to the invasive cerambycid X. chinensis (see Fig. 3-
right). We took several trunks like in Fig. 3-left to the laboratory, where we made several recordings 
using a multichannel recorder (Tascam DR-680MKII) (Fig. 4).  
 

     

Figure 3. Left: Exit tunnels of X. chinensis in a mulberry in Crete, Greece. Right: Adult X. chinensis. 
 

      
Figure 4. Recording in the lab with a multi-channel recorder. 
 
In Fig. 5 (top) one can see a typical example of these recordings. Generally, the internal soundscape 
of a healthy tree —excluding externally induced vibrations — is silent at the level of audio sounds 
we seek. If it is infested one expects to hear a train of pulses like in Fig. 5-middle and the rate of 
insect bursts can be used to estimate the likelihood that the tree is infested [27]. The train consists of 
a number of bursts, each one corresponding to a crack of fibers as the borers feed and move (see 
Fig. 5-bottom for a single burst). We can confidently attribute these impulses to X. chinensis because 
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the recordings have been taken in the controlled environment of the lab, the adults have emerged 
some months after the recording and the trunk has been subsequently sliced and examined for other 
possible insects. Looking at Fig. 5, one may suppose that the detection of borers is an easy task: an 
envelope follower or a simple thresholding could reveal the impulses. This is not the case as field 
recordings can be more complex than laboratory recordings. 

 
Figure 5. Looking a recording of an infested mulberry with X. chinensis at different time-scales. Top: 
A 4h 30 min continuous recording. Middle: A pulse train between 53m 50sec-63m 20sec. Bottom: A 
single burst corresponding to a crack of fiber. 
 
A soundscape is a combination of sounds that arises from an environment. It refers to both the 
natural acoustic environment (animal vocalizations, weather sounds, rain) and sounds created by 
humans (traffic sounds, corns, footsteps, vocalizations). One may expect that the internal 
soundscape of a tree in the field is quiet and dull. However, it is not. With the term ‘internal’, we 
mean everything that a recording element located inside the tree would register. In the context of 
this work, we are interested only in sounds of borers but these must be discerned against any other 
possible forms of vibration. 
a) As mentioned in the introduction, depending on the biological cycle of the pest, it can be noisy 

or cryptic. Therefore, snippets taken from trees in urban spaces can be rich in vibrations 
originating from traffic, footsteps, vocalizations of dogs, birds and humans, shaking of the 
branches and leaves due to the wind and uncountable other unpredictable audio sources. Some 
of these vibrations propagate in the wood and reach the metal probe of the device. Therefore, 
recordings can be very noisy sometimes to the point that external noise dominates over the 
impulsive sound of the borer.  

b) One does not know if there are borers in the tree and even if there are, one cannot know their 
number and location inside the tree. Some of these impulses are feeble because they originate 
from a location distant to the probe. Depending on the kind of the wood, the probe can detect 
feeding sounds within a sphere of 1.5-2m radius.  
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In Fig. 6 we gather characteristic examples of biophony, anthropophony and geophony taken from 
the transmitted field recordings of the TreeVibes database. In each sub-figure the top figure 
corresponds to the time-domain signal and the bottom to its spectrogram (i.e. the Short-Time 
Fourier Transform which is a representation of the change over time of the frequency composition 
of the signal). The sampling rate is 8 kHz and we use a hamming window of 512 samples with 50% 
overlap. Fig. 6a is taken from a young pine tree (not a host of X. chinensis) in a forest with no signs of 
wounds or degradation. The recording is quiet with some distant bird chirps mainly seen in the 
spectrogram near 4 kHz. This is a typical recording of a healthy tree with a quiet background (usually 
at nights). Fig. 6b is taken from a mulberry with severe visual signs of infestation seen also as vertical 
strips in the spectrogram, indicative of impulsive audio events. The recording was taken in summer; 
therefore, it is most probably an adult digging his/her way out. The tree is located near a busy street. 
At 4-5 sec there are human vocalizations whereas from 12-18sec a passing-by car that vibrates the 
tree. The impulses of adults digging their tunnel out in summer are much stronger than the sound of 
larvae in the beginning of the year. Yet, both sounds are clearly audible. Fig. 6c is an infested tree 
but the bird vocalizations are very strong. Fig 6d is a healthy apricot tree. The recording is taken 
under heavy wind and rain. All impulses are due to weather conditions and shaking of branches and 
leaves that result into vibrations. Healthy trees in calm weather may register occasional impulses (but 
not trains of impulses) that are due to tree metabolism related to humidity levels and dilations. 
Borers create a characteristic repeated pattern in the form of a pulse train and not isolated events.  

 
                      (a) 

 
                      (b) 

 
                      (c) 

 
                      (d) 

Figure 6. Transmitted vibrational recordings from different trees under different circumstances. a) 
Healthy young pine in a calm day. No train of impulses, b) infested tree in alley near heavy traffic. 
Impulse trains in the presence of human vocalizations and traffic, c) An infested tree in the presence 
of strong birds’ vocalizations, d) healthy, young, apricot tree. Recording taken during a heavy 
shower. All impulses are due to rain, and shaking branches/leaves due to strong wind. 
 
In Fig. 7, we compare the spectral profiles of long duration recordings taken from an infested and a 
non-infested trunk. A different borer in a different tree could create acoustic emissions with a 
different spectral profile; nevertheless, it would not be flat like the non-infested one. The power 
spectral density (PSD) one-sided estimate, of each recording sampled at 8 kHz is found using 
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Welch's overlapped segment averaging estimator. To elaborate further, the signal is divided into 
sections of length of 512 samples. The modified periodograms are computed using a Hamming 
window of the same length as the window. The overlapping in windowing equals to the 50% of the 
window length.  

 

Figure 7. Spectral profile of an infested vs a non-infested trunk through the power spectral density 
estimate (Welch method). The duration of both recordings is longer than 1h 30 min. The non-
infested trunk is flat indicating practically, a white noise profile. The averaged spectrum of the 
infested trunk contains the spectral profile of multiple impulses. The variations in the relative 
magnitude of signal energy at different frequencies indicate that it is an infested trunk. 
 

 

Figure 8. A case of highly infested tree as indicated by the recordings but without any visible signs of 
infestation (picture taken March 2020, at 35o19’54.3’’Ν 25ο07’54.9’’Ε). 
 
The new services are gathered in Table 1. 
 

Automatic interception of infested trees and timber cargos at commodity entry-points 

Integration of information from larger time spans (weeks to months) 

Replacement of  all decisions based on late visual assessment of trees with early vibrational 
detection 

Provision of permanent time-stamped evidence (recordings) interpretable even by non-
specialists 
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Decentralization of  the problem of decision making by bringing the knowledge of specialists 
to remote areas 

Delimitation of infestation areas that can reduce use of pesticides and infestation rate by 
removing infested trees at early stage 

Table 1. A list of benefits using automatic screening of trees’ vibrational records. 

III. RESULTS 

The practical value of knowledge 
Phytosanitary interception at commodity entry points (e.g. airports, harbors, stations, lorry parks, 
cargo depots and quarantine facilities) is the first line of defense against invasive insects [1-3]. 
Wooden pallets, wood products, ornamental trees, plants but also cargos of fruits and other 
agricultural products are typically examined before importation using visual inspection and various 
technological means [10, 13]. Effective interception of potential pests including but not limited to 
quarantine species already intercepted in the past, is crucial [3]. Though not impossible, it is 
increasingly difficult to achieve eradication of establishing or established invasive species after initial 
arrival. Interception is currently based on visual inspection and manual application of several 
technologies. 
This work introduces the novel service of automatic screening of wood-related imports. In short, 
devices are attached to the trees in storage facilities, the vibrational soundscape of the trees is 
sampled for the whole quarantine period and clearance is provided automatically after deep learning 
models have finished screening the vibrational record of the shipment, otherwise a rapid cargo 
rejection is inflicted. Because it does not involve human attendance (one can attach the device and 
leave), it can be applied to a larger scale than it is currently done. In addition, since it integrates a 
longer time span of observations than the human service currently applied, it is anticipated that it 
will be more accurate. 
Another service that currently does not exist is based on transmitting the systematic registration of 
vibrations to cloud services. The audio data serve as a permanent record of evidence and the process 
of cross-examination by trained bioacousticians is decentralized in the sense that the trees under 
investigation, the stored audio records and the human specialists need not be in the same place— 
pretty much as the way telemedicine is applied.  
Due to current manual limitations, only 2%/year of incoming shipments is inspected in US [3]. 
Therefore, more often than not, invading species are not intercepted at commodity entry-points and 
—as an example family — Cerambycidae beetles are establishing in new locations. Post-border 
surveillance and containment is easier if the first establishment of the invasive species is detected 
and localized as early as possible. Forests and parks nearby commodities’ entry points are most at 
risk. If the invasive species attack trees of urban ornamental greenery in public spaces, like in the 
case of X. chinensis for mulberries and Rynchoforus ferrugineous (curculionidae) for palms in Crete, the trees 
are left untreated until they die without consideration of their aesthetic value [2]. Even in such a 
case, the automatic screening of vibrational records from trees offers new services and introduces a 
possible revision of the currently applied protocol. Regarding urban spaces, workers in ornamental 
greenery assess visually whether the trees already have exit tunnels, discoloration/damage of leaves, 
signs of rotten tissue and any other visual symptoms of health decline and cut down only the ones 
that are heavily infested or dead. However, this is too late:  visual symptoms appear 1-2 years after 
the first infestation as regards cerambycidae/curculionidae, which means that by the time their traces are 
visible, the borers have completed several generations inside the tree and have escaped to infest new 
ones. What we suggest is to remove the trees with positive acoustic records and not to base 
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inspection and assessment on visual records. Even if no other treatment is applied, this procedure is 
expected to delay the degradation of urban greenery relying on the specific tree species.  
Let us give a lucid example on the dilemmas phytosanitory personnel face on a daily basis and how 
these can be answered with automatic screening of vibrational records. Should we cut down the 
mulberry in Fig. 8 (one of the 3500 mulberries in the city of Heraklion in Crete) knowing that the 
city is infested with X. chinensis and morus tree is the primary host? The decision to cut down trees is 
of grave importance both in terms of financial cost (i.e. removal and secure destruction costs) and in 
terms of ecological impact. Pest specialists would definitely refuse the cutting, as the tree has no 
symptoms of degradation and looks perfectly healthy. Yet, an examination on the upper-part of its 
trunk shows long and vivid pulse trains of vibrations. Again, recordings can serve as evidence and 
the pulse rate can assess the infestation status (heavy or low). Removing the tree will locally degrade 
the greenery but the alternative is to remove it dead, two-three years later, while escaping adults and 
their descendants will have infested a large number of healthy trees thus accelerating the degradation 
on a regional level. On the contrary, removing it a year and a half prior to the visual symptoms will 
significantly prolong ornamental greenery even if no other treatments are applied. 
A different protocol may apply in the cases of trees of economic importance like orchards of stone 
fruits as heavy infestations lead to fruit drop. In such cases, the usual procedure is the removal and 
the immediate destruction of all infested trees, as well as those present within a variable radius of the 
infestation. The decision, however, to characterize a tree as infested is again based on visual signs. 
As mentioned above, this approach has poor effects because when visual signs are prominent 
enough to characterize a tree as infested, many generations of adult pests have already escaped. 
Therefore, removal of trees based on visual assessment of symptoms is not sufficient to stop the 
invasion to new areas, and to limit the damage where pests are already established. When borers are 
established, pest control may involve aerial and ground bait pesticide sprays, but their efficiency 
depends on knowing the time and location of insect infestations as early as possible. The advantage 
of probing the trees is that they can reveal the problem as early as first generation larvae and 
automatically tag their location (the transmitting device carries a GPS). 
 

The database 
It is quite straightforward to acquire recordings in acoustically challenging conditions (i.e. due to 
background interference) from trees that are not infested by borers. By simply inserting the probe in 
trees known to be healthy, one may easily get most of the typical sources of background vibrational 
interference (traffic, vocalizations, wind etc). It is more complicated, however, to get recordings 
from infested trees, as the ultimate way to verify infestation is to cut down the tree — which is 
generally illegal in public spaces — and slice it until one finds the larvae.  
We gathered the recordings in two ways: a) By attaching the device on trees that had serious visual 
signs of attack and manually verifying the existence of pulse trains from the audio and visual 
inspection of spectrograms. b) From mulberries that had been cut down with permission by 
authorities (heavily infested trunks or dead trees).  
The database is composed of 33 folders with audio recordings taken from 35 different trees and a 
corresponding annotation csv file. The folders contain emitted recordings over a period of six 
months. The recordings are in wav format but are actually decompressed after being received in an 
ogg format. The sampling frequency is 8 KHz. The first 27 folders are used for training and 
validation and the last 6 for testing. 
The data set of the target insect is composed of 4165 field and 53676 laboratory recordings mostly at 
20 sec. Training Folders: Infested (train pulses from borers) 1-6,11-23, #recs 731. Clean: 7-10, 24-
25, 35, #recs 1754. Total training data #recs 2485. Test Folders: #26-#34. 
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Deep-learning as applied to spectrograms of vibro-acoustic signals 
Deep learning (DL) architectures have a modular layer composition where the layers close to the 
input learn to extract low-level features and subsequent layers rely on the previous layer(s) to 
synthesize patterns of higher abstraction (e.g. starting from edges and textures and ending in objects) 
[28-30]. As it is impractical to listen manually to hundreds of thousands of clips transmitted to a 
cloud server from a large number of trees, there is need for an automatic process that screens these 
recordings. Deep learning techniques can provide fast classification (as rule of thumb 5 
ms/recording in a single GPU), as they can discern between train pulses originating from borers and 
events from other external sources of vibrations (as human listeners can). We achieve that by 
transforming the audio recording to an image through the spectrogram (i.e. the Short-time Fourier 
Transform is a 2D representation like an image) and feeding the images to a DL model. In the case 
of the spectrogram the ‘object’ is a spectral blob that corresponds to a vibration source. It is 
important in our case to not only detect trains of pulses originating from borers but also learn to 
discern between impulsive events belonging to different sources, which vibrate the tree, although 
they are located outside it. The operational model calculates the probability of infestation of a tree 
based on a long history of recordings that can span weeks. 
 

Verification Experiments 
We performed 10-fold validation cross-validation on field data to estimate how different 
convolutional neural networks (CNNs) models are expected to perform in general when used to 
make predictions on data not used during training. The procedure had a single parameter k=10 
referring to the number of groups that a given data corpus was to be split into. Each group, in turn, 
was held out as a test data set and the remaining groups made the training data set. We fitted a 
model on the training set and evaluated it on the test set. The accuracy over each fold was measured 
and the mean score over 10-folds along with the standard deviation is reported in Table 2. We 
applied a type of data augmentation with rolling of recordings at a random point to randomize the 
point in time the impulses appeared. In this work, our aim is not to fine-tune the hyper-parameters 
of the classifiers through grid-search. The images used to feed all CNNs are the spectrogram of the 
recordings using an FFT size of 256 and 50% overlap, resulting to a 129x1251 matrix. 
 
 
 
 
 
 
 
 
 
 
 
Table 2. 10-fold cross-validation results for various deep learning models  
 
We compared a set of state of the art deep learning models to find the best-performing model that is 
most generalizable, has the least loss, and is the most suitable to be embedded for the task to be 
performed. In Table 2 we give emphasis on models with small memory imprint (EfficientNetB0, 
MobileNet) with a view to embedding them in the probes instead of running them on the server 
level. It can be seen that, among the five models, the EfficientNetB0 and the MobileNet compare 

Table 2.Mean accuracy/std.dev using a 10-fold cross validation scheme 
CLASSIFIERS (ranked by their parameters size)† 

ResNet50 (98 MB) 93.68/1.58  

Xception (88 MB) 94.16/0.99  

DenseNet121 (33 MB) 93.56/1.60  

EfficientNetB0 (29 MB) 93.80/1.72  

MobileNet (16 MB) 93.84/1.16  
†Adam optimizer(learn_rate=0.001, decay=1e-6) see Appendix. 
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favorably to the larger models, while the best scoring Xception had the best convergence and 
training performance.  
To further elaborate on the verification accuracy we use precision, recall and F1 score metrics on a 
random 20% holdout data for the best performing model. Precision (P) is defined as the number of 
true positives (Tp) over the number of true positives plus the number of false positives (Fp). Recall 
(R) is defined as the number of true positives (Tp) over the number of true positives plus the 
number of false negatives (Fp). These quantities are also related to the (F1) score, which is defined as 
the harmonic mean of precision and recall. 
 

FpTp

Tp
P

+
= ,       

FnTp

Tp
P

+
= ,       

RP

RP
F

+
=

*
21  

 
High precision relates to a low false positive rate (false alarm), and high recall relates to a low false 
negative rate (miss). High scores for both show that the classifier is returning accurate results (high 
precision), as well as returning a majority of all positive results (high recall). We did not try to fine-
tune classifiers through grid-search and voting schemes of different models as optimization of 
classifiers is not the focus of this work. 
 

 

 P R F1 support 

Clean 0.99 0.93 0.96 351 

Infested 0.86 0.97 0.91 146 

accuracy   0.94 497 
 

Fig. 9. Automatic verification of borers’ infestation in trees in the field data based on a 20% holdout 
set. (Left) Confusion matrix of a using an Xception model. (Right) Precision (P), Recall (R) and F1 
scores. 
 
Finally, in Fig. 10 we demonstrate how automatic assessment on the infestation status of a tree takes 
place once the CNN is operational: the probed tree provides a folder of snippets spanning a time 
interval and this folder is directly fed to the trained CNN with spectrograms of vibrations being the 
input and probability of infestation the output. Probabilities are averaged for all snippets and 
normalized to unity by diving with the number of snippets. 
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Figure 10. Infestation state of a tree after examining the folder no. 33 of the provided database 
containing 753 recordings spanning several days. The probability is derived by averaging the 
probabilities of all cases and normalizing to one. 

IV. CONCLUDING REMARKS AND FURTHER STEPS 
To our point of view vibrational sensors attached to trees that have a bidirectional wireless 
communication with cloud-servers, hold much promise for detecting invasive wood-feeding insects 
in various novel applications. Borers can be detected during their larva and adult stage when they 
move and feed. The algorithms can automatically integrate data from long time spans (daily, weekly, 
monthly) to infer the infestation state of a tree. The number of nodes applied will increase as the 
cost of electronics decreases and technology improves when 5G wireless communication is widely 
adopted. Automatic screening of vibrational data can be carried out at the server allowing the 
efficient and rapid processing of thousands of recordings allowing novel services to emerge as 
automatic creation of infestation maps and predictive modelling of invasion and spread. In the era 
of global trade and climate change, modern tools to monitor remotely trees for borers before they 
colonize and establish in new habitats can lead to novel services and modernize inspection agencies. 
This in turn can have a significant reduction on the economic damage caused by pests and spraying 
costs related to treatments and increase productivity with a lower impact on the environment and 
human health. 
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APPENDIX 
The full database and associated csv file and Python codes to reproduce all results of this work can 
be downloaded from https://www.kaggle.com/potamitis/treevibes 
IMEI a unique identifier for each device, GPS_LAT, GPS_LONG stand for latitude and longitude 
coordinates. VISUAL stand for visual signs of degradation, AUDIO stands for the result of human 
listener, CONFIRMATION stands for the trunk-slicing process until larvae have been found and 
COMMENTS relate to some observation of the location. 
 

FOLDER IMEI GPS_LAT GPS_LONG VISUAL AUDIO CONFIRMATION COMMENT 
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1 867584031542538 35.3317795 25.1290474 B 1 YES 
busy city center, pavement, drill 
bit sensor 

2 867584033227260 35.3318176 25.1290665 B 1 YES 
busy city center, pavement, drill 
bit sensor 

3 867584031542538 35.3316269 25.1290836 Α 1 NO 
busy city center, pavement, drill 
bit sensor 

4 867584033227260 35.3314171 25.1288147 Α 1 NO 
busy city center, pavement, drill 
bit sensor 

5 867584031542538 35.3195114 25.1315899 Α 1 YES 
near street, not city center, drill 
bit sensor 

6 867584033227260 35.319397 25.1314068 Α 1 YES 
near street, not city center, drill 
bit sensor 

7 867584033228409 35.5079269 24.0136147 X 0 YES orange tree, rain-wind 

 

 VISUAL INSPECTION OF TREES 

Α exit tunnels, heavy infestation 

Β exit tunnels, low infestation 

Χ no exit tunnels, no signs of infestation 

Let us see the structure of a typical filename such as F_20200222172127_4_T14.0 and what it 
means: 
 

F_20200222172127_4_T14.0 

2020 stands for year 

02 stands for the month 

22 indicates the day 

17 indicates the hour 

21 indicates the minute 

27 indicates the second 

_4_ is a file-in-folder index 

T14.0 stands for 14.0oC 
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