Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The AC2 Protein of a Bipartite Geminivirus Stimulates the Transcription of the BV1 Gene Through Abscisic Acid Responsive Promoter Elements

Version 1 : Received: 14 November 2020 / Approved: 16 November 2020 / Online: 16 November 2020 (08:44:26 CET)

A peer-reviewed article of this Preprint also exists.

Sun, R.; Han, J.; Zheng, L.; Qu, F. The AC2 Protein of a Bipartite Geminivirus Stimulates the Transcription of the BV1 Gene through Abscisic Acid Responsive Promoter Elements. Viruses 2020, 12, 1403. Sun, R.; Han, J.; Zheng, L.; Qu, F. The AC2 Protein of a Bipartite Geminivirus Stimulates the Transcription of the BV1 Gene through Abscisic Acid Responsive Promoter Elements. Viruses 2020, 12, 1403.

Abstract

Geminiviruses possess single-stranded, circular DNA genomes, and control the transcription of their late genes, including BV1 of many bipartite begomoviruses, through transcriptional activation by the early expressing AC2 protein. DNA binding by AC2 is not sequence-specific, hence the specificity of AC2 activation is thought to be conferred by plant transcription factors (TFs) recruited by AC2 in infected cells. However, the exact TFs AC2 recruits are not known for most viruses. Here we report a systematic examination of the BV1 promoter (PBV1) of mungbean yellow mosaic virus (MYMV) for conserved promoter motifs. We found that MYMV PBV1 contains three abscisic acid (ABA)-responsive elements (ABREs) within its first 70 nucleotides. Deleting these ABREs, or mutating them all via site-directed mutagenesis, abolished the capacity of PBV1 to respond to AC2-mediated transcriptional activation. Furthermore, ABRE and other related ABA-responsive elements were prevalent in more than a dozen Old World begomoviruses we inspected. Together these findings suggest that ABA-responsive TFs may be recruited by AC2 to BV1 promoters of these viruses to confer specificity to AC2 activation. These observations are expected to guide the search for the actual TF(s), furthering our understanding of the mechanism of AC2 action.

Keywords

Geminivirus; bipartite begomovirus; transcriptional trans-activation; abscisic acid; promoter motifs; AC2; BV1; mungbean yellow mosaic virus

Subject

Biology and Life Sciences, Anatomy and Physiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.