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Abstract 

Seagrasses are considered as efficient bioindicators of coastal trace element contamination. 
This chapter provides an overview on the trace element accumulation, tolerance and 
biomonitoring capacity of the various seagrass species distributed along the coast of India. A 
total of 10 trace elements are reported in seagrasses, 11 in sediment and nine in the water 
column from India. From the 11 seagrass species studied, 60% of research have focused on 
Syringodium isoetifolium, Cymodocea serrulata, Cymodocea rotundata and Halophila ovalis. 
78% of seagrass trace element research in India is from Palk bay and Gulf of Mannar (GOM), 
Tamil Nadu and 16% from Lakshadweep Islands. Out of the 10 trace elements, Cd, Cu, Pb and 
Zn are the most studied in seagrass, Fe, Mn, Ni and Pb in sediment and Cu, Fe, Mg, Ni and Zn 
in the water column. Accumulation capacity of various trace elements in seagrass were species-
specific. S. isoetifolium have the highest concentration of Cd and Mg at Palk bay and 
Lakshadweep Islands respectively. The concentration of Cu was higher in C. serrulata at 
GOM. Halodule uninervis and Halophila decipens have the highest concentration of Co, and 
Cr, Ni, Pb and Zn from Lakshadweep Islands. The highest concentration of Fe and Mn were 
highest in Halophila beccarii and H. ovalis from the coast of Goa and Palk bay respectively. 
Threshold levels (>10 mg L-1) of Cd, Cu, Pb and Zn were observed for C. serrulata, H. ovalis, 
H. uninervis and T. hemprichii, that can affect the Photo System -II of these seagrasses and 
exert cellular stress leading to seagrass loss and die-off. High concentration of these elements 
can exert negative impacts on seagrass associated trophic assemblages and ecosystem 
functioning. Seagrasses of India can be utilized as bioindicators of coastal trace element 
contamination but the associated toxicity and human health risks needs further investigation. 
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1.Introduction 

Seagrass ecosystems are distributed worldwide covering the five important bioregions 
of the world oceans except Antarctica (Hemminga and Duarte, 2002; McKenzie, 2020). 
Seagrasses form complex interlinkage between saltmarsh and mangrove ecosystems that are 
important in maintaining a wide range of ecological functions (Medina-Gómez, 2016; Mishra 
and Apte, 2020). This inter-linkage forms complex food webs that support both herbivore 
grazing and detrital food chain and provides habitat and nursery for various species (Unsworth 
and Cullen-unsworth, 2018). Seagrasses provide 24 different types of ecosystem services 
(Nordlund et al., 2016), which includes habitat and nurseries for commercially important fish 
population and endangered sea cows (Unsworth et al. 2018), carbon sequestration and storage 
((Duarte et al., 2013) , shore line protection from storm surges and prevention of coastal erosion 
(Ondiviela et al., 2014; Potouroglou et al., 2017) and regulation of nutrient cycles (Costanza et 
al., 2017) that are critical in the functioning of seagrass dependent trophic levels. These 
ecosystem services support millions of coastal communities by supplying livelihood and food 
security (Nordlund et al., 2018; Unsworth et al., 2017). Like coral reefs seagrass ecosystems 
are also declining worldwide (Waycott et al., 2009) due to various anthropogenic factors, but 
the most relevant factors include habitat modification, dredging, wastewater discharge, nutrient 
enrichment, fishing, coastal developmental activities and boat anchoring (Lewis and Richard, 
2009). These various anthropogenic activities act as a source of various anthropogenic 
chemicals and trace elements that enters into the marine ecosystem (Machowski et al., 2019; 
Serrano et al., 2011). 

Trace elements as the name suggests, occurs in very low concentrations in the marine 
environment. At these low levels, trace elements are not toxic and play a critical role in marine 
ecosystem functioning (Avelar et al., 2013; Mishra et al., 2019). Among these trace elements 
some are non-essential and toxic to organisms (As, Cd, Cr, Hg and Pb), whereas others act as 
essential micronutrients (Cu, Mn and Zn), provided that their concentrations do not exceed the 
threshold levels (Millero et al., 2009; Stockdale et al., 2016). These trace elements pose serious 
risk to seagrass eco-physiology, because of their persistent nature in the marine sediment. Once 
accumulated in the seagrass roots their bioavailability increases (Bonanno and Borg, 2018; 
Govers, 2014) and under future ocean acidification and anthropogenic pollution scenarios their 
concentration and toxicity is predicted to increase (Mishra et al., 2019; Vizzini et al., 2013). 
Once bioavailability increases, trace elements get absorbed into the root plasmalemma at the 
root: soil interface and are translocated to the leaves via rhizomes. Once threshold levels of 
trace elements are reached, it affects both root cellular structure and plant photosynthesis 
(Ambo-rappe et al., 2011; Prange and Dennison, 2000). Consequently, once concentrated in 
the seagrass tissues, through bioaccumulation these trace elements can move up the food chain 
through seagrass associated organisms and get biomagnified at higher trophic levels (Roberts 
et al., 2008; Vizzini et al., 2013)  and pose serious risk for humans through marine food intake. 

This chapter aims to provide state of the art information about trace element 
concentration in the seagrass ecosystems of India and their bioindicator potential. In the early 
1990’s, studies on trace element accumulation patterns in seagrasses of India started, when 
Jagtap, (1983) first reported about the trace element levels in the seagrass Halophila beccarii.  
Thereafter, in the last few decades considerable amount of data have been generated on trace 
elements in various seagrass species of India (Govindasamy and Arulpriya, 2011; Nobi et al., 
2010; Sachithanandam et al., 2020; Sudharsan et al., 2012a; Thangaradjou et al., 2013). 
However, these studies have focused on few locations of India; mostly in the Palk bay and Gulf 
of Mannar (GOM) region of Tamil Nadu and the islands of Lakshadweep and Andaman and 
Nicobar, even though seagrasses have a pan India distribution. These studies have mostly 
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recorded the trace element levels in water-seagrass or sediment-seagrass or seagrass only 
without focusing on accumulation capacity or seagrass bioindicator potential. 

1.1. Distribution and ecology of Indian Seagrasses 

Seagrass ecosystems, has a pan India distribution covering both the west and the east 
coast, including the islands of Andaman and Nicobar and Lakshadweep (Fig.1). These seagrass 
ecosystems of India are also part of South Asia (including other countries such as Pakistan, Sri-
Lanka, Bangladesh and Maldives) and South-East Asia [due to Andaman and Nicobar Islands 
(ANI)] in the Indian Ocean region (Fortes et al, 2018; Patro et al, 2017)India has a record of 
16 seagrass species belonging to three families, i.e., Hydrocharitaceae, Cymodoceaceae and 
Ruppiaceae. These 16 seagrass species are part of the 19 seagrass species found in South-east 
Asia (Prathep et al., 2011). These 16 seagrass species of India cover an area of 516.59 Km2 up 
to a depth limit of 21 m (Bayyana et al., 2020; Geevarghese et al., 2018). 

These various seagrass species of India occupy sandy, muddy or mixed habitat, in the 
intertidal region to increased depth (Parthasarathy et al., 1991). For example, small seagrass 
species like Halophila beccarii, Halophila ovalis are found in the muddy or sandy-muddy 
habitat of the intertidal region (Parthasarathy et al., 1991), whereas other seagrass species like 
Thalassia hemprichii and H. beccarii are found associated with mangroves (Jagtap et al., 2003; 
Mishra and Apte, 2020; Mishra and Mohanraju, 2018). Consequently, bigger seagrass plants 
like Enhalus acoroides are found at increased depths ( Patankar et al, 2018). However, this 
distribution of seagrass plants is dependent upon various limiting factors such as turbidity, light 
penetration, nutrient availability (Arumugam et al., 2013) that affect seagrass photo-physiology 
and reproductive processes (Patankar et al., 2018; Mishra and Apte, 2020b). Secondly, this 
distribution of seagrass species is also influenced by presence of other seagrasses or mangroves 
or coral reefs that determines distribution patterns and ecological connectivity with 
sourrounding ecosystems (Apte et al., 2016; Mishra and Apte, 2020). 

The presence of various seagrass species at the land and sea-interface makes them 
suitable bioindicators of coastal metal contamination (Bonanno and Borg, 2018; Mishra et al., 
2019). This suitability of seagrass as bioindicators have been extensively used by the European 
Water Framework Directive using the endemic seagrass Posidonia oceanica and Cymodocea 
nodosa of the Mediterranean Sea (Bonanno and di Martino, 2016; Bonanno and Orlando-
Bonaca, 2018; Bonanno and Raccuia, 2018). However, in India there are few studies exploring 
the potential of seagrass as bioindicator of coastal pollution (Gopi et al., 2020; Govindasamy 
and Azariah, 1999; Sudharsan et al., 2012b). This chapter will provide valuable information 
about the various metal studies that have been carried out using different seagrass species, the 
efficiency of seagrass in accumulating trace elements, toxic effects of these trace elements on 
seagrass physiology above the threshold levels and the bioindicator potential of seagrass to 
these trace elements.
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Fig.1. Map showing the States and islands that have seagrass ecosystems around the east and west coast of India. Numbers in bracket for each 
state indicate the number of seagrass species found in that state. Odisha (OD), Andhra Pradesh (AP), Andaman and Nicobar Islands (ANI), 
Tamil Nadu (TN), Kerala (KL), Lakshadweep island (LK)*, Karnataka (KA), Goa (GO), Maharashtra (MH), Gujarat (GJ).  
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2.Trace element in coastal water, sediment and seagrasses 

2.1Trace element in water column above seagrass meadows 

In general, it is thought that the trace element concentration is higher in the water 
column and readily available for the leaves of the seagrass for uptake. However, it has been 
observed, that is not the case always (Bonanno and di Martino, 2017). The accumulation of 
trace elements from the water column is species-specific among seagrasses and depends on the 
plant physiology and the nature of the trace element, i.e., toxic or essential (Millero et al., 2009; 
Mishra et al., 2019). In India, the trace element studies of the water column above seagrass 
ecosystems are very less compared to that of the sediment and seagrasses. Only 4 studies have 
reported the nine out of 11 elements (As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Zn) reported in 
sediment and 10 in seagrass. However, on the west coast trace elements like Cd, Cr, Pb and Zn 
are not reported (Table 1). These studies on trace elements are restricted to five locations, i.e., 
Palk bay and GOM, Tamil Nadu, Goa, Maharashtra, and Lakshadweep Islands, consisting of 
only eight seagrass species. 

Out of the nine trace elements, Mg was the most studied trace element in the water 
column of seagrass ecosystems in India, and Mn the least (Fig.2a). The concentration of Mg in 
the water column was highest in the seagrass meadows of Cymodocea rotundata, Syringodium 
isoetifolium, Halodule uninervis, Thalassia hemprichii and Halophila ovalis of Lakshadweep 
Islands. The concentration of Fe and Mn was highest in Halophila beccarii from the west coast 
in Goa. The water column above T. hemprichii meadows have higher concentration of Cd and 
Pb in Palk bay, whereas the water above S. isoetifolium meadows have higher concentration of 
Cu and similar levels of Pb with T. hemprichii (Table 1). The concentration of Cr, Ni and Zn 
was similar among the water column of Cymodocea serrulata, S. isoetifolium and Enhalus 
acoroides meadows at GOM. The trace element concentration in the water column of various 
seagrasses followed a decreasing pattern, Mg>Zn>Fe>Cr>Cu>>Mn>Ni>Pb>Cd (Table 1). In 
the water column, Mg concentration was very low on the east coast withing a range of 0.16 to 
2.06 mg kg-1, while that on the west coast was 550-fold higher (Table 1). The Mg concentration 
(18318 mg kg-1) in the water column of Lakshadweep Islands was highest in the coastal waters 
of India. The Zn levels were in the range of 0.11 to 11.6 mg kg-1, with higher levels in the water 
column of GOM, Tamil Nadu. The Cd concentration were in the range of 0.02 to 0.15 mg kg-

1, while that of Cr are 0.31 to 2.03 mg kg-1on the east coast. Copper levels in the water column 
were 2-fold higher in the east coast than that of the west coast. Iron concentration were higher 
in the coastal waters of Goa. Manganese and Ni levels were similar among the both coasts. The 
concentration of Pb were 0.007 to 0.13 mg kg-1 and that of Zn were 0.11 to 11.6 mg kg-1 (Table 
1). Trace elements such as Co and Hg are not reported in the water column, even though they 
are reported from the sediment and seagrass tissues (Fig.2b and c). 

The source of trace element in the coastal waters of India are mostly through riverine 
input, which varies according to the monsoon dependent seasonal runoff and subsequent 
erosion from river catchment area (Tripathy et al., 2014). Consequently, local anthropogenic 
discharge from industrial and domestic waste water also leads to input of these trace elements 
into the coastal waters (Libin Baby et al, 2017; Nobi et al., 2010; Thangaradjou et al., 2009; 
Thangaradjou and Bhatt, 2018). Other than these inputs, release of trace elements from the 
sediment to the water column within the seagrass ecosystems also plays an important role in 
varying concentration of trace elements in the water column (Govindasamy and Azariah, 1999; 
Libin Baby et al., 2017). The low concentration of most of the elements like Cd, Cr, Cu, Ni 
and Pb is a result of settling of the organic matter content that inflows with the land run-off. 
Seagrass ecosystems are considered as efficient ecosystem engineers and they help in settling 
a small fraction of this organic matter content on their leaf surface or into the sediment, thus 
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reducing water turbidity and enhancing their photosynthetic activity (Gillis et al., 2017; 
Guannel et al., 2016). This seasonal and local variation of input of trace elements are reflected 
in seagrass ecosystems (Govindasamy and Azariah, 1999). This seasonal influence of high 
concentration of Co, Cd, Cu, Fe, Ni, Mn and Zn in the water column has been observed at 
GOM, TN (Govindasamy and Azariah, 1999) and the east coast of India (Vinithkumar et al., 
1999). 

2.2. Trace metals in the sediment of seagrass meadows 

A total of 11 trace elements has been reported in the sediment of seagrass meadows of 
India, including As and Co that has not been reported in the water column of seagrass meadows 
(Fig.2b). In sediment, the trace element concentration of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn 
were multifold higher than their water column values, except Mg which was higher in the water 
column (Untawale and Jagtap, 1984). The concentration of trace elements in the sediment of 
seagrass meadows followed the decreasing pattern of Fe>Mg> Mn> Cr> 
Ni>Cu>Zn>Co>As>Pb>Cd (Table 2). 

Five locations of India on both the east and west coast within seagrass meadows have 
been used for trace element studies, i.e., Palk bay and GOM, Tamil Nadu, Goa, Maharashtra, 
Lakshadweep and Andaman and Nicobar Islands (ANI).  The sediment of seven seagrass 
species, such as S. isoetifolium, T. hemprichii, C. serrulata, C. rotundata, H. beccarii, H. ovalis, 
H. uninervis have been used for trace element studies (Govindasamy and Azariah, 1999; 
Jagtap, 1983; Libin Baby et al., 2017; Thangaradjou et al., 2013; Untawale and Jagtap, 1984; 
Vinithkumar et al., 1999). On the east coast the sediment within seagrass meadows of GOM 
had higher levels of As than the seagrass sediment of Palk bay region of Tamil Nadu (Table 
2). However, the highest concentration of As in the sediment of seagrass meadows were 
recorded from ANI. This higher concentration of As can be due to the volcanic origin of this 
island, where As enters the coastal ecosystem through seasonal land run-off, as these islands 
are far from industrially polluted (Nobi et al., 2010; Sachithanandam et al., 2020). Other than 
Arsenic, Co, Cr, Cu, Mg, Mn, Ni and Pb concentration in the sediment of seagrass meadows 
are the highest in ANI (Table 2). The concentration of Fe in the sediment were higher on the 
west coast at Vijayagiri and Ratnagiri of Maharashtra within the H. beccarii meadows (Table 
2). However, these Fe values in the sediment of H. beccarii are more than three decades old 
and this high concentration of Fe in H. beccarii sediment compared to other seagrass ecosystem 
of India can be due to its presence within close proximity of mangrove sediments, which act as 
sink of trace elements (Apte et al., 2016; Mishra and Kumar, 2020). Though most of the trace 
element levels in the sediment of S. isoetifolium, T. hemprichii and C. serrulata meadows of 
Palk bay have similar levels in their sediment (Govindasamy et al., 2013; Libin Baby et al., 
2017; Thangaradjou et al., 2013) the concentration of Cu and Zn are 20-fold lower in the 
sediment of T. hemprichii meadows (Jagtap and Untawale, 1984).  On the west coast, the 
sediment of H. beccarii meadows were found with high levels of Cu at Vijayagiri and 
Ratnagiri, Maharashtra(Jagtap, 1983). There is a clear evidence that the sediment of seagrass 
meadows act as a sink of various trace elements. Consequently, the continuous persistence of 
these trace elements (particularly trace elements like As, Cu, Pb) can result in potential toxicity 
to seagrass rhizosphere and the seagrass associated biota (Ambo-rappe et al., 2011; Richir, 
2016; Richir and Gobert, 2014). However, for the trace elements to be toxic, it has to be 
bioavailable to the seagrass root systems and reach above threshold levels. This bioavailability 
depends on trace elements mobility in the sediment, their chemical speciation (Usero et al., 
2005) and sediment characteristics such as pH, organic matter content and redox potential 
(Yang and Ye, 2009).
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Table 1. Mean or range of trace element concentration (ppb) in marine water associated with various seagrass species of India. Gulf of Mannar 
(GOM), Tamil Nadu (TN); Maharashtra (MH); Lakshadweep island (LK) 

Seagrass Location  
Cd 

 
Cr 

 
Cu 

Trace elements  
Mn 

 
Ni 

 
Pb 

 
Zn 

Ref. 
 
C. rotundata 

 
Palk bay, 
TN 

Fe Mg  
- - - 0.12-0.31 - - - - - a 

C. serrulata Palk bay, 
TN 

0.09-0.11 0.31-0.67 0.50-1.02 0.12-1.02 0.28-0.33 0.57-0.89 0.19-0.37 0.01-0.12 0.11-6.38 a, b 

S. isoetifolium Palk bay, 
TN 

0.09-0.12 0.31-0.67 0.32-1.12 0.19-0.37 0.28-0.35 - 0.20-0.39 0.01-0.13 2.06-6.38 b 

T. hemprichii Palk bay, 
TN 

0.10-0.15 0.31-0.67 0.32-1.02 0.19-0.37 0.28-0.33 - 0.20-0.39 0.01-0.13 2.06-6.38 b 

C. serrulata GOM, TN 0.02-0.06 0.26-2.03 0.117 4.60-5.30 0.16-2.06 - 0.22-0.56 0.007 4.74-11.6 b 
E. acoroides GOM, TN 0.02-0.06 0.26-2.03 0.117 4.60-5.30 0.16-2.06 - 0.22-0.56 0.007 4.74-11.6 b 
S. isoetifolium GOM, TN 0.02-0.06 0.26-2.03 0.117 4.60-5.30 0.16-2.06 - 0.22-0.56 0.007 4.74-11.6 b 
H. beccarii Goa - - 0.42 7.4 614 0.76 0.22 - - c 
H. beccarii Malvan, 

MH 
- - 0.32 1.05 990 0.18 0.46 - - c 

H. beccarii Vijayagiri,
MH 

- - 0.27 2.75 774 0.17 0.30 - - c 

H. beccarii Ratnagiri, 
MH 

- - 0.19 0.55 1100 0.09 0.54 - - c 

C. rotundata LK - - - - 18318 - - - - d 
S. isoetifolium LK - - - - 18317 - - - - d 
H. uninervis LK - - - - 18318 - - - - d 
T. hemprichii LK - - - - 18318 - - - - d 
H. ovalis LK - - - - 18318 - - - - d 

a) Govindasamy et al. 2011, b) Baby et al. 2017, c) Jagtap, 1983, d) Jagtap and Untawale, 1984 
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Table 2.  Mean or range of trace element concentration (mg/kg) in sediment associated with various seagrass species of India. Gulf of Mannar 
(GOM), Tamil Nadu (TN); Maharashtra (MH); Lakshadweep island (LK), Andaman and Nicobar Islands (ANI) 

Seagrass Loc.  
As 

 
Cd 

 
Co 

 
Cr 

 
Cu 

Trace elements  
Mn 

 
Ni 

 
Pb 

 
Zn 

Ref. 
 
C. serrulata 

 
Palk bay, TN 

Fe Mg  
3.28 0.23-

0.27 
- 4.81-

4.92 
1.55-
45.5 

16.5-
1040 

42 29.4-
64.8 

1.22-
1.41 

0.61-
0.81 

2.01-
49.5 

a, b 

S. 
isoetifolium 

Palk bay, TN 3.28 0.23-
0.27 

- 4.82-
4.92 

1.55-
45.5 

16.5-
1040 

42 29.4-
64.8 

1.22-
1.41 

0.61-
0.81 

2.01-
49.5 

a, b 

T. 
hemprichii 

Palk bay, TN 3.21 0.24-
0.28 

- 4.81-
4.92 

1.55-
1.68 

965-
1040 

42 - 1.22-
1.41 

0.61-
0.81 

2.01-
2.24 

d 

              
C. serrulata GOM, TN 7.66-

8.62 
0.23-
0.31 

- 4.86-
6.44 

1.94-
2.16 

1095-
1195 

52.95-
64.2 

- 1.56-
2.02 

0.54-
0.67 

1.34-
2.72 

b 

E. acoroides GOM, TN 7.66-
8.62 

0.23-
0.31 

- 4.86-
6.44 

1.94-
2.16 

1095-
1195 

52.95-
64.2 

- 1.56-
2.02 

0.54-
0.67 

1.34-
2.72 

b 

S. 
isoetifolium 

GOM, TN 7.66-
8.62 

0.23-
0.31 

- 4.86-
6.44 

1.94-
2.16 

1095-
1195 

52.95-
64.2 

- 1.56-
2.02 

0.54-
0.67 

1.34-
2.72 

b 

Seagrass  GOM, TN - - - - 11.3-
18.2 

1756-
5756 

- 52.1-
128 

- - 20.5-
30.8 

f 

H. beccarii Goa - - - - 26 37750 3200 767 25   c 
H. beccarii Malvan, 

MH 
- - - - 2 15750 1500 260 4 - - c 

H. beccarii Vijayagiri,MH - - - - 83 73900 2700 402 35 - - c 
H. beccarii Ratnagiri, MH - - - - 121 75500 2750 862 37 - - c 
C. rotundata LK - - - - - - 988.3 - - - - d 
H. ovalis LK - - -  - - 986.2 - - - - d 
H. uninervis LK - - - - - - 988.3 - - - - d 
S. 
isoetifolium 

LK - - - - - - 988.3 - - - - d 

T. 
hemprichii 

LK - - - - - - 988.3 - - - - d 

Seagrass LK - 0.52-
5.72 

0.04-
0.16 

2.32-12 2.76-
21.64 

45.76-
316 

- 4-11.32 0.64-
3.08 

4.4-
10.36 

10.3-
127 

e 
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Seagrass ANI 7-21 0.69-
1.96 

0.82-
100 

5.76-
887 

6.64-
130 

508-
32370 

2018-
6204 

23-940 2-607 10-29 10.4-
127 

g,h 

a) Govindasamy et al. 2011, b) Baby et al. 2017, c) Jagtap, 1983, d) Jagtap and Untawale, 1984, e) Thangaradjou et al. 2014, f) Kumaresan 
et al. 1998, g) Nobi et al. 2010, h) Sachithanandam et al. 2020 

 

 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 E

le
m

en
ts

 

   
                                                                                                      Frequency (n) 

Fig.2. Frequency distribution of number of studies on various trace elements in the a) water, b) sediment and c) seagrasses from the coast of 
India. 
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2.3. Role of sediment characteristics in making trace elements bioavailable 

The sediment within seagrass meadows act as a storehouse of trace elements, where the 
influx of land run-off and anthropogenic chemicals recharge this storehouse. Other than this 
input, trace element recycling happens within the seagrass meadows (Sanz-Lázaro et al., 2012), 
which releases trace element bound to the fine grain sediment fraction of seagrass meadows. 
pH of the sediment and the overlying water plays a major role in release of this sediment bound 
trace metals, as low pH can alter the metal speciation and favor the release of metals from 
sediment pore waters (Atkinson et al., 2007; Simpson et al., 2005) that are generally not 
bioavailable.  The trace metals in the water column above the sediment, are absorbed on to 
sediments where redox stratification of metal bound particles with depth occurs (Basallote et 
al., 2020, 2014; Eggleton and Thomas, 2004), until resuspension of these particles happens due 
to physical processes and bioturbation. Resuspension with oxygenated overlying waters results 
in metal speciation in the dissolved phase (Simpson et al., 2005), making the metals 
bioavailable in pore waters (Batley et al., 2004). Once released from pore waters into water 
column, these metals are bioavailable to seagrass and associated organisms till precipitation of 
these metals are initiated by the fine fraction (<63 micron) of the sediments suspended in water 
column(Zoumis et al., 2001). 

2.4.TE accumulation in seagrasses 

A total of 10 trace elements are reported in seagrass tissues of India, excluding As 
(Fig.2c). Six seagrass species from Palk bay, seven from GOM and eight from Lakshadweep 
and H. beccarii from Goa and Maharashtra (Table 3).  For trace element in seagrass, Palk bay 
region is the most studied region followed by Lakshadweep islands, whereas GOM and ANI 
have similar levels of studies (Fig.3a). In general, S. isoetifolium is the most studied seagrass 
for various trace element levels followed by C. serrulata and C. rotundata (Fig.3b). There are 
only 4 studies in India, which have studied trace elements in water, sediment and seagrass 
(Govindasamy et al., 2011; Jagtap, 1983; Jagtap and Untawale, 1984; Libin Baby, et al., 2017) 
and there are six studies including the above four, which have reported about trace element 
levels in sediment and seagrasses (Nobi et al., 2010; Vinithkumar et al., 1999) and the rest of 
studies have reported only about the trace elements in seagrass ecosystems, excluding the trace 
elements in water or sediment.
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Fig.3. a) The various location of India from where seagrass studies on trace elements have been reported and b) the various seagrass species used 
for trace element studies. Percentage values represent the contribution of each location or seagrass to the total studies on trace elements. 
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Table 3. Mean or range of trace element concentration (mg/kg) in tissues of various seagrass species of India. Gulf of Mannar (GOM), Tamil 
Nadu (TN); Maharashtra (MH); Lakshadweep island (LK), Andaman and Nicobar Islands (ANI), Whole plant (WP), Leaves (L) 

Seagrass Loc. Tissu
e 

 
 
Cd 

 
 
Co 

 
 
Cr 

 
 
Cu 

Trace elements  
 
Mn 

 
 
Ni 

 
 
Pb 

 
 
Zn 

Ref. 

 
C. rotundata 

 
Palk bay, 
TN 

 Fe Mg  
WP 0.34-1.53 - - 1.86-

17.35 
- - - - 0.59-

6.14 
4.19-
52.66 

i 

C. serrulata Palk bay, 
TN 

WP 0.12-2.84 - - 0.13-
18.59 

0.33-
2.85 

0.24-
14.38 

- 0.18 0.26-
2.88 

0.33-
42.03 

a, b, 
i, j 

E. acoroides Palk bay, 
TN 

WP 0.22-0.31   3.23-
36.5 

909 - 304 - 1.42-
1.74 

13.66-
35 

i, l 

H. ovalis Palk bay, 
TN 

WP 0.31-0.36 - - 3.79-
21.67 

795 - 2235  0.56-
1.96 

9.45-45 i,l 

H. pinifolia Palk bay, 
TN 

WP - - - 37-
60.83 

1085-
1886 

- 220-
491 

- - 35-
69.17 

l 

S. isoetifolium Palk bay, 
TN 

WP 0.3-2.83 - - 0.53-
56.67 

0.22-708 - 0.3-553 0.18 0.26-
3.12 

0.15-
53.3 

a,g,i
,j 

T. hemprichii GOM, TN L 0.21 0.37 3.98 2.94 67.58 591 9.28 1.44 1.52 4.56 p 
S. isoetifolium GOM, TN L 0.35 0.43 3.47 3.18 82.01 912.73 14.93 1.44 2.04 6.54 p 
S. isoetifolium GOM, TN WP 0.32 - 0.28 0.75 1074 918 - 9.18 7.5 38.36 q 
H. pinifolia GOM, TN L 0.14 0.32 1.21 6.65 156 863 23.42 0.67 1.28 17.59 p 
H. uninervis GOM, TN WP 0.3 - 0.29 4.36 945 920 - 6.35 3.09 22.21 q 
E. acoroides GOM, TN L 0.12 0.41 3.87 3.59 90.45 732.88 7.17 1.51 1.44 5.24 p 
C. serrulata GOM, TN L 0.23 0.283 0.98 7.49-69 - 905.57 12.83 0.41 0.81 13.57 q 
C. serrulata GOM, TN WP 0.30 - 0.28 7.11 540 1015 - 12.3 1.22 29.74 p 
C. rotundata GOM, TN  L 0.26 0.31 1.47 7.8 71.22 91.45 13.46 0.51 0.82 13.95 p 
H. beccarii GOA WP - - - 11 32562 9800 575 10 - 4 c 
H. beccarii MH WP - - - 3-6 8650-

27000 
7225-
9400 

500-
560 

4-6 - - c 

              
C. serrulata LK WP 1.58 0.21 2.95 8 124.38 6000 54 2.11 7 52 n 
C. rotundata LK  2 0.2 5 4.87 178.9 1412-

5123 
42 1.91 5.18 55 f,n 
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T. hemprichii LK  0.1-1.85 0.47 3 4.4-13 172-221 1147-
6200 

26-63 2.35 12 0.6-30 d,n,
o 

S. isoetifolium LK WP 2 0.16 2.95 5 224.3 1279-
80050 

78 2.25 10 27.36 d,n 

H. pinifolia LK WP 2.01 8.12 18 12 5992 9700 143.2 13 12 45 n 
H. uninervis LK WP 2.25 11.21 18.4 18 5980 1330-

6300 
160 8 23.12 31 n,d 

H. decipens LK WP 2 10 19.8 21.57 5990 10,368 1024 19.49 15 60.96 n 
H. ovalis LK WP - - - - - 1732.6 -- - -  d 
Seagrass ANI WP 1.04-3.88 0.44-

2.43 
34.8-
138.2 

44.36-
86.76 

604-
7308 

762-
7468 

349-
1180 

1.8-5 3.08-
6.64 

21.64-
48.72 

g,m 

a) Govindasamy et al. 2011, b) Baby et al. 2017, c) Jagtap, 1983, d) Jagtap and Untawale, 1984, f) Kumaresan et al. 1998, g) Nobi et al. 
2010, i) Gopi et al. 2020, j) Sudharsan et al. 2012, l) Kannan et al., 1992, m) Thangaradjou et al., 2010a, n)Thangaradjou et al., 2013a, o) 
Gopinath et al., 2011, p) Kannan et al., 2011a, q) Immaculate et al., 2018 
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The accumulation capacity of trace elements in the various seagrass species are 
different, which is reflected by the highest concentration of each trace element observed in a 
different seagrass species. For example, Cd concentration were highest in the tissues of S. 
isoetifolium in Palk bay, with similar levels of Cd in H. pinifolia and H. uninervis of 
Lakshadweep Islands. The concentration of Mg, were also highest in S. isoetifolium of 
Lakshadweep Islands (Table 3). The concentration of Cu in seagrasses of India were highest in 
C. serrulata, at GOM, even though the highest levels were reported from mixed seagrass 
species of ANI(Nobi et al., 2010; Thangaradjou et al., 2014). The H. uninervis of Lakshadweep 
Islands had the highest concentration of Co, whereas Cr concentration were highest in H. 
decipens of Lakshadweep islands. However, the highest levels of Cr were reported from ANI, 
but the authors have not specified any seagrass species (Arumugam et al., 2013; Nobi et al., 
2010; Thangaradjou et al., 2013). Other than Cr, the concentration of Ni, Pb and Zn levels in 
H. decipens were also the highest in India. The concentration of Fe was highest in the tissues 
of H. beccarii, at GOA, whereas the highest concentration of Mn was recorded from H. ovalis 
at Palk bay (Table 3).This accumulation capacity of different seagrass species of India, clearly 
indicates trace element accumulation in seagrass is a species-specific phenomenon and the 
various seagrass species of India are potential indicators of different trace element 
concentration in the environment. However, regarding the kind of investigated organs/tissues 
of seagrass most of the trace element studies in India have used the whole seagrass plants, 
except Kannan et al., (2011) and Immaculate et al. (2018), who have reported trace element 
levels in the leaves of C. rotundata, C. serrulata, T. hemprichii, S. isoetifolium, H. pinifolia 
and E. acoroides from GOM, Tamil Nadu. 

3. Effects of trace elements on seagrass physiology 

In seagrasses the concentration of elements varies within the tissues; leaves, rhizomes 
and roots. Where roots accumulate the maximum concentrations and the leaves accumulates 
less (Bonanno and Orlando-Bonaca, 2018; Mishra et al., 2019) as higher metal concentration 
in leaves can lead to trace metal toxicity and damage photosynthetic apparatus of seagrass 
(Govers, 2014; Prange and Dennison, 2000). However, in India, trace metals and their toxicity 
on seagrass physiology or growth have not been reported.  Globally, there are some toxicity 
assessment of trace elements on seagrass physiology of C. serrulata (Aljahdali and Alhassan, 
2020; Prange and Dennison, 2000), H. ovalis (Ambo-rappe et al., 2011; Prange and Dennison, 
2000), H. uninervis (Prange and Dennison, 2000) and T. hemprichii (Lei et al., 2012) which 
can be compared to the seagrass species of India. Trace elements such as Cd (10 mg L-1), Cu 
(1-10 mg L-1), Pb (10 mg L-1) and Zn (10 mg L-1) are toxic to C. serrulata, H. ovalis, T. 
hemprichii and H. uninervis photosynthetic apparatus; Photo System-II (PS-II). Other than 
damaging PS-II, Cu concentrations reduced leaf growth and width of H. ovalis and amino acid 
levels in C. serrulata and H. uninervis (Prange and Dennison, 2000; Ambo-Rappe et al., 2011). 
Zinc toxicity reduced photosynthetic pigments of T. hemprichii (Lei et al., 2012). The 
antioxidant activity of H. ovalis and C. serrulata were decreased by Cd and Pb toxicity (Ambo-
Rappe et al., 2011; Aljahdali and Alhassan, 2020). 

For the above mentioned four seagrass species in India, Cu concentration are 6-fold and 
1.7-fold higher than toxic levels in the tissues of C. serrulata and at GOM and Palk bay, Tamil 
Nadu (Govindasamy et al., 2013; Immaculate et al., 2018; Libin Baby et al., 2017). In 
Lakshadweep Islands, H. uninervis and T. hemprichii have 1.8-fold and 1.3-fold higher Cu 
levels than toxic concentrations (Gopinath et al., 2011; Thangaradjou et al., 2013; Untawale 
and Jagtap, 1984), whereas H. ovalis has 2-fold higher Cu levels than toxic levels at Palk bay 
region (Gopi et al., 2020; Kannan et al., 2011). Lead levels are 1.2-fold and 2.3-fold higher in 
T. hemprichii and H. uninervis at Lakshadweep islands (Jagtap and Untawale, 1984; Gopinath 
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et al., 2011; Thangaradjou et al., 2013). T. hemprichii and H. uninervis have 3-fold higher Zn 
levels than toxicity levels (Jagtap and Untawale, 1984; Gopinath et al., 2011; Thangaradjou et 
al., 2013), whereas C. serrulata has 3 to 5-fold higher levels of Zn concentration which can 
exert toxicity on its PS-II at Palk bay and GOM, Tamil Nadu and at Lakshadweep islands 
(Govindasamy et al., 2011; Sudarshan et al., 2012; Thangaradjou et al., 2013;  Gopi et al., 
2020). Trace element levels above toxic concentration for these seagrasses clearly suggests 
that, these four seagrass species are under stress from metal toxicity, which needs further 
research and attention from the scientific community of India. 

High concentration of trace elements in these seagrass species will result in trophic 
transfer of these elements and exert toxicity to the associated trophic assemblages (de los 
Santos et al., 2019; Prange and Dennison, 2000), such as gastropods, molluscs, fish and 
invertebrates that depend on seagrass for direct and indirect food sources (Manikandan et al., 
2011). Consequently, metal toxicity can lead to seagrass population loss and die offs, which 
will have negative consequences on the coastal ecosystem functioning. 

4.Future scenarios and metal toxicity on seagrass 

Global changes, such as ocean acidification due to increased CO2 concentrations, and 
low pH, will affect the trace metal chemistry, speciation and their bio-availability (Millero et 
al., 2009; Zeng et al., 2015) and can have possible negative impacts on the seagrass ecosystem. 
Low pH can increase bioavailability of trace elements bound to seagrass sediment, and even 
increase their concentrations as trace metal speciation in seawater is strongly dependent on 
seawater chemistry, with several metals known to be sensitive to speciation changes within the 
pH range projected for near-future (Byrne et al., 1988; Richards et al., 2011). Changes in ocean 
carbon chemistry may also alter the behaviour of metals bound to sediments, influencing metal 
fluxes from contaminated sediments(Millero et al., 2009; Zeng et al., 2015). Low pH is 
predicted to increase the toxic free ion concentration of metals in coastal waters by as much as 
115% in the next 100 years(Lewis et al., 2016; Millero et al., 2009). Saying that most of the 
studies on metal concentrations has been focused on marine animals (e.g. marine invertebrates, 
mussels, planktons, fish larva) with very few studies on seagrass ecosystems, which needs to 
be addressed in India. 

5.Conclusions 

Globally, seagrasses are used as bioindicators of coastal contamination (Bonanno and Orlando-
Bonaca, 2018, 2017; Lewis and Richard, 2009). In India, though seagrass is found to be 
efficient indicators of the environmental concentration of trace elements in their tissues, they 
have not been used as bioindicators of coastal pollution. However, the National Action Plan 
for seagrass ecosystems that have been launched in 2018 (Koshy et al., 2018) plans to address 
these issues, and provides guidelines that will use this bioindicator potential of vast seagrass 
ecosystems of India to facilitate their conservation and management issues. 
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