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Abstract 
Urinary bladder cancer (UBC) is the most common malignancy of the urinary tract in 
humans, with an estimated global prevalence of 1.1 million cases over 5 years1. Due to 
high rates of recurrence and resistance to chemotherapy, UBC is one of the most 
expensive cancers to treat, resulting in significant health care costs. There is, therefore, 
a critical need to develop innovative molecular and cellular tools to refine patient 
stratification and help predict response to treatment. Urine is an underused resource of 
biological components shed from bladder tumors, such as exfoliated cells and 
extracellular vesicles, that could serve as molecular fingerprints and provide valuable 
biological insights into tumor phenotype and mechanisms of resistance to chemotherapy. 
Additionally, characterization of urine-derived extracellular vesicles and cells could be 
used as reliable biomarkers for prediction of response to neoadjuvant therapy.  
 
 
Introduction 
Urinary bladder cancer (UBC) is a common urogenital malignancy causing approximately 
80,000 new cases and 18,000 deaths each year in the United States alone2. Urothelial 
carcinoma accounts for 90% of bladder cancers and can be categorized into non-muscle 
invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) subtypes; 
although the majority of UBC present as NMIBC, the MIBC subtype is associated with the 
highest risk of developing metastases. Overall, 75% of patients diagnosed with high-risk 
bladder cancer will experience tumor recurrence, advancement of cancer, or decease 
within 10 years of their diagnosis1. Transurethral resection (TUR) of all visible lesions is 
a standard treatment for NMIBC but is associated with a high recurrence rate3. 
Intravesical chemotherapy and immunotherapy have demonstrated significant benefit in 
delaying disease recurrence in patients with NMIBC4. In MIBC patients, neoadjuvant 
chemotherapy with platinum-based drugs has been offered prior to local definitive 
treatment and has been associated with lower rates of recurrence and survival benefits5,6. 
Recently, a myriad of clinical trials has been launched to investigate the efficacy of 
immune checkpoint inhibitors combined with neoadjuvant therapy7,8,9. The outcome of 
these clinical trials may significantly change the therapeutic landscape of MIBC patients 
as half of MIBC patients are not eligible to receive platinum-based neoadjuvant 
chemotherapy10. In patients receiving treatment with neoadjuvant therapy, pathological 
complete response (pCR, pT0N0) rates have been observed in 20% to 50% of cases6,7,9. 
While there is still room to develop more effective neoadjuvant therapies and increase 
pCR rates, avoiding surgery in bladder cancer patients who completely respond to 
neoadjuvant therapy is a continuing challenge faced by many urologic oncologists. 
Additionally, disease recurrence has been reported in a subset of patients initially 
diagnosed with pCR highlighting the need to identify patients who present with occult 
metastasis at the time of surgery, as they could benefit from active surveillance and 
additional therapy to prevent disease recurrence. There is a critical need to identify those 
patients who can safely avoid surgery following neoadjuvant therapy, as well as those 
who need follow-up and additional therapy11,12,13. In this review we will discuss several 
emerging platforms that have strong potential to address these needs. First, we will 
describe challenges and clinical opportunities of ex vivo patient-derived tumor systems 
including urine-derived tumor organoids as preclinical drug testing platform for patients 
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diagnosed with bladder cancer. Second, we will provide an overview of urine-based liquid 
biopsies, in particular with tumor-derived extracellular vesicles that can help monitoring 
response to treatment and identify complete responders. 
 
Current precision medicine-approaches for the treatment of bladder cancer are 
promising but have significant drawbacks 

To date, bladder cancer management decisions have been based on conventional 
histological features including tumor stage, lymph node status, histology variant at the 
time of diagnosis. Half of patients treated with neoadjuvant therapy, however, do not 
respond to treatment, highlighting our current inability to accurately predict those patients 
who will respond to chemotherapy6,7,9. Pathological factors have been evaluated for their 
predictive value in the context of muscle-invasive bladder cancer14. Specifically, patients 
with pure urothelial carcinoma have ~11 times more chance to experience pathological 
complete response post-NAT compared to tumors with histological variants or mixed 
tumors. While pure urothelial carcinoma constitutes ~70% of cases of bladder cancer, the 
remaining cases contains a histologic variant or mixed histological features15. This 
intratumor heterogeneity is a significant hurdle to any clinical decision-making involving 
best choice of treatment for patients with UBC19. 

Recent technological advances have allowed for efficient deep molecular profiling 
of bladder cancer tumors to support prediction of clinical outcomes and responses to 
therapy17,18,21. Transcriptomic profiling of biopsy and cystectomy specimens has, for 
instance, revealed distinct molecular subtypes of bladder cancer16,18,20,22,23. Similar to 
histology, molecular classification reveals important tumor heterogeneity with co-
existence of luminal and basal subtypes within the same tumor in ~30% of cases24,29. 
However, while studies agree on gene expression signatures that identify each molecular 
subtype, they have shown conflicting results with regards to prediction of response to 
chemotherapy. Two recent studies, including one meta-analysis of 16 transcriptomic 
datasets, showed no significant difference in response rates to chemotherapy between 
tumor subtypes16,20. Overall, these findings collectively support the fact that UBC is a 
multifactorial disease whose genomic, transcriptomic and epigenomic diversity represent 
a significant challenge in treatment decision-making. Additionally, the high cost of such 
molecular analyses and the relatively long turn-around time for data collection and 
downstream bioinformatic interrogation, are further obstacles for personalized medicine 
applications25,26. These limitations underscore the need to develop additional biological 
resources that can improve patient stratification and better predict response to 
chemotherapy. 
 
Preclinical 2D and patient-derived xenograft models bring value to drug discovery 
but have limited bedside applications 
 The increasingly recognized complexity and heterogeneity of bladder cancer has 
posed a major challenge to predicting treatment response. New tumor models generated 
from patient’s tumor specimens, such as primary cell lines and patient-derived xenografts, 
have recently gained attention for preclinical drug testing. Conventional two-dimensional 
(2D) culture of UC cells28 has traditionally been previously used for prediction of 
chemotherapeutic efficacy but the relative lack of primary bladder cancer cell lines that 
have been successfully established ex vivo27 constrains the impact of this approach. 
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Although 2D cell lines can expand rapidly and offer the possibility for high-throughput 
drug screening but they do not faithfully reproduce the 3-dimensional nature and cellular 
diversity of native bladder cancer. Compounding this, cancer-derived 2D cell lines 
typically exhibit genetic drift after multiple passages27. These limiting factors likely 
contribute to failure in predicting in vivo drug response in cancer patients using 2D cell 
lines.  
 Patient-derived xenografts (PDX) is an approach whereby patient tumor fragments 
are implanted into immunocompromised mice to generate tumors that recapitulate 
genomic and phenotypical features of patient’s original tumor30,31. PDX have value in both 
better understanding tumor biology and evaluating the efficacy of FDA-approved 
anticancer therapies or novel targeted treatments37. Although PDX models present an 
exciting opportunity for improving predictive value of preclinical studies, there are several 
hurdles to their translation into the clinic. The lack of an immune system in the 
immunocompromised host makes PDX models inadequate for modeling immune 
response and testing immunotherapies. Further, engraftment rates tend to positively 
correlate with tumor grade, meaning that low-grade patient tumors may not lead to a high 
yield of viable mouse tumors94,95. Finally, engrafted tumors can take several months to 
grow. This is a critical drawback for their application in translational medicine as, in the 
neoadjuvant setting, treatment is usually initiated within 3-4 weeks from the time of 
diagnosis. An ideal tumor model would combine the rapid growth and high-throughput 
potential of 2D models with the faithful recapitulation of host tumor microenvironment 
provided by PDX platforms. 
 
Patient-derived tumor organoids: a preclinical platform for individualized 
prediction of drug response 

Patient-derived tumor organoids represent a novel and superior model to identify 
and evaluate the efficacy of anticancer drugs. Tumor organoids are ex vivo mini tumors 
grown from patient’s tumor fragments. By maintaining the original cellular composition of 
tumors, tumor organoids better reflect the physiology of tumor growth compared to 
conventional models such as two-dimensional primary cell lines26. Therefore, UBC-
derived organoids have the potential to provide an ex vivo model of bladder cancer that 
can functionally predict treatment responses32. Moreover, many of the strategies outlined 
above rely on the invasive collection of large tissue specimens through cystectomy. We 
propose that culture of patient-derived organoids for chemo-sensitivity drug screening be 
performed on non-invasively obtained urine samples, as previously described in dogs33. 
This constitutes a significant innovation and advantage over currently established 
methods in the context of precision medicine.  
 Organoids can be propagated from bladder cancer cells derived from urine32,33,35,36 
or bladder biopsies34. Urine and biopsy-derived organoids have been shown to 
recapitulate molecular subtypes and heterogeneity32,33,35,36. Specifically, steady 
expression of urothelial cell markers (e.g. CK7, CK20, UPK3A, and CD44) has been 
reported on the luminal side of UBC organoids along with that of the proliferation marker 
Ki6732,34. In addition, xenografted urine-derived organoids were able to cause 
tumorigenesis in immunodeficient mice demonstrating their ability to maintain oncogenic 
properties ex vivo. Characterization of organoids can be done through an array of cellular 
and molecular techniques including immunohistochemistry, RNA-Seq, proteomics, and 
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others37,38,39. Leveraging our expertise in the culture and maintenance of canine 
organoids, our consortium has successfully cultured MIBC organoids from urinary 
samples of 6/6 human patients (Fig. 1)37,38,39. Immunohistochemistry staining for Gata 3, 
p63 and Pax 8 (Gata 3+, p63+, Pax 8-) confirmed the urothelial origin of 3D organoids 
(Fig. 2). Of note, Pax 8 positivity is a sensitive and specific marker for both benign and 
malignant renal epithelial cells, which is used in clinical practice to separate urothelial 
carcinoma from renal cell carcinoma40. The malignant nature of urinary PDOs was finally 
assessed by cytomorphological evaluation, along with immunostaining for uroplakin-2 
(urothelium-specific protein overexpressed in bladder cancer) (Fig. 2). Current research 
using organoids to study cancer biology offers promising preliminary results. Melanoma 
derived organoids, for example, have shown to be responsive to immune checkpoint 
inhibitors such as PD-1 and CTLA-1 antibodies41. This is a significant advantage over 
other model systems because we can now study the interaction of immune and tumor 
cells, through their co-culture, to refine prediction of drug response ex vivo. In addition, 
organoids have been shown to provide detailed information on the tumor 
microenvironment and stroma42.  

 
Figure 1. Growth and maintenance of urinary patient-derived organoids from a MIBC patient. (A) 
Typical cystic appearance of urinary PDO in Matrigel at Day 4. (B) Differentiation into larger budding 
structures on Day 12. 
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Figure 2. Immunohistochemistry staining of urinary patient-derived organoids from a MIBC patient. 
(A) Negative control (primary antibody only). (B) Positive immunohistochemistry (IHC) staining for Gata-3 
(marker for luminal UC). (C) Negative IHC staining for Pax-8 (renal epithelial marker). (D) Strongly positive 
staining for UPK2 (upregulated in UC). (E) Faintly positive staining for p63 (marker for basal UC). 
 
Dogs with bladder cancer are a highly relevant model for MIBC. 

Although murine models have been extensively used for the study of bladder 
cancer, they typically do not reflect the biological behavior of MIBC in human patients43. 
First, the urothelium of mice is inherently refractory to developing cancer and tumors 
typically do not metastasize in mice as they do in humans43,44. Second, genetically 
modified mouse models do not effectively mimic the heterogeneity of the human patient 
population43. Even human xenograft models are not ideal for all purposes, as the tumors 
are transplanted into immunocompromised animals43 Dogs, on the other hand, are a well-
recognized, natural disease model of human MIBC, with very similar molecular features, 
tumor heterogeneity and subtypes, metastatic behavior as well as treatment 
responses45,46,47,48. Importantly, our group has recently been successful in propagating 
canine MIBC organoids from voided urine samples using established protocols in our 
laboratory39. Our preliminary data show a high degree of redundancy in marker 
expression between canine organoids and their parent tumors (see Fig. 3). In addition, 
some markers associated with MIBC and poor prognosis in human bladder cancer 
patients (Keratin 7 and CD44) were upregulated in canine organoids, consistent with the 
notion that dogs present most commonly with MIBC32,47,49. Furthermore, we have used 
MIBC-derived organoids to perform proof-of-concept drug screening assays using 
doxorubicin (see Fig. 4).  
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Figure 3. RNA in situ hybridization staining of canine MIBC organoids and their parent tumors. KRT 
7 staining of MIBC tumor (A) and organoid (B) CD44 staining of MIBC tumor (C) and organoids (D); FOXA1 
staining of MIBC tumor (E) and organoids (F). Consistent with a an MIBC phenotype, expression of 
urothelial and stem cell markers is present (KRT7 and CD44), while expression of luminal markers (FOXA1) 
is minimal to absent. Scalebar = 100um. Ubiquitin probe was used as positive control for all RNA ISH 
experiments. 
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Figure 4. MTT cell viability assay on canine MIBC organoids after 48 hours exposure to doxorubicin. 
On Day 1-4 after passage, organoids were incubated with MMC for 48 hours. Cytotoxicity was determined 
using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) at a final concentration of 0.5 
mg/mL for 1.5 hr. After medium removal, 200uL/well DMSO was used to dissolve the formazan dye crystals 
and absorbance was read at 570 nm using a plate reader (SpectraMax 190, Molecular Devices). 
 

Other research groups are currently investigating the value of using canine bladder 
cancer organoids for the prediction of drug response and combination32. Cell viability 
assays can determine the lethal drug combination needed to effectively treat for UBC. 
Herein, we propose to use a spontaneously occurring, analogous disease which 
constitutes a highly relevant model for UBC in people. Noteworthily, the FDA requires 
preclinical safety and efficacy data from rodent and non-rodent animal models (commonly 
dogs) prior to testing of novel drug candidates in human clinical trials. Therefore, we 
propose that future therapeutic leads for UBC be screened ex vivo using canine organoids 
to select the most promising drug candidates. Subsequently, these novel therapeutics 
could be tested in vivo in dogs with bladder cancer prior to formal clinical testing in human 
patients with UBC. The establishment of canine organoids as an ex vivo model in 
combination with the ability to test new candidate drugs in preclinical trials in dogs may 
therefore represent a quantum leap in comparative oncology for the faster development 
of viable treatment options for MIBC. Importantly, while dogs are an excellent for modeling 
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disease phenotypes in humans, access to human UBC organoids would allow for greater 
research and testing into drug resistance of human UBC subtypes. 
 
Tumor-derived extracellular vesicles for the monitoring of bladder cancer 
treatment response 

Monitoring response to chemotherapy and identifying complete responders are 
two common challenges in urology oncologist daily practice. The close contact with the 
urothelium makes urine an attractive approach to detect the presence of exfoliated tumor 
cells and tumor derivatives (including soluble proteins and other factors with diagnostic 
potential). As such, collection of urine specimens offers distinct advantages over tissue 
biopsies due to the non-invasive nature of the method and the ability to perform 
longitudinal sample collection during the 6-to-8-week course of NAT administration. 
Extracellular vesicles (EVs) are one tumor derivative with recognized emerging diagnostic 
potential50. EVs are nano-scale (<1,000 nm) membrane bound structures released by all 
living cell types, including tumor cells51. EVs contain diverse molecule cargo (extracellular 
DNA, RNA, lipids and proteins) and surface molecules reflecting their parental cells and 
can be isolated from an array of biofluids including urine52,53. Originally characterized as 
professional “garbage bags” carrying waste cellular products54,55,56, subsequent research 
has shown that EVs are key facilitators of intercellular communication by mediating cargo 
transfer between cells57. As EVs can be found in relative abundance, their enumeration 
in biofluids offers quantitative advantages over the paucity and short half-life of other 
tumor biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA 
(ctDNA)41,59,60. Since RNA and DNA are packaged within EVs and protected from 
degradation by a phospholipid bilayer, their analysis may provide additional diagnostic 
and prognostic value, and prove useful for monitoring of treatment response61. In addition, 
EVs are shed from metabolically active cells which provide a more accurate reflection of 
tumor burden, while ctDNA is derived from apoptotic cells62. As of October 1st 2020, 
24,002 publications with the search key “extracellular vesicles” have been indexed on 
PubMed, with 75% of these publications being released within the last seven years. 
Strikingly, more than 50 biotechnology companies focusing on diagnostic and therapeutic 
applications of EVs have emerged in the last decade. These numbers reflect the 
translational potential of EVs for clinical application in biomedical sciences. 
 
Molecular composition of urine-derived EVs in bladder cancer patients 
 A rich body of literature has begun to describe the molecular composition of urine-
derived EVs in bladder cancer patients vs. healthy individuals. These studies show that 
RNA (also referred to as extracellular RNA or exosomal RNA) is one of the most abundant 
molecules found in EVs. Among RNA subclasses, miRNA and ribosomal RNA represent 
more than 80% of total RNA composition of EVs63. Specifically, miRNAs from the miRNA-
200 (miR-141-3p/5p, miR-200a/b/c-3p/5 and miR-205-3p/5p) family have been isolated 
from urine exosomes26. These miRNAs are associated with epithelial-to-mesenchymal 
transition (EMT) and reflect highly invasive tumor cell types due to loss of epithelial 
proteins leading to reduced cell adhesion25. Several other miRNAs have shown promise 
as potential biomarkers. For instance, miR-375 was found in EVs of patients with high-
grade bladder cancer, while miR-146a was found in EVs of patients with low-grade 
tumors64. The long non-coding RNA (lncRNA) HOTAIR (HOX transcript antisense RNA) 
has also been found in urinary exosomes from patients with UBC65. HOTAIR is known to 
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expedite tumor initiation and assist in tumor progression in many different 
cancers70,71,72,73,74. Specifically, Berronodo et al. (2016) showed that knocking out 
HOTAIR in UBC cell lines resulted in reduced cell migration and invasion, demonstrating 
a potential therapeutic use for UBC65. Other lncRNAs found in urinary EVs include 
LINC00355, UCA1-203, and MALAT1. Interestingly, all three of these lncRNAs have 
significantly higher expression in UBC-derived vesicles compared to healthy controls67. 
Exosomal DNA isolated from urine-derived EVs could be another potential biomarker for 
UBC. Indeed, using deep sequencing, exosomal DNA was found to have somatic 
mutations that are commonly found in UBC cells and provide insights into the genetic 
abnormalities of UBC tumors66. 
Alongside with RNA sequencing of urine-derived EV content, several research groups 
have conducted proteomic profiling of EVs67,68,69,75,76,77. Tumor Associated Calcium 
Signal Transducer 2 (TACSTD2) was found in high association on the outside of UBC 
urine isolated EVs and could therefore be used as another potential biomarker for UBC78. 
 
Opportunities for translating research on extracellular vesicles from bench to 
bedside 

One of the major limitations of previous studies focusing on the molecular 
characterization of UBC-derived EVs lies in the use of total urinary EVs for RNA and 
proteomic profiling. Urinary EVs may originate from non-malignant cells of the urinary 
tract including the prostate, kidneys and the upper urinary tract68. Therefore, it is important 
to discriminate UBC-derived EVs from the heterogeneous population of urinary non-
tumor-derived EVs, including those produced by the healthy urothelium. Reliable isolation 
of UBC-derived EVs is dependent on recognizing markers exclusively and consistently 
expressed on the surface of EVs released by tumor cells. These cell-surface markers can 
be utilized to collect UBC-derived EVs through magnetic bead-based immunocapture or 
fluorescence activated particle sorting across multiple platforms96,97. In the absence of 
tumor-specific antigens, isolation of bladder-specific EVs (from both tumors and normal 
cells) can be acceptable as a way to enrich the diagnostic EV pool with UBC-derived EVs 
and to minimize confounding urinary EVs with other cellular origins.  
 As an example of these strategies, uroplakins are attractive candidates for isolating 
bladder cancer-derived EVs. Uroplakins are a family of four highly glycosylated cell-
surface proteins (1A, 1B, 2, 3) involved in urothelium plaque formation and permeability79. 
Uroplakins are not expressed by non-urothelial tissue, have limited expression in normal 
urothelium but high expression in bladder cancer80,81. Uroplakin 2 is routinely used for 
immunohistochemical diagnostic of urothelial carcinoma, with more than 80% of patients 
having detectable levels of uroplakins82,83 and uroplakins have been found in urinary EVs 
isolated from patients with bladder cancer68. These proteins may represent suitable 
markers by which it is possible to isolate urinary EVs specifically released by the 
urothelium and bladder cancer tumor cells.  

One of the major challenges in the development of EV-based liquid biopsy 
strategies has been the lack of reliable and standardized isolation and detection 
techniques. EV isolation typically requires time-consuming and labor-intensive methods 
that are not convenient or practical in the clinical setting. Recent improvements include a 
clinical-grade EV-based assay that benefits from a limited time for sample preparation, 
automated direct assessment of EV concentration and/or composition, with results 
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obtained in a timeframe that is consistent with the current standard of care84. While no 
such assay has been developed for bladder cancer yet, recent advances have been made 
in other genitourinary cancers such as prostate cancer. The ExoDx Prostate IntelliScore 
(EPI) from Exosome Diagnostics (a Bio-Techne brand) is a urine-based test that 
combines ultrafiltration-based bulk EV isolation and RT-qPCR to measure expression of 
three genes highly upregulated in prostate cancer: PCA3 (prostate cancer antigen 3), 
ERG (V-ets) erythroblastosis virus E26 oncogene homologs) and SPDEF. A risk score 
(0-100) is calculated based on gene expression profiles that can predict the presence of 
clinically-significant prostate cancers (Grade Group ≥ 2)85,86. Following two successful 
clinical studies, the EPI test has been included in the NCCN guidelines for early detection 
in men for both initial and repeat biopsy. Another EV-based assay, the ClarityDx from 
Nanostics, is currently investigated to refine prostate cancer risk stratification87. Unlike 
the EPI test, the ClarityDx relies on direct enumeration of circulating prostate cancer-
derived EVs from a simple blood draw using microflow cytometry88,89. Prostate cancer-
derived EVs are characterized as positive for the following three markers: (1) PSMA 
(prostate-specific membrane antigen), (2) polysialic acid (PolySia) and (3) ghrelin 
receptor (GHSR). Flow cytometry quantification of EVs positive for these markers 
combined with machine learning-assisted data analysis provides a diagnostic accuracy 
of 0.81 (AUC) with 95% sensitivity and 97% negative predictive value for Grade Group ≥ 
3 prostate cancer. Microflow cytometry is a state-of-the-art technology allowing for 
multiparametric phenotyping and enumeration of EVs at an unprecedented resolution. 
More importantly, it does not require any isolation/purification step and rapid enumeration 
of EVs from a very small volume of sample provides an excellent opportunity for 
characterization and quantification of EVs in body fluids. Despite the need for 
standardization and validation, this technology holds a lot of promise for clinical studies 
and it provides great potential for prediction of therapy response and improvement of 
patient outcome90-93. The EPI and the ClarityDx assays rely on distinct biofluid sources 
and different analytical platforms but they demonstrate the clinical value of EV-based 
liquid biopsies for the management of cancer patients. Upon prospective studies with 
large population cohorts, such assays will likely see the light in patients with bladder 
cancer. 
 
Conclusion 
Urinary bladder cancer, especially in its muscle-invasive form, is associated with an 
extremely poor survival rate. As of today, many of the underlying mechanisms of UBC 
remain unknown, making it difficult to diagnose early and treat effectively. Additionally, 
UBC exhibits many heterogeneous subtypes and a broad range of disease phenotypes, 
such that therapeutic response to conventional chemotherapy is extremely variable 
among patients. The development of new molecular and cellular tools, such as UBC-
derived EVs and organoids, provide an opportunity to streamline the diagnosis and 
characterization of UBC tumor subtypes. Additionally, 3D tumor organoids have been 
shown to retain their oncogenic like properties when cultured ex vivo, and could be used 
as a platform for drug screening purposes prior to clinical evaluation in patients with UBC. 
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