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Abstract: In recent years, there have been frequent reports on the adverse effects of synthetic 
cannabinoid (SC) abuse. SCs cause psychoactive effects, similar to those caused by marijuana, by 
binding and activating cannabinoid receptor 1 (CB1R) in the central nervous system. The aim of this 
study was to establish a reliable quantitative structure-activity relationship (QSAR) model to 
correlate the structures and physicochemical properties of various SCs with their CB1R-binding 
affinities. 

We prepared 15 SCs and their derivatives (tetrahydrocannabinol [THC], naphthoylindoles, and 
cyclohexylphenols) and determined their binding affinity to CB1R, which is known as a 
dependence-related target. We calculated the molecular descriptors for dataset compounds using 
an R/CDK (R package integrated with CDK, version 3.5.0) toolkit to build QSAR regression models. 
These models were established and statistical evaluations were performed using the mlr and plsr 
packages in R software. The most reliable QSAR model was obtained from the partial least squares 
regression method via external validation. This model can be applied in vivo to predict the addictive 
properties of illicit new SCs. 

Using a limited number of dataset compounds and our own experimental activity data, we built a 
QSAR model for SCs with good predictability. This QSAR modeling approach provides a novel 
strategy for establishing an efficient tool to predict the abuse potential of various SCs and to control 
their illicit use. 

Keywords: cannabinoid receptor 1; synthetic cannabinoids; quantitative structure-activity 
relationship; multiple linear regression; partial least squares regression; dependence and abuse 
potential 
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1. Introduction 

The quick and worldwide distribution of drugs to the general public, including young adults, via 
the online market has led to the emergence of drug abuse and drug addiction as crucial social issues. 
According to the United Nations Office on Drugs and Crime World Drug Report 2017, the 
worldwide estimated annual incidence of illicit drug use is the highest for cannabis (3.8 %) among 
adults aged 15–64 years [1]. In terms of global substance dependence, cannabis and opioids are 
associated with the most common illicit drug dependence, accounting for 19.8 and 16.8 million cases, 
respectively, in 2015 [2]. Recently, a study on the correlation between prenatal exposure to cannabis 
and child neurodevelopment was conducted by the Ottawa Hospital Research Institute in Canada. 
The results showed that women who used cannabis during pregnancy were 1.5 times more likely to 
give birth to a child with autism than women who did not use cannabis [3]. The abuse of cannabis 
and synthetic cannabinoids (SCs) is associated with various harmful health effects and even death. 
For example, SCs are constituents of widely sold, recreational, designer drug products, usually 
marketed as herbal incense mixtures named “K2” or “Spice,” which are smoked for their 
psychoactive effects, including euphoria and hallucination [4]. Serious side effects of SCs, including 
memory impairments, hypothermic effects, anxiety, and panic, have also been reported [5-8]. Many 
studies have demonstrated that cannabinoid receptor 1(CB1R) mediates the behavioral and 
psychoactive effects of Δ9-tetrahydrocannabinol (THC) and SCs in animals and humans [9, 10]. 

Among SCs, CP47,497 and its homologs (Figure 1) have structural similarities with THC. In vitro 
studies have shown that CP47,497 binds, with higher affinity than THC, to both the CB1R in the 
central nervous system and the peripheral CB2R, suggesting that it has the same effects as THC in 
vivo. Most SCs with psychoactive effects are agonists of CB1R and selectively bind to CB1R with 
high affinity [11]. Therefore, in vitro CB1R binding assays have been used to predict the abuse 
potential of SCs at the preliminary screening level [12]. A variety of SCs are designated as “Schedule 
1 substances” controlled by the United States Drug Enforcement Administration [13]. Nonetheless, 
the number of SCs available in the illicit drug market is increasing dramatically; according to the SC 
catalog published by the Cayman Chemical Company (www.caymanchem.com) this year, more 
than 750 substances are commercially available as forensic reference materials. 

Quantitative structure-activity relationship (QSAR), determined as regression or classification 
models, is the relationship between biological activities of a series of molecules and their structural 
and physicochemical descriptors. This is one of the major research methods used to predict the 
biological activities of new drug molecules in the field of rational drug design. Recently, the QSAR 
method was employed for the assessment of potential hazardous chemicals by government agencies 
worldwide as a tool to replace expensive and time-consuming animal testing. [14] For example, the 
U.S. Environmental Protection Agency has established and utilized various QSAR resources to 
predict and regulate the hazards of new industrial chemicals in the ecological environment as well 
as in foods and cosmetics. 

The binding affinity to CB1R is a validated endpoint associated with the abuse or addiction 
potential of SCs. Several studies have reported on QSAR modeling of SCs to predict the risks of SC 
derivatives. However, CB1R binding affinity data for training set compounds has been collected 
from selected literature reviews or the public data sources, which usually contain noisy data [15]. 
In the present study, we designed a QSAR model of SC derivatives to predict their CB1R-binding 
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affinities using our own experimental results (Figure 2). Regression-based approaches such as 
multiple linear regression (MLR) and partial least squares regression (PLSR), were used to build 
numerous QSAR models, and the most reliable PLSR model was selected. Previously, we evaluated 
the rewarding effects of several SCs using the conditioned place preference (CPP) test [12], which is 
one of methods used to measure the dependence property of SCs in experimental animals. To 
evaluate a useful application of our QSAR model for predicting the abuse potential of new SCs, we 
analyzed the correlation of drug-induced CPP activity with the predicted CB1R-binding affinity 
values. 

  
Figure 1. Structures of the synthetic cannabinoids used in this study. 
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Figure 2. Quantitative structure-activity relationship modeling strategy. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2020                   doi:10.20944/preprints202011.0363.v1

https://doi.org/10.20944/preprints202011.0363.v1


 5 of 17 

 

 Figure 3. Cannabinoid receptor 1-binding affinities of synthetic cannabinoids. 
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2. Results and Discussion 

2.1. QSAR modeling for predicting CB1R binding affinity of SCs 

2.1.1.Feature selection 

It is known that CB1R-binding affinity is a reasonable biomarker for the prediction of the abuse or 
dependence of SCs; herein, we used our experimental CB1R pKi values (Figure 3 and Table S1) as 
the endpoints of QSAR modeling. To determine dataset compounds, we analyzed pKi values using 
the outliers in R package [16] and identified the pKi value of JWH-015 as an outlier. After removing 
JWH-015 from the dataset compounds, compounds with the highest and lowest binding affinities to 
CB1R were JWH-210 and CP47,497-C6, respectively. The difference in pKi between JWH-210 and 
CP47,497-C6 was 2.737, which was close to the range of the dependent variable (three in the log 
scale) that is suitable for building a QSAR model. The compounds were then split into a training set 
of 11 compounds and a test set of 3 compounds as listed in Table 2, and used for both MLR and 
PLSR analyses. Since only 11 SCs were included in the training set to build the model, we employed 
sophisticated feature selection and regression methods to obtain a reliable QSAR model. 

 

 

Figure 4. A correlation plot demonstrating the correlation between the dependent variable pKi and descriptor 

values using different dost sizes and colors. The larger the dot, the stronger the correlation. Blue indicates a 

positive correlation, and red indicates a negative correlation. 

 

When the descriptors of molecules were calculated by rcdk, the number of features was 286. After 
removing features with an almost zero variance, 194 features were obtained. Then, additional 
features that were highly correlated with each other were removed. The cutoff value for correlation 
was set at 0.9. After excluding highly correlated features, 39 features remained. For these features, 
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we finally selected 16 descriptors (Table S2) that had good correlation with the value of dependent 
variable CB1R pKi (correlation coefficient > 0.3), using the correlation matrix heat map shown in 
Figure 4. For MLR, the independent variables were selected by a forward-selection method. The 
selected independent variables were standardized and applied for QSAR model construction. 

 
2.1.2. MLR analysis 

Considering the limited size of the training set and the multicollinearity of variables, the MLR 
model was constructed with a small number of descriptors. As summarized in Table S3 (see the 
Supplementary Information), we initially built sixteen models using a single descriptor and 
calculated their adjusted coefficient of determination (adjusted R2) values to select the first 
descriptor to build the MLR model. Model 1 using XLogP (adjusted R2=0.567) had the highest 
adjusted R2 value. Next, starting from the first descriptor XLogP, further descriptors were included 
using the forward selection method. Among the models with two descriptor combinations, model 31 
with XLogP and ATSc4 had the highest adjusted R2 value (0.765). Finally, using up to three 
descriptors, we established a total of forty-five models. While comparing the adjusted R2 and the 
cross-validated coefficient (Q2) values using the plot in Figure 5, we discovered that the adjusted R2 
reached a statistical plateau after model 31. Therefore, model 31, which was constructed using 
XLogP and ATSc4, was selected as the most reliable MLR model. To detect the multicollinearity of 
model 31, we calculated the variance inflation factor (VIF) of each descriptor. The descriptors XLogP 
and ATSc4 had low VIF value of 1.029 (much less than 10), thereby indicating an absence of 
multicollinearity in model 31. Normality of the residuals was confirmed using a Q-Q plot in Figure 
S1. In Figure 6, the correlation between the actual and predicted CB1R pKi values of the compounds 
in the training and test sets was plotted. MLR model 31 predicted the CB1R pKi values of test set 
compounds with R2=0.133. The regression equation of MLR model 31 is as follows: 

pKi 0.8038(XLogP)-0.4269(ATSc4) +6.3243 
R2=0.812, F =17.31, p-value = 0.001242 

 
Figure 5. Adjusted R2 ( ) and Q2 values of the multiple linear regression (MLR) models created 
using the forward selection method. The performance of 45 models during the forward selection 
process is expressed as a line graph. 
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Figure 6. Plot of predicted versus experimental pKi values of multiple linear regression model 31. 
 

2.1.3. PLSR analysis 

PLSR is known to be more effective when the number of features is much greater than the number 
of training set samples, because PLSR avoids the problem of collinear features by extracting latent 
variables. To build PLSR models, 16 descriptors obtained from the feature selection by correlation 
plotting were used. In order to find the optimal number of principle components, R2 and Q2 was 
calculated and plotted against the number of components (Figure 7). 
When the first component was used, R2 and Q2 were 0.780 and 0.585, respectively. By adding a 
second component, R2 was improved to 0.864, Q2 was 0.573. When add a third component, R2 was 
improved to 0.907 but Q2 was decreased to 0.475. Therefore, we selected two as the optimal number 
of components (Figure 7). The correlation between the actual and predicted CB1R pKi values 
obtained from PLSR is shown in Figure 8, and the normality of the residuals was confirmed using a 
Q-Q plot in Figure S2. 

The regression equation of PLSR was as follows: 
pKi = 

0.1863XLogP+0.0425Wlambda3.unity-0.1608WTPT.4+0.0856MW-0.1178TopoPSA+0.0224geomShape
+0.0199MLogP+0.0449Kier1-0.1566nHBAcc-0.0561FPSA.3+0.0784WPSA.1+0.2057VP.7+0.0765SPC.5+

0.0864BCUTc.1l-0.0978ATSc4+0.0975apol+6.3243 
R2=0.864, F =25.41, p-value = 0.000342 
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Figure 7. Plot of R2 and Q2 versus the number of components. 

 

 

Figure 8. Correlation plot of predicted versus experimental pKi values of the quantitative structure-activity 

relationship model. PLSR, partial least square regression. 

 

2.1.4. Comparison of the quality of MLR and PLSR models 

As summarized in Table 1, both the MLR and PLSR models were quite stable; however, in the 
former case, we used only two descriptors for modeling. Thus, the predictability of the MLR model 
for the test set was relatively low. The variables used in the best MLR model were highly correlated 
with the pKi values (XLogP = 0.781, and ATSc4 = -0.312,), which is good enough for establishing an 
MLR model. Therefore, other descriptors, even though they are highly correlated with the pKi 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2020                   doi:10.20944/preprints202011.0363.v1

https://doi.org/10.20944/preprints202011.0363.v1


 10 of 17 

 

values, were left out in the final MLR model mainly due to the multicollinearity problem. However, 
highly correlated descriptors can be handled in PLSR owing to the orthogonal properties of the 
eigenvalue, we established PLSR models by using all 16 independent variables using a pls 
algorithm. As expected, the PLSR model had substantially better predictive capabilities than the 
MLR model. This was especially true for the former regarding the predictability of external test sets, 
which was significantly higher than that of the latter. Therefore, the PLSR model was chosen as the 
final QSAR model. 

Table 1. Statistical parameters of multiple linear regression (MLR) and partial least squares regression 
(PLSR) 

Model R2 
Adjusted 
R2 (R2adj) 

Predicted 
R2 

(Rpred2) 

Training 
set 

1RMSE 

Test set 
RMSE 

Q2 

MLR model 31  0.812  0.765  0.133  0.387  0.732  0.698 

PLSR  0.864 -  0.777  0.330  0.371  0.573  

1RMSE, root mean square error 

The observed CB1R-binding affinities (pKi) of dataset compounds were compared with those 
predicted by the PLSR QSAR model in Table 2. For all the dataset compounds, our CB1R-binding 
assay resulted in pKi values ranging from 5.0 to 7.7, which differed by approximately 1 to 2 points 
from those reported in the literatures. The pKi value of the outlier JWH-015 was 2.252, which was 
considerably far from those of other SCs; thus, it was excluded from the training set. Interestingly, 
the pKi value of JWH-015 predicted by the final PLSR was 6.325, which was quite similar to the 
6.473 value reported in the literature [11]; this suggests that the prediction capability of the PLSR 
model for an external test set may be reliable. Our experimental pKi values for naphthoylindole 
derivatives (JWH-type) were in the 6.638–7.658 range, representing the chemical group with the 
highest CB1R-binding activity (Table 2). Most of the naphthoylindoles identified in commercial 
incense products are outlawed in many countries including the USA, Germany, and Japan, and the 
reinforcing effects of several naphthoylindoles (JWH-073, 081, and 210) and THC were investigated 
by using CPP tests in mice [12]. They all exhibited drug-induced CPP activities, and the order of 
this activity of naphthoylindoles was JWH-210 > JWH-081 > JWH-073, which is in good agreement 
with the CB1R-binding affinity order predicted by QSAR. Their predicted pKi values were higher 
than 6.638. In addition, JWH-018 with predicted pKi = 7.253 induced self-administration (SA) 
behavior in mice, thereby confirming the rewarding and reinforcing property of the drug [17]. In 
summary, the resulting PLSR QSAR model is a reliable tool for the prediction of the CB1R-binding 
affinity of new SCs. Moreover, we suggest the naphthoylindole-type SCs with the pKi value higher 
than approximately 6.50 predicted by our QSAR induce CPP or SA behavior in animals 
demonstrating addictive potentials. 
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Table 2. Cannabinoid receptor 1-binding affinity (pKi) of synthetic cannabinoids predicted by the 
partial least squares (PLSR) quantitative structure-activity relationship model 

 
 Compound 

Name 

Observed 

pKi 

PLSR In vivo 

rewarding 

responses 

Predicted 

pKi 
1Residual 

Training set 

AM-694 6.553 6.474 0.079  

CRA-13 6.319 6.816 -0.497  

CP47,497-C6 4.921 5.174 -0.253  

CP47,497 6.066 6.075 -0.009  

CP47,497-C8 6.921 6.308 0.613  

7c 7.097 6.687 0.41  

8c 5.268 5.160 0.108  

RCS-4 4.921 5.26 -0.339  

JWH-073 6.638 6.688 -0.05 CPP[12] 

JWH-081 7.208 6.92 0.288 CPP[12] 

JWH-210 7.658 8.007 -0.349 CPP[12] 

Test set 

CP47,497-C9 6.319 6.773 -0.454  

JWH-018 7.638 7.253 0.385 SA[17] 

THC 6.678 6.917 -0.239 CPP[12] 

1Residual: difference between the observed and predicted pKi values. SA, self-administration 

3. Materials and Methods 

3.1. Chemistry 

THC and six SCs (AM-694, JWH-015, JWH-073, JWH-081, JWH-210, and RCS-4) were 
purchased from Cayman Chemical (Ann Arbor, MI, USA). Eight additional SCs, including 
JWH-018, CRA13 and its derivatives (7c and 8c), and CP47,497 and its homologs (CP47,497-C6, 
C8, and C9) were synthesized. The synthetic methods are briefly described, and the proton 
nuclear magnetic resonance spectroscopic data of the synthesized compounds are attached in 
the Supporting Information. 

3.2. In vitro CB1R-binding assay 

This test was performed with minor modifications to the previously reported method [18]. 
ChemiScreen CB1 Cannabinoid Receptor Membrane Preparation (EMD Millipore Corp., Milford, 
MA, USA) was used. 

In saturation binding assays, various concentrations of radioactive [3H]-SR141716A (ranging from 0 
nM to 20 nM) and a fixed concentration of non-radioactive CP55,940 (7 μM) were incubated with 
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membrane in binding buffer (50 mM Hepes, 5 mM MgCl2, 1 mM CaCl2, and 0.2% BSA) for 2 h. The 
mixture was then transferred to a GF/C 96-well filter plate coated with 0.33% polyethyleneimine. 
After washing the mixture three times using wash buffer (50 mM Hepes, 500 mM NaCl, and 0.1% 
BSA), the radioactivity noted on the filters was measured using an Ultima Gold liquid scintillation 
cocktail (PerkinElmer, Waltham, MA, USA). The Kd value (6.573 nM) was calculated using the 
GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, USA). 

In competition binding assays, a fixed concentration of [3H]-SR141716A (7 nM) and various 
concentrations of non-radioactive competing ligands (ranging from 10 pM to 100 μM) were 
incubated with membrane in a binding buffer for 2 h. The mixture was then transferred to a GF/C 
96-well filter plate coated with 0.33% polyethyleneimine. After washing the mixture three times 
using wash buffer, the radioactivity on the filters was measured with an Ultima Gold liquid 
scintillation cocktail (PerkinElmer). The IC50 and Ki values were calculated using the GraphPad 
Prism 5 software. 

The binding displacement curves of competing ligands (ranging from 10 pM to 100 μM) against 
[3H]-SR141716A (7 nM) binding to the CB1 receptor. The data were presented as means ± standard 
error of means (n=3) (raw data in Table S1). 

3.3 QSAR modeling 

All QSAR studies were performed by an in-house R script, using the mlr (version 2.17.1), pls 
(version 2.7-3) package in R program 

3.3.1 Preparation of datasets and calculation of molecular descriptors 

The chemical structures of dataset compounds were determined, and their biological activities 
were assessed using CB1R-binding affinity assay. Additionally, we synthesized 14 compounds for 
assessing their CB1R-binding Ki values. Eleven of these 14 compounds were included in a training 
set, and the rest were included in a test set. Further, the dataset was divided into the training (11 
compounds) and test (three compounds) sets, which accounted for 80% and 20%, respectively, of the 
dataset. 

All used compounds were prepared by a sketch module embedded in the Tripos Sybyl-X 2.0 [19] 
molecular modeling software package in the CentOS Linux 5.4 operating system. Structures of all 
compounds were determined using sketch modules and saved in mol2 format. All hydrogen atoms 
and Gasteiger-Hückel charge were added to atoms. To optimize the structures of the compounds, 
energy minimization was performed until maximum derivatives of 0.001 kcal mol-1 Å-1 were 
reached using a standard tripos force field. The data were divided into two sets. One was a training 
set for the establishment of prediction models, and the other was an external test set for the 
evaluation of the built prediction models. All dataset compounds (Figure 1) were saved in sdf 
format. 
All molecular descriptors (constitutional, electronic, topological, hybrid, and geometrical) were 
assessed using the rcdk package [20]. 
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3.3.2 MLR 

The primary objective of the MLR was to construct an estimated regression equation ( ) by 

estimating the parent regression equation ( ) from the sample. Using the ordinary least squares 

method, we could estimate the coefficient of the estimated regression equation. 
In the following equation, X is denoted by an n × p matrix, where n is the number of observations 

and p is the number of features. Moreover, Y is denoted by an n × k matrix, where k is the number of 
dependent variables. 

 

 

 

 

Despite the wide use of MLR, it is inefficient when several variables are included. As there is no 
variable selection method in MLR, at times, we could not build a model when the number of 
observations was smaller than the number of variables. To resolve this, we selected descriptors using 
the forward selection method, and 2 of 16 descriptors were shortlisted. The descriptors were added 
by comparing the adjusted R2 until this value did not increase. 

3.3.3 PLSR 

MLR is vulnerable to features that are correlated to one another. This is because MLR cannot 
identify correlated sets that may be more important to the model. To solve this problem, we adopted  
PLSR  method using pls packages in R [21]. 

PLSR is used to analyze or predict a set of dependent variables from a set of independent variables 
or predictors. It is more useful for handling a large number of correlated and complex features than 
for handling a limited number of data observations. In the following section, a brief explanation of 
how PLSR works is outlined. 

X is denoted by an  matrix, where n is the number of observations and m is the number of 

features. Moreover, Y is denoted by an  matrix, where p is the number of response 

variables. 
Partial least squares analysis (PLS) detects principal components from X that are also relevant for Y. 

Particularly, PLS explores a set of components that perform a simultaneous decomposition of X and 
Y with the constraint that these components explain the maximum possible covariance between X 
and Y. As a result, these components are used to build the model. 
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T and U are the  score vectors that are the projections of X and Y, respectively. 

P and Q are the  and  orthogonal loading vectors, respectively. PLS maximizes the 

covariance between T and U. 
After using the filtering method, it is possible to apply PLSR to the data and find a set of 

components. Considering the explanation ratio of X and Y, we can choose the number of 
components to be used in the model. If the number of training sets is 11, two components are 
sufficient to build QSAR models. Two components explain 77.97% and 8.43% of the training set 
variance, respectively 

3.3.4 Model validation 

The following statistical parameters were considered to validate QSAR models. To validate the 
goodness of fit and robustness of the models, we evaluated the R2 and Q2. In particular, for the MLR 
model that is affected by the number of descriptors, R2 increases as the number of descriptors 

increases. Therefore, this model was verified using adjusted R2 ( ). Q2 was estimated by the 

leave-one-out approach. One compound was omitted from the training set, and a new model was 
built from this slightly smaller training set. Then, using the new model, the activity of the omitted 
compound was predicted. 

R2, , and Q2 were calculated using the following equations: 

 

 

 

Where  are the actual and predicted activities of the ith training set,  is the average 

activity of the training set, N represents the number of training sets, and p represents the number of 
descriptors. 

To evaluate the predictability of the model, we used the predicted R2 ( ) value which is 

calculated with test set data. 

 

Where  are the actual and predicted activities of the ith test set, and  is the average of 

the training set response variable. Furthermore, we validated the normal distribution of residuals 
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by Q-Q plotting. Q-Q is a plot of quintiles from each data set. If the Q-Q points are on a straight line 
with a 45-degree slope, the data can be interpreted to follow normal distribution. 

5. Conclusions 

Considering the prevalence of SCs and their harmful effects, we need a reliable tool to predict the 
abuse potential of new SC congeners. This study aimed to build QSAR models, which could predict 
the CB1R-binding affinity of SCs. We conducted QSAR modeling of SCs using two regression 
methods (PLSR and MLR) using our own CB1R-binding assay results as training data. We obtained 
a PLSR model with good statistical performance with a limited number of data observations. The 
resulting QSAR was used to predict the CB1R-binding affinity and further validate in vivo addictive 
potentials (CPP and SA behavior) of drugs, correlating with the predicted CB1R-binding affinity. As 
a result, we suggest a boundary pKi value for the CB1R binding (> 6.5) of SCs that may result in 
dependence or abuse. The current study provided not only a novel strategy for QSAR modeling but 
also an efficient tool to predict the abuse or addiction potential of SCs for the purpose of controlling 
their illicit use. 
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