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Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder. One of the important
therapeutic approaches of AD is the inhibition of B-site APP cleaving enzyme-1 (BACE1). This enzyme plays
a central role in the synthesis of the pathogenic f-amyloid peptides (Ap) in Alzheimer's disease. A group of
potent BACEL1 inhibitors with known x-ray structures (PDB 1D 5i3X, 5i3Y, 5iE1, 5i3V, 5i3W, 4LC7, 3TPP)
were studied by molecular dynamics simulation and binding energy calculation employing MM_GB(PB)SA.
The calculated binding energies gave Kd values 0.139 uM, 1.39 nM, 4.39 mM, 24.3 nM, 1.39 mM, 29.13 mM
and 193.07 nM, respectively. These inhibitors showed potent inhibitory activities in enzymatic and cell assays.
The Kq values were compared with experimental values, the structures were discussed in view of the energy
contributions to binding. Drug likeness of these inhibitors is also discussed. Accommaodation of ligands in the
catalytic site of BACEL is discussed depending on the type of fragment involved in each structure. Molecular
dynamics (MD) simulations and energy studies were used to explore the recognition of the selected BACE1
inhibitors by Asp 32, Asp228 and the hydrophobic flap. The results show that selective BACE1 inhibition
may be due to the formation of strong electrostatic interactions with Asp32 and Asp228 and a large number
of hydrogen bonds, n-n and Van der Waals interactions with the amino acid residues located inside the
catalytic cavity. Interactions with the ligands show a similar binding mode with BACEL. These results help to
rationalize the design of selective BACEL inhibitors.

Keywords: Alzheimer's disease; BACE1; Molecular dynamics; MM/GBSA ; Inhibitors; Drug likeness;
Ligand efficiency, Kq.

1. Introduction
Alzheimer’s disease (AD) is a progressive, neurodegenerative disease of the brain.
AD and the associated dementia were connected to Amyloid plaque accumulated in the brain.
The B-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACEL) is an aspartic protease
enzyme fixed to the cell membrane; it acts to produce B-amyloid (A) in the signaling
pathways in Alzheimer’s disease (AD). Excessive accumulation A is believed to induce
pathological changes and causes dementia in brains of AD patients.
The enzyme BACE] initiates the cleavage of amyloid precursor protein (APP) at the -
secretase site, then AP is released as a result of further cleavage of the BACE1-cleaved C-
terminal APP fragment[1]. Blocking BACE]1 proteolytic activity will suppress AB generation

and reduce the formation of amyloid. Research has been directed towards potent BACE1

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202011.0292.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020 d0i:10.20944/preprints202011.0292.v1

inhibitors for AD therapy. Recent breakthroughs in developing BACEL inhibitors which can
penetrate brain cells, made the targeting of amyloid deposition-mediated pathology as a
therapy more reachable. Various strategies that have successfully led to the discovery of
BACEL1 inhibitor drugs that have reached the stage of clinical trials.

BACE1consists of three domains: An N-terminal, a single transmembrane domain,
and a cytosolic C-terminus. The catalytic ectodomain has an aspartic protease fold, with the

substrate-binding cleft located between the N- and C-terminal lobes (Figure 1).

Figure 1: Structures of BACEL in complex with inhibitor 1 (PDB ID 5i3X. The inhibitor 68J
(Pink), catalytic dyad D228 and D32, flap (Blue).

The crucial catalytic aspartate (Asp) dyad, Asp32 and Asp228, is located at the
interface of the two lobes[2]. A hairpin loop “flap” in the N terminal lobe partially covers the
cleft in a perpendicular orientation and contains Valine 69 Tyrosine 71 and Threonine 72
(colored blue in Figure 1). The conformational changes in the flap control the substrate access
to the active site. The first BACEL substrate analogue inhibitors to mimic the APP-cleavage
sequence which contain a non-cleavable peptide bond, showed high potency, but gave poor
oral bioavailability and low brain penetration which prevented therapeutic utility[3][4].

Amidine containing compounds that form optimal interactions with the Asp32 and Asp228
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enhanced the search for BACE1L inhibitors[1] [2] [5]. These Asp-binding amidine and
guanidine inhibitors have been studied and the cyclohexyl groups were found to bind the S1
and the lipophilic S1’ pockets (Figure 1).

Other compounds features a quaternary carbon that acts as a vector into the S1-S3
and S2’ pockets of the catalytic site (Figure 1)[6]. In other inhibitors, the basicity of the
amidine/guanidine function provides a formal positive charge which impacts the
optimization of physicochemical parameters. In contrast, there are a few known ligands that
bind to the catalytic cleft without interacting with the Asp32 and Asp228 residues. Merck
reported an inhibitor (Pyrimidine) which binds to the S1 and S3 pockets[7] and Elan
Pharmaceuticals reported an S2 pocket binding inhibitor[8].

Researchers employed several methods to predict drug potency by calculating the
binding free energies of potential drugs as ligands to protein targets[9][10][11].
Thermodynamic integration (T1) and free energy perturbation (FEP) have been successfully
applied to calculate free energy values close to experimentally reported values[12]. These
methods proved to be computationally expensive and not practical. On the other hand,
docking programs were employed to obtain scores for large numbers of candidate drugs but
proved to be not very accurate in predicting the free energies of inhibitor binding to potential
sites on the proteins[13][14]. The approximations used in these methods such as ignoring
protein flexibility, inadequate treatment of solvation and simplifying the energy functions
used made them less valuable for studying drug binding. The MM/GBSA method provides
faster estimates of the free energy of binding, as compared to the other computational free
energy methods, such as free energy perturbation (FEP) or thermodynamic integration (T1)
methods[15][16]. Comparison studies have also shown that MM/GBSA outperforms
Molecular Mechanics/Poisson Boltzmann Surface Area MM/PBSA in calculating the
inhibitor binding energy to protein receptors [17].The MM/GBSA method[17][18] has been
widely exploited in free energy calculations and its rescoring generally yields better results
than docking for the Directory of Useful Decoys, Enhanced data set [18]. MMGBSA when

applied to any protein-ligand system requires the calculation of an explicit entropy
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term[9][18] [19] and, for some systems, displays overly large contributions to the absolute
free energy of binding[20][21].

The design of BACEL1 inhibitors was concentrated on peptidic substrate transition-
state mimic inhibitors; these ligands showed low nanomolar inhibition potency for BACEL,
but have poor pharmacokinetic properties[1]. Recently, second-generation inhibitors were
designed based on structure-based drug design. Low molecular weight molecules with
excellent cell permeability like OM99-2, a substrate-based inhibitor with a highly potent
BACEL1 inhibition (IC50 =1.6 nM) have little peptidic character, and showed an enhanced
pharmacokinetic profile. Fragment-based inhibitors discovered using a computational
approach have led to designing potent small-size BACEL1 inhibitors [22].

In this work, the binding energies of a group of inhibitors to BACE1 were calculated
employing MD simulation and MM/GBSA. The contributing energies were analyzed and the
values were correlated to experimentally found Kq values for the inhibitors. The feasibility
of MM/GBSA to estimate Ky values for drugs and how to optimize drug structures in view

of the results to give acceptable inhibition are discussed [23].

2.Methods
2.1 Molecular dynamics simulations

Molecular dynamics simulations were performed on the initial structures based on the x-ray
crystal structure of the protein-inhibitor complexes with PDB identifications shown in Table
1. MD simulations were carried out using the Amberl8.0 package[24][25] [26]on GPU
accelerated version[27], employing the AMBER force field ff14SB for proteins and nucleic
acids which describes the potential energy of the system[28][29]. All atom explicit water
molecular dynamics simulations were performed on all systems. The PDB file was
downloaded in pymol [30], and the complex prepared using pdb4amber program, inspected,
salt and water were removed. The receptor, ligand and complex pdb files were saved
separately using text editor.

Preparing ligand, receptor and Complex files for Amber[31]:
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Antechamber [32]package in Amber Tools[26] was used to create topology and coordinate
files for the simulations of ligands, Antechamber is designed to be used with the "general
AMBER force field (GAFF)"[32], for organic molecules. This force field has been
specifically designed to cover most pharmaceutical (organic) molecules and is compatible
with the traditional AMBER force fields in such a way that the two can be mixed during a
simulation. Hydrogens were added to the ligand (using reduce) then the ligand. frcmod and
library files were prepared for amber, and the tleap editor was used to load the complex or
combine the ligand and receptor. The complexes were solvated in a TIP3P[33] cubic water
box with water molecules extending 15A from the complex surface to the water box

boundary, Na* or CI" ions were added to neutralize the system depending on the charge. The
structure of the complex was checked for errors and then converted to topology and
coordinate files. The particle mesh Ewald method [34] was used for treating long range
electrostatics, a 9A cutoff was set for long range interactions. The force field energy of each
structure was minimized by progressively relaxing the system before starting the MD
simulations. Minimizations were performed employing steepest descent followed by

conjugate gradient minimizations (1000 cycles in tandem).

After relaxation of the system it was heated to 300K applying harmonic restraint (10
Kcal/A2.mol) on solute. This was followed by an unrestrained 2ns MD simulation at 300K
and 1 atm to equilibrate the system and adjust the density.

. SHAKE algorithm [35]was used to constrain hydrogen atoms in order to enable a longer
time step (2fs) in the simulation. A Langevin thermostat [36][37]with 2 ps™ collision
frequency and weak coupling barostat with 2 ps of relaxation time were employed.
Production MD simulations were carried out for 150 ns and gave converged trajectory
evident in the RMSD behavior which showed good stability within 1.5A. Trajectories were
collected at 2 ps intervals. These trajectories were used to calculate the binding free energy
using MMPBSA.py script[38]; 50 or 100 frames were used in the calculations. Loss in
flexibility upon binding expressed as entropy change (TAS) was calculated by normal modes
using the same snapshots which were used for calculating AG binding. Then the absolute free
energy of binding was calculated (equation 4). The binding energy of the complex was

calculated using the MM/GBSA method.
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2.2 The Generalized Born/Surface Area Model

The MM/PBSA and MM/GBSA methods [44][9] have been used to estimate ligand-binding
affinities in many systems, giving correlation coefficients compared with experiments of r2
in the range of 0.3 to 0.9, depending on the protein, with MM/GBSA giving better results in
this case. The results strongly depend on details in the method, especially the continuum-
solvation method, the charges, the dielectric constant, the sampling method and the entropies.
The methods often overestimate differences between sets of ligands.

The (MM/PB(GB)SA method uses representative snapshots from an
ensemble of conformations to calculate free energy change between the bound and
unbound states of receptor and ligand, (equations 1A, 1B). Before using MM-
GBSA[11][45][46][39] the system equilibration was verified by considering temperature,
density, total energy and root mean squared deviation of coordinates (RMSD). An RMSD
value relative to the crystal structure of 1.5A was deemed acceptable. Extensive analysis of
each trajectory was performed to make sure the energies calculated are reliable depending on
the snapshots [50][51][52]. To estimate the total solvation free energy of a molecule, AGsolv,
one typically assumes that it can be decomposed into the “electrostatic® and "non-
electrostatic” parts
AGsolv = AGel +AGnonel
where AGnonel is the free energy of solvating a molecule from which all charges
have been removed (i.e. partial charges of every atom are set to zero), and AGel is
the free energy after removing all charges in vacuum, and then adding them back in the
presence of a continuum solvent environment. Generally speaking, AGnonel comes from the
combined effect of two types of interaction: the favorable van der Waals attraction between
the solute and solvent molecules, and the unfavorable cost of breaking the structure of the
solvent (water) around the solute. In the current Amber codes, this is taken to be proportional

to the total solvent accessible surface area (SA) of the molecule, with a proportionality
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constant derived from experimental solvation energies of small non-polar molecules, and
uses a fast LCPO algorithm to compute an analytical approximation to the solvent accessible
area of the molecule. Within Amber GB models, each atom in a molecule is represented as a
sphere of radius Ri with a charge qgi at its center; the interior of the atom is assumed to be
filled uniformly with a material of dielectric constant 1. The molecule is surrounded by a
solvent of a high dielectric constant 80 for water at 300 K) (Equation 2). The GB model
approximates AGel while the nonpolar energy is usually estimated using the solvent-

accessible surface area (SASA) (Equation 6) [9] [47]

AGbind=GRrL-Gr-G L where R = receptor, L= Ligand (1A)
A Ggind ,solv = A Ggfnd , vacuum+A Ggo.'v, complex (A Ggolv, Iigand+A Ggolv, receptor ) ( 1 B)
Aegoh/ = Yelectrostatic, =80 Gglectrosraﬁc, =1t AG?TydrOphObe
)
AG?/acuum = AEr?voIecular mechanics ~ T- AS.gormauf mode analysis
@)
AG=AH-TA S =AEwm +A GsoL — TA S (4)
AE MM =AE intemal +AE electrostatic TAE vaw (5)
AG soLreieB) =AG peicB +AG saAPB/GB) (6)

where AEmwm is total gas phase energy (sum of AE internal + AE electrostatic + AE vdw).
AG soLpe/er) 1S sum of nonpolar and polar contributions to solvation calculated by PB or
GB. TAS is conformational entropy upon binding computed by normal- mode analysis on a
set of conformational snapshots taken from MD simulations. AEinemar IS internal energy
arising from bond, angle, and dihedral terms in the MM force field. AEeiectrostatic IS €lectrostatic
energy as calculated by the molecular mechanics (MM) force field. AE vaw IS van der waals
contribution from MM. AGeg/eg iS nonpolar contribution to the solvation free energy

calculated by an empirical model. The nonpolar solvation free energy is typically given by

do0i:10.20944/preprints202011.0292.v1


https://doi.org/10.20944/preprints202011.0292.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020

an empirical formula that is proportional to the solvent accessible surface area of the solute:
A Gsa=y*- SASA + b, where v is the surface tension constant and b is a correction constant (y
= 0.00542 kcal-mol™'-A2 and b = 0.92 kcal/mol in the AMBER package). AGsacs is the
electrostatic contribution to the solvation free energy calculated by the PB or GB method,
respectively.

One-thousand 2 ps spaced snapshots of each complex were generated from the MD
trajectories, and all water molecules and counter-ions were removed before MM-
PBSA/GBSA calculations. Coordinates were extracted by using the extract-coords.mmpbsa”
script and the AG values were calculated by using the “MMPBSA.py” script[38].

3. Results and discussion

3.1 Data analysis

The RMSDs, dynamic cross-correlation analysis, principal component analysis (PCA),
were processed using the CPPTRAJ module in Amber 18 package [42]. The principal
component analysis (PCA) was performed to help in sampling [44][45]

System stability under MD simulations (see Figure 2 a, b, ¢ and d)

do0i:10.20944/preprints202011.0292.v1
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Figure 2: RMSD evolutions from MD simulations of (a) BACEL (Green) and Inhibitor 68J
(black) in 5i3X; (b) 5i3W BACEL1 (green) and 68L inhibitor (black); (c) 513V the BACE1-
68M complex (d): pairwise plot of RMSD of BACE1-68J complex in 5i3X, RMSD
pairwise computed for first 5000 snapshots and skip every 10 frames.

Before starting MD analysis, the root-mean square deviation (RMSD) evolution of the
protein backbone Ca for each complex was monitored throughout the 200 ns MD

simulations to ensure stability of the systems. As shown in Figure 2, the RMSD evolution
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for Ca of BACEI bound with inhibitors exhibited relatively small fluctuations at the start
of simulation, then was stable and changes were within 1.0 A. Accordingly, the RMSD
evolution of the heavy atoms of the inhibitors, maintained relative stability (RMSD
fluctuation <1 A) during the 200 ns simulation. Pairwise RMSD for specific snapshots was
Computed using pytraj in Amber. The RMSD to the

experimental structure reference was computed, then, pairwise RMSD for first 5000

snapshots and skipping every 10 frames was computed (Figure 2(d)).
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Figure 3: structuresl to 7 are selected BACEL inhibitors with their PDB ID.
Structure (8) shows the binding mode of inhibitors derived from MD simulation
using 68J as an example.
3.2 Prediction of binding mode and key interactions of Inhibitors to BACE1
MD simulations were performed to elucidate the key interactions of inhibitors responsible
for inhibitory activity against f-amyloid (Af) accumulation. The MD simulations were
performed to evaluate the favored binding modes and key interactions of BACEL with

various inhibitors (Figure3 and Figures 6 and 8).
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Table 1: The calculated energies of BACEL Inhibitors

PDB id K exp [46][47] | I1Cso AHggsa TAS AG binding AG Kqfrom
-inhibitor [46][47] kcal/mol Calculated exp calculated AG
keal/mol bind™™
5i3x- (1) 8nM,0.8nM | 191 nM, 9nM -44.5(4) -25.2(5) -19.3(5) -11.34 | 0.000139 nM
5i3y-(2) 0.4000 nM 16nM, 0.8nM -37.4(3) -24.96(6) -12.4(7) -13.16 | 1.39nM
5ie1-(3) 140 nM 140nM -30.5(3) -22.98(6.2) | -7.5(6) -9.60 | 4.39mM
5i3w-(5) 0.6nM -32.2(2.6) -24(4) -8.15 (4) -12.9 1.39 mM
5i3v-(4) 16 nM 16 nM, 35 nM -32.92(5.2) | -22.26(4) -10.66(4) | -10.92 | 24.3nM
3tpp-(6) 15 nM, 15nM -35.6(6) -9.4 (4) -9.28 193.07nM
-26.21(5)
233 nM
41c7 —(7) 11800 nM, 14nM | -24.64(5) 225(5) -215() | -6.8 29.13mM

** AG =RTInKg =1.4logKg (Kq in mol.L™?)

The Binding energies of inhibitors with BACEL1 are shown in Tables 1 and 2 and in Figures
4 and 5; inhibitors under study bind Asp32 and Asp228 (Tables 4 and 5) and Figures 6 and
9, except for 4LC7 which binds Asp93 and Asp289 (see Figure 9G).
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Figure 4: The binding Energies of Inhibitors calculated by MM/GBSA

Table 2: The different components of binding free energy (kcal/mol) between Inhibitors-BACE1

complex evaluated using the MM—-GBSA method.

Number vdw E EL E GB E surf E solv AHcgsa
PDB
(Figure
ID
2)
1 5i3x | -67.1(3.1) -26.99(6.1) | 58.3(4.9) -8.72(0.24) | 49.6(4.83) -44.52(4)
2 5i3y | -59.13(3.4) -16.8(3.4) 45.8(4.2) -7.2(0.5) 38.6(3.8) -37.36(3)
3 5iel | -39.15(2.96) | -36.21(2.9) | 50.77(1.5) | 3.76(0.02) | 44.9(0.7) -30.48(2.8)
4 5i3v | -43.69(3.4) -21.62(7.7) | 38(5.6) -5.6(0.52) | 32.4(5.4) -32.92(5.2)
5 5i3w | -55.34(2.86) | -14.12(3.1) | 44.1(2.6) -6.8(0.19) | 37.3(2.5) -32.15(2.6)
6 41c7 | -34.04(2.9) -13.2(13) 26.8(11) -4.3(0.3) 22.6(10.9) -24.64(5.02)
7 3ttp | -10.73(0.9) -66.97(1.9) | -55.9(2) 5.6(0.03) -40.26(1.02) | -35.6(6)
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Figure5: The breakout of binding energy AH to its contributing energies for inhibitors

under study.

The flap, a B-hairpin loop containing residues Tyr71to Val69, positioned directly over the
catalytic dyad, can open and close to allow substrate and inhibitor access to the active site

Figurel and 6.

Figure 6: A) structures of BACE1 complexed with 1(shown in cyan), it shows the distances
of the residues from inhibitor 1 in 5i3X, The aspartate pocket (Asp32 and Asp228); the flap

shown in orange which contains Val69, Tyr 71. Distances are listed in Table 3. [ for views

do0i:10.20944/preprints202011.0292.v1
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of inhibitors binding to BACEL see Figures 1-s to 8-S]

Ve

do0i:10.20944/preprints202011.0292.v1

Figure6: B) The binding pocket of BACEL; inhibitor 1 in 5i3X is shown (pink) and all

potential binding residues labeled, the flap shown in blue. structure of BACE1 complexed

with inhibitor 1 (shown in pink), interactions between ligand and protein at the catalytic

aspartic acids Asp32 and Asp228 and at Trp72 of the S2’region (Table 3).

Table 3:  some bond distances measured in the average structure using pymol
Inhibitor ASP32 ASP228 Gly 13 Ser35 A | Hydrophobic: | Hydrph:Val69
Oxygen A | oxygen A | A Tyr71 A
A
5i3X N of 2.6,3.6 49,51 3.0t03.9 4.0-49
pyridine
ring
NH2 2.9,36 2.9,3.0
5i3Y N of 35 50,52 3.8 4.1-5 4.2-4.3 3.9-44
pyridine
ring
NH2 2.6 3.0,31
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3TPP 2.7,35 27,39 3.4 GIn73:3.2
Gly230:
3.1
41L.C7 Asp93: Asp289: Leu91: Tyrl32:
2.7,2.7 2.8,2.8 4.3 3.6

All inhibitors occupy similar binding pockets and more importantly form hydrogen bond
interactions with the catalytic dyad of Asp32 and Asp228. The active site of BACEL is
mostly hydrophobic, with no charged residues within 8 A distance of Asp dyad; the
Aspartate residues form bonds with the amine and the nitrogen of the pyridine ring Figure 1

structure 8 and Figure 8.

F
(2 et
o N/ M MNHz A
C B N
7/ N\ ___

Figure 7: Structure of the fragments in Inhibitors 1,2,3 and 4

The hydrophobic interactions Tyr71, Val69, Gly13. Gly230. Phel08, Leu30 and 1le118 are
common in all 68J, 68K, 68L and 68M inhibitors, all display hydrophobic contacts with
residues The nitrogen containing heterocycles are often referred to as the aspartyl binding

motif see Figure 8 shown below
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Figure 8: binding of Asp32 and Asp228 to the 2-aminopyridine moiety.

Inhibitors 1,2,3 and 4 share fragments A and B in Figure 7, where the terminal CR3 forms
hydrophobic interactions in Sy’ pocket which contains D228. The correlation coefficient of
binding energy (AH) for these 4 inhibitors with Vdw energy is 0.95 and E surface 1S 0.63. The
2-aminopyridine fragment forms hydrogen bonds with Asp32 (2.6A) and a weaker
interaction with Asp 228 (4.9 A).

Table 4: Correlation coefficients (R?) of AH with contributing energies (from Table II) for groups of

inhibitors
Inhibitors vdw EEL E GB E surf E solv
number(from electrostatic polar Surface area desolvation
Figure 2)
1,2,3,4 0.95 0.1 0.41 0.63 0.29
1,2,3,4,5 0.76 0.01 0.43 0.44 0.33
1,2,3,4,5,6 0.85 0.075 0.68 0.29 0.62
1,2,3,4,5,6,7 0.23 0.05 0.01 0.1 0.011

The correlation with electrostatic energy is very small (Table 4) indicating a mostly
hydrophobic interaction on this side. The phenyl rings in structure B (Figure 7) bind Tyr 71
(3.0 A) and Val69 (4.0 A). Inhibitors 1 and 2 have an extra fragment C which binds the S3
pocket and differ by one fragment (where fragment D is in inhibitor 1 and replaced by
fragment E in inhibitor 2) which binds S1 pocket and Gly34, where in inhibitor 1 its D and
in inhibitor 2 its E. Fragment D in Figure 7 with its JI cloud gives stronger
interaction than E. All differences arise from different vdw interactions, the n—r stacking

interaction between the phenyl-imino group and Phe108 added stability with the enzyme

do0i:10.20944/preprints202011.0292.v1
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5i3W-68L (inhibitor 5) binds Asp 32, Asp 228, Gly230, Tyr71, Leu30, and Gly13, See
Figure 9E. This inhibitor shares fragment C in Figure 7 with inhibitors 1-4 which binds S1
and gave an experimental AG value -12.5 kcal/mol and comparable vdw energy to other

inhibitors1-4, while the calculated value is -8.15(4) kcal/mol . The fragment

E N>_NH2
O

significant hydrophobic interaction, which would increase the probability of permeability

binds Asp32 and Leu30. The attachment of the phenyl ring could lead to a
into the brain. Thus, many BACEL1 inhibitors were designed using phenyl -based analogs.

In BACEL bound to inhibitor 7 (4LC7), shown in Figure 6(G), the heterocyclic pentatomic

E N>—NH2
@]

9(E)) in which the same ring binds Asp32 and Asp228. 5i3W (Inhibitor 5) has an extra

ring binds Asp93 and Asp289. This feature is shared with 5i3W (Figure
phenyl group that binds the hydrophobic pocket (near Tyr71) which enhanced its binding
over 4LC7. Inhibitor 6 (3TPP) has a different structure but shares an aryl ring with other
inhibitors and it showed enhanced binding (figure 6(F). The sulfate group binds Asn233

and the attached aryl group interacts with GIn73, the fragment

[>j[ j NH\/O
cyclopropane ring-NH binds the other end of Asn233 and

Thr231. The Asp 32, Asp 228, Gly230, Gly34 and the other side of Thr231 all make

hydrogen bonds with the oxygen and nitrogen on the polar end (Figure 9F).
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(A)  5i3X-68] (1) (B) 5i3Y-68K (2)
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(C) 5i3V-68M (4) (D) 5iel- 6BS (3)
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(G)4lc7 -1WP (6)

Figure 8: binding of inhibitors to BACElobtained from average structures after MD
simulation using SPDV software. Structures are defined by their PDB 1D of complexes of
BACEL1 and Inhibitor; (a) 5i3X-68J (1); (b) 5i3Y-68K (2); (c) 5i3V-69M (4); (d) 5ie1-6BS
(3); (e) 5i3W-68L (5); (f) 3STPP-5HA (7); (g) 4LC7=1WP (6). [Inhibitor numbers in

brackets from Figure 2], see also Figures 1-s to 8-S
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Table 5: Details of Binding of inhibitors to BACEL extracted from average structures

Protein- AH Inhibitor Binding sites to the protein
Inhibitor | Kcal/mol
complex
PDB
code[48]
5i3x -44.5 N-(1-{3-[2-(2-amino-3-{3-[(3,3- N-O:Asp228, Asp32, Gly13
1= 68J dimethylbutyl)amino]-3-oxopropyl} Hydrph:Tyr71, Val69, 11e118,
quinolin-6-yl)phenyl]prop-2-yn-1- Leu30, Phel08
yl}cyclopropyl)-4-fluorobenzamide
5i3y | -37.4 N-(6-{2-[2~(2-amino-3-{3-[(3,3- N-O:Asp 228, Asp32, Gly34, Gly230
1= 68K dimethylbutyl)amino] Hydrph:Gly13, Ser35, Tyr71,
-3-oxopropyl}quinolin-6- Val69, 11e118, Phe108
yD)phenyl]ethyl}pyridin-3-yl)-4-
fluorobenzamide
5i3v -32.9 (2R)-3-[2-amino-6-(3-methylpyridin-2- N(L)-O(rec):Asp228, Asp32, Gly34,
I=68M yl)quinolin-3-yl] Hydrph:Tyr71, Phel08
-N-(3,3-dimethylbutyl)-2-
methylpropanamide
5i3w -32.15 N-[(5S)-2'-amino-3-(5,6-dihydro-2H-pyran-3- | Asp 32, Asp 228, Gly 230, Tyr 71
I=68L yl)-5'H Leu 30, Gly 13
-spiro[1-benzopyrano[2,3-c]pyridine-5,4"-
[1,3]oxazol]-7-yl]-5-chloropyridine-2-
carboxamide
Ca2s5 H2o CI N5 O4
5iel -30.5 3-[2-amino-6-(2-methylphenyl)quinolin-3-yl]- | N-O:Asp228, Asp32, Gly34
6BS N-(3,3-dimethylbutyl)propanamide Hydrph:Tyr71, Val69, 1le118, Leu30,
Phel08
3tpp -35.6 N-[(1S,2R)-1-BENZYL-3- Asp 32, Asp 228 GIn 73 Phe 108,
S5HA (CYCLOPROPYLAMINO)-2- Gly 34 Asn 233 Gly 230, , Leu 30
HYDROXYPROPYL]-5- Trp 115, Thr231Gly230, GIn12 Thr232 Gly
[METHYL(METHYLSULFONYL)AMINO] | 13
-N'-[(1R)-1-
PHENYLETHYL]JISOPHTHALAMIDE
Cs1 Hs N4 Os S
4lc7 -24.64 (3aR,7aR)-3a-[3-(5-chloropyridin-3-yl) Asp93, Asp289, Tyr 132 Leu 91
1WP
phenyl]-3a,4,5,6,7,7a-hexahydro-1,3-
benzoxazol-2-amine
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The aryl group on the opposite end makes hydrophobic interactions with Phe108,
Gly13, GIn12 and Leu30. The oxygen of the peptide bond also interacts with GIn73. The

sulfate fragment in 3TPP-5HA binds S2 as seen structure below

el
Fry,

3.3 Drug likeness

Lipinski's rule of five was used evaluate drug likeness or determine if a compound with a
certain pharmacological activity has properties that would make it a likely orally active

drug in humans (Table 8).
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PDB ID- M.Wt LogP PSA No.H | No.H- | N&O | Numberof | No.
inhibitor <500 <5 A2 bond bond <10 Rotatable | rings
[47] | accepto | donor bonds >3
ratoms | atoms
<5 <5
5i3x-68J 590.730 7.16™ 97.11 |3 3 6 13 5
8.18**
5i3y-68K 617.55 7.18™ 110 3 4 7 14 5
8.59*
5i3v-68M | 404548 | 496 | 80.9 2 3 8 3
5.89* 5
488.902 2,77 1225 |1 3 9 4 6
5i3w-68L 4437 | 6
5iel-6BS 389.533 5.42™ 68.01 | 2 2 4 8 3
6.25*
328.122 3.88™ 62.11 |1 0 4 2 4
41c7-1WP 4.23™
597.730 3.6™ 1408 |4 5 9 16 4
3tpp-5HA 3.86"

Table 6: Drug likeness parameters for inhibitors under study (All rules are included)

**Computed with XLOGP3  ++Computed with Open Babel

The rule was based on the observation that most orally administered drugs are relatively
small and moderately lipophilic. The rule predicts the absorption, distribution, metabolism
and excretion of the compound. Lipinski's rule states that, in general, an orally active drug

has no more than one violation of the following criteria;

-No more than 5 hydrogen bond donors (total H_N, H_O bonds)
-No more than 10 hydrogen bond acceptors (all N+O atoms)

-Molecular mass less than 500


http://www.sioc-ccbg.ac.cn/?p=42&software=xlogp3
http://openbabel.org/wiki/Obprop
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-LogP less than 5 (octanol-water partition coefficient)
-Drug likeness improved LogP (-0.4 to 5.6), molecular weight 180 to 480, Total atoms 20
to 70 including N and O, Veber's Rule:

Good oral bioavailability, questioned the 500 molecular weight cutoff. Introduced PSA
Polar surface area, no greater than 140 A? | and 10 rotatable bonds or less (Table 6). PSA
is a commonly used metric for the optimization of a drug's ability to permeate cells[49].
Molecules with a polar surface area of greater than 140 A? tend to be poor at permeating
cell membranes. For molecules to penetrate the blood-brain a PSA less than 90 A? is
usually needed[49] . Inspecting the properties of the 7 inhibitors used (Table 8), all seven

inhibitors can be suitable drugs.
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Table 7: The areas of hydrophobic pockets in BACEL1 for each inhibitor binding [Figure 5-S]. The calculated

energies resulting from hydrophobicity using the formula -25 cal/ A2of surface area and comparing the

estimated hydrophobic energy with that resulted from reported PSA[46] [50]

Proteins in Hydrophobic PSA Estimated
Figures 5-S pocket area Hydrophobic | (A2 Hydrophobic
Pockets found A? Volume | E=-25x S.A Energy
by spdv software | A3 (A? -25XPSA
kcal/mol kcal/mol
5i3x Bound CR3 | 106, 61
105, 75 -2.63 97.11 -2.42
90, 72
71,45
5i3y 93, 64
Bound t CR3 87,57 -2.18 110 -2.75
74,48
5iel
CR3, Hexane 96, 71 -2.42 68.1 -1.7
ring
82,55
67, 33
5i3v 126, 107
Bound CR3 61, 37 -1.54 80.9 -2.03
58, 33
55,31
3TPP no hyd 115,71 140.8
No hyd 74, 47 0.0
No hyd 59, 35
41c7 165-101
Hexane ring 100, 61 -2.52 62.11
89, 60
5i3w 80,39
Close to ring 61,35 -1.54 122.56 | -3.06
61, 36
56,33
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Inhibitors 1,2,3 and 4 , which share hydrophobic mioty (Figure 7) and the 2-aminopyridine
fragment (Figure 7 ) in their structure,showed the best correlation with PSA with binding

energy(AH), Evdw,

E surface and E electrostatic Table 4 .

And the vdw energy showed best correlation with PSA for these inhibitors. Inhibitors.

1 to 6 showed best correlation with surface area energy. When structure 5 was added to the
group, the correlation of PSA with E electrostatic improved due to the presence of
hydrogen bond donors and acceptors in inhibitor 5 but to correlation with Esurface was not
changedmantaing. .Analysis of energies involved in binding of inhibitors to BACE1 will
aid the design of new inhibitors with more efficacy. Ligand efficiency[51][52][53] is
calculated by scaling affinity by molecular size (Table 9). LE was introduced as a metric
for the molecular structure to normalize the affinity with respect to molecular size by
scaling the standard free energy of binding (AG®) with the number of heavy atoms (NnH),
using the formula:

LE (T, P, C) = - AG/Nh.
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Table 8: Correlation coeffecients of Polar surface are with each energy contribution for various inhibitors.

Inhibitor PSA/AH PSA/E vdw | PSA/Ecs PSA/E eL PSA/E surface | PSAJE solv
1,2,345,6,7 0.23 0.23 0.32 0.24 0.014 0.31
1,2,345,6 0.3 0.14 0.17 0.14 0.4 0.13
1,2345 0.07 0.5 0.006 0.76 0.54 0.03
1,234 0.5 0.8 0.02 0.64 0.69 0.003

LE values vary with conditions, a value of 0.3 or higher is considered favorable.

LE decreases with increasing the number of heavy atoms. There is no obvious trend

followed in the inhibitors in this work due to variation in structure. This variation

results in high energy cost for desolvation of ligands depending on charges which

took place. Ligand efficiency values of inhibitors were in the range of 0.09 to 0.41

Table 9: Ligand efficiency (LE) and a comparison of AG experimental with the calculated AG values from

(Table 9).

MM/GBSA
PDB ID- Nnh | LE=- AG bind AG exp
inhibitor AG/Np Calculated
number kcal/mol
(from /heavy
Figure 2) atom
5i3X-(1) |44 | 041 -19.3 -11.34
5i3Y-(2) | 47 | 0.27 -12.4(7) | -13.16
5iE1-(3) 29 | 0.26 -7.5 (6) -9.60
5i3v-(4) |30 | 0.36 -10.66(4) | -10.92
5i3W-(5) | 35 | 0.24 -8.15(4) | -12.9
3TPP-(6) | 41 | 0.23 -9.4 (4) -9.28
4LC7-(7) | 23 | 0.09 -2.15(5) | -6.8

The drug-like properties when applying Lipinski’s Rule of five, Veber Rule and

MDDR Rule changed depending on functional groups and molecular weights. There

is a good correlation between the Gibbs free energy (AG) calculated and the

experimentally obtained values[46][54].

4. Conclusions
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The parameters for successful drugs depend on the specificity and binding to the receptor, a
500 molecuar weight is preferred for good absorption, and a Kd value in the range of 1nM
to 10nM , the potency depends on the specificity of binding (Asp) and increased
hydrophobic binding residues are preferred, but this comes on the account of specificity, a
balnce between specific binding and hydrphobicity should be maintained. The higher LE,
the more promosing is the drug binding to a specific target.

The binding energy of drug to its target depends on a group of energies[55]; the first is
desolvation energy needed to break the hydrogen bonds between inhibitor and solvent, then
energy released upon binding of inhibitor to receptor and burying the inhibitor hydrophobic
surface. Polar interactions and hydrophobic surface burial which depends on surface area
(every 1A? of S.A releases approximately 25cal), see Table 6. The draw back, in the drugs
under study, that is the limited surface area around 90 A? for drugs to enter brain cells.
Differences between calculated and actual AG values are due to imperfect H-bonds due to

steric factors and distance factors which result in higher E-cost for desolvation.

Research on the mechanism of AD considered the BACEL as a key enzyme which
participates in the formation of AP, which broadly exists in the brains of AD patients.
Compounds with peptidomimetic structures are effective in BACEL inhibition according to
experimental aspartic proteinase results in in vitro. Nevertheless, these kinds of BACE1
inhibitors did not perform well in pre-clinical trials due to their excessive number of
hydrogen bond donors and acceptors, which increase the polarity and further lead to a lack
of permeability across the BBB. Based on molecular dynamics and energy studies, the
amino acid residues Asp228 and Asp32 in the BACE1 enzyme play an important role in the
interactions between compounds and the enzyme. Furthermore, S1, S3, S2’and other
pockets also exhibited a central role in binding with the BACEL inhibitors. In the light of
these studies, compounds with amino heterocycles were designed and synthesized. The
presence of amino and aromatic rings maintained the inhibitory ability and decreased the

polarity of the structure at the same time.
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MM/PBSA energies are calculated for snapshots obtained by MD simulations. Variations
are normally solved by calculating only interaction energies, studying many snapshots and
using several independent simulations. It has been suggested that the calculations can be
performed by using only minimized structures, but such results may depend on the starting
structures. Finally, MM/GBSA when compared with other ligand binding methods, showed
reasonable accuracy.

MM/GBSA is a popular method to calculate absolute binding affinities with a modest
computational effort. Energy results from six well-defined terms. However, the dielectric
constant, parameters for the non-polar energy, the radii used for the PB or GB calculations,
and whether to include the entropy term and whether to perform MD simulations or
minimizations. In practice, it typically gives results of intermediate quality, often better
than docking and scoring, but worse than FEP, for example, r?> = 0.3 for the whole PDB
bind database, but r> = 0.0 -- 0.8 for individual proteins.

Acknowledgment: | would like to thank Professor J. Andrew McCammon, department of
Biochemistry & Biophysics, UC-San Diego, USA for hosting me for a year in his group,
and his generous support in providing all facilities including office space and access to

GPU cluster. This work would not be possible without his support.

References

1. Gu, T.; Wu, W.Y.; Dong, Z.X.; Yu, S.P.; Sun, Y.; Zhong, Y.; Lu, Y.T.; Li, N.G.
Development and Structural Modification of BACEL Inhibitors. Molecules 2017, 22,
doi:10.3390/molecules22010004.

2. Rombouts, F.J.R.; Alexander, R.; Cleiren, E.; De Groot, A.; Carpentier, M.;
Dijkmans, J.; Fierens, K.; Masure, S.; Moechars, D.; Palomino-Schatzlein, M.; et al.
Fragment Binding to -Secretase 1 without Catalytic Aspartate Interactions
Identified via Orthogonal Screening Approaches. ACS Omega 2017, 2, 685-697,
doi:10.1021/acsomega.6b00482.

3. Ghosh, A.K.; Brindisi, M.; Tang, J. Developing $p$-secretase inhibitors for
treatment of Alzheimer’s disease. J. Neurochem. 2012, 120, 71-83.

4, Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.;
Tang, J. Structure of the protease domain of memapsin 2 ($$-secretase) complexed
with inhibitor. Science (80-. ). 2000, 290, 150-153.

5. Oehlrich, D.; Prokopcova, H.; Gijsen, H.J.M. The evolution of amidine-based brain
penetrant BACEL inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 2033-2045.


https://doi.org/10.20944/preprints202011.0292.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020 d0i:10.20944/preprints202011.0292.v1

6. Malamas, M.S.; Erdei, J.; Gunawan, I.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K;
Chopra, R.; Olland, A.; Bard, J.; et al. Design and synthesis of 5,5'-disubstituted
aminohydantoins as potent and selective human B-secretase (BACE1L) inhibitors. J.
Med. Chem. 2010, 53, 1146-1158, d0i:10.1021/jm901414e.

7. Steele, T.G.; Hills, 1.D.; Nomland, A.A.; de Ledn, P.; Allison, T.; McGaughey, G.;
Colussi, D.; Tugusheva, K.; Haugabook, S.J.; Espeseth, A.S.; et al. Identification of
a small molecule $f3$-secretase inhibitor that binds without catalytic aspartate
engagement. Bioorg. Med. Chem. Lett. 2009, 19, 17-20.

8. Ren, Z.; Tam, D.; Xu, Y.Z.; Wone, D.; Yuan, S.; Sham, H.L.; Cheung, H.;
Regnstrom, K.; Chen, X.; Rudolph, D.; et al. Development of a novel B-secretase
binding assay using the alphascreen platform. J. Biomol. Screen. 2013, 18, 695704,
doi:10.1177/1087057113482138.

9. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point
Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and
Applications in Drug Design. Chem. Rev. 2019, 119, 9478-9508,
doi:10.1021/acs.chemrev.9b00055.

10. Srivastava, H.K.; Sastry, G.N. Molecular dynamics investigation on a series of HIV
protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA
approaches. J. Chem. Inf. Model. 2012, 52, 3088-3098.

11. Narang, S.S.; Goyal, D.; Goyal, B. Inhibition of Alzheimer’s amyloid-B42 peptide
aggregation by a bi-functional bis-tryptoline triazole: key insights from molecular
dynamics simulations. J. Biomol. Struct. Dyn. 2020, 38, 1598-1611,
doi:10.1080/07391102.2019.1614093.

12.  Lu, N.; Kofke, D.A. Accuracy of free-energy perturbation calculations in molecular
simulation. 11. Heuristics. J. Chem. Phys. 2001, 115, 68666875,
doi:10.1063/1.1405449.

13.  Veselovsky, A. V; Ivanov, A.S. Strategy of Computer-Aided Drug Design. Curr.
Drug Target -Infectious Disord. 2003, 3, 3340, doi:10.2174/1568005033342145.

14.  Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM / PBSA
and MM / GBSA Methods . | . The Accuracy of Binding Free Energy Calculations
Based on Molecular Dynamics Simulations. J. Chem. Inf. Model 2010, 51, 69-82,
doi:10.1021/ci100275a.

15. Temiz, N.A.; Trapp, A.; Prokopyev, O.A.; Camacho, C.J. Optimization of minimum
set of protein--DNA interactions: a quasi exact solution with minimum over-fitting.
Bioinformatics 2010, 26, 319-325.

16.  Kirkwood, J.G. Statistical mechanics of fluid mixtures. J. Chem. Phys. 1935, 3, 300—
313.

17.  Srinivasan, J.; Miller, J.; Kollman, P.A.; Case, D.A. Continuum solvent studies of
the stability of RNA hairpin loops and helices. J. Biomol. Struct. Dyn. 1998, 16,
671-682.

18.  Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee,
T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex
molecules: combining molecular mechanics and continuum models. Acc. Chem. Res.
2000, 33, 889-97, doi:10.1021/ar000033j.


https://doi.org/10.20944/preprints202011.0292.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020 d0i:10.20944/preprints202011.0292.v1

19. Kongsted, J.; Ryde, U. An improved method to predict the entropy term with the
MM/PBSA approach. J. Comput. Aided. Mol. Des. 2009, 23, 63-71,
doi:10.1007/s10822-008-9238-z.

20.  Srinivasan, J.; Cheatham, T.E.; Cieplak, P.; Kollman, P.A.; Case, D.A. Continuum
solvent studies of the stability of DNA, RNA, and phosphoramidate- DNA helices. J.
Am. Chem. Soc. 1998, 120, 9401-94009.

21.  Nidhi Singh1 and Arieh Warshell Absolute Binding Free Energy Calculations: On
the Accuracy of Computational Scoring of Protein-ligand Interactions Nidhi. Bone
2008, 23, 1-7, doi:10.1038/jid.2014.371.

22. Vassar, R. BACEI inhibitor drugs in clinical trials for Alzheimer’s disease.
Alzheimer’s Res. Ther. 2014, 6, 1-14, doi:10.1186/513195-014-0089-7.

23.  Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug
Discovery. 2014, 334-395.

24.  Ben-Shalom, I.Y.; Lin, C.; Kurtzman, T.; Walker, R.C.; Gilson, M.K. Simulating
water exchange to buried binding sites. J. Chem. Theory Comput. 2019, 15, 2684—
2691.

25. Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E.; Steve, D.;
Ferguson, D.; Seibel, G.; Kollman, P.; Cheatham IlI, T.E.; et al. AMBER, a package
of computer programs for applying molecular mechanics, normal mode analysis,
molecular dynamics and free energy calculations to simulate the structural and
energetic properties of molecules. Comput. Phys. Commun. 1995, 91, 1-41,
doi:10.1016/0010-4655(95)00041-D.

26.  How to Cite Amber. Am. Ethnol. 2020, 47, 209, doi:10.1111/amet.12914.

27.  Gotz, AW.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C.
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1.
Generalized Born. J. Chem. Theory Comput. 2012, 8, 15421555,
doi:10.1021/ct200909;.

28.  Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.;
Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and
Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696-3713,
doi:10.1021/acs.jctc.5b00255.

29.  Ponder, J.W.; Case, D.A. Force fields for protein simulations. Adv. Protein Chem.
2003, 66, 27-85, d0i:10.1016/S0065-3233(03)66002-X.

30. Rother, K. Introduction to PyMOL. Methods Mol. Biol. Clift. Nj 2005, 635, 0-32,
doi:10.1213/ANE.0b013e3181e9c3f3.

31.  Ross Walker Sishi Tang Antechamber Tutorial. 2005, 1-7.

32. Wang, J.M.; Wolf, R.M.; Caldwell, J.W.; Kollman, P. a; Case, D. a Development
and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-1174,
doi:10.1002/jcc.20035.

33.  Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L.
Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.
1983, 79, 926935, doi:10.1063/1.445869.

34. Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A
smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593,


https://doi.org/10.20944/preprints202011.0292.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020 d0i:10.20944/preprints202011.0292.v1

doi:10.1063/1.470117.

35.  Krdéutler, V.; Van Gunsteren, W.F.; Hiinenberger, P.H. A fast SHAKE algorithm to
solve distance constraint equations for small molecules in molecular dynamics
simulations. J. Comput. Chem. 2001, 22, 501-508.

36.  Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R.
Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81,
3684-3690, doi:10.1063/1.448118.

37.  Cerutti, D.S.; Duke, R.; Freddolino, P.L.; Fan, H.; Lybrand, T.P. A Vulnerability in
Popular Molecular Dynamics Packages Concerning Langevin and Andersen
Dynamics. J. Chem. Theory Comput. 2008, 4, 1669-1680, doi:10.1021/ct8002173.

38.  Miller, B.R.; Mcgee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E.
MMPBSA.py: An E ffi cient Program for End-State Free Energy Calculations. J.
Chem. Theory Comput. 2012, 8, 3314-3321.

39. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-
binding affinities. Expert Opin. Drug Discov. 2015, 10, 449-461,
doi:10.1517/17460441.2015.1032936.

40. Wang, J.; Morin, P.; Wang, W.; Kollman, P. a Use of MM-PBSA in reproducing the
binding free energies to HIVV-1 RT of TIBO derivatives and predicting the binding
mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc.
2001, 123, 3986-3994.

41. Hermansson, A. Calculating Ligand-Protein Binding Energies from Molecular
Dynamics Simulations - Thesis in Physical Chemistry. 2015.

42. Roe, D.R.; Cheatham III, T.E. PTRAJ and CPPTRAJ: software for processing and
analysis of molecular synamics trajectory data. J Chem Theory Com 2013, 9, 3084—
3095, doi:10.1021/ct400341p.

43.  Lill, M.A.; Thompson, J.J. Solvent interaction energy calculations on molecular
dynamics trajectories: Increasing the efficiency using systematic frame selection. J.
Chem. Inf. Model. 2011, 51, 26802689, doi:10.1021/ci200191m.

44.  Galindo-Murillo, R.; Roe, D.R.; Cheatham, T.E. Convergence and reproducibility in
molecular dynamics simulations of the DNA duplex
d(GCACGAACGAACGAACGQC). Biochim. Biophys. Acta - Gen. Subj. 2015, 1850,
1041-1058, doi:10.1016/j.bbagen.2014.09.007.

45.  Galindo-Murillo, R.; Roe, D.R.; Cheatham, T.E. On the absence of intrahelical DNA
dynamics on the ps to ms timescale. Nat. Commun. 2014, 5,
doi:10.1038/ncomms6152.

46. BINDING constants Available online: http://www.bindingdb.org/pdb/1086.

47.  binding MOAD Available online: http://bindingmoad.org/.

48. RCSB.

49.  Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central
nervous system drugs. NeuroRx 2005, 2, 541-553, doi:10.1602/neurorx.2.4.541.

50.  Manuscript, A.; Nanobiomaterials, B. NIH Public Access. 2013, 6, 866-877,
doi:10.1021/nn300902w.Release.

51. H, I. Lipophilic Ligand Efficiency as a Useful Metric in Hit and Lead Optimization.
J. Med. Chem. Drug Des. 2019, 2, 9-10, doi:10.16966/2578-9589.112.


https://doi.org/10.20944/preprints202011.0292.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020 d0i:10.20944/preprints202011.0292.v1

52.  Kenny, P.W. The nature of ligand efficiency. J. Cheminform. 2019, 11, 1-18,
d0i:10.1186/s13321-019-0330-2.

53.  Hopkins, A.L.; Kesert, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of
ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 2014, 13, 105—
121, do0i:10.1038/nrd4163.

54.  Wang, C.; Nguyen, P.H.; Pham, K.; Huynh, D.; Le, T.B.N.; Wang, H.; Ren, P.; Luo,
R. Calculating protein-ligand binding affinities with MMPBSA: Method and error
analysis. J. Comput. Chem. 2016, 37, doi:10.1002/jcc.24467.

55. Li, S.; Zhao, H.; Li, J.; Hao, J.; Yu, H. A series of molecular modeling techniques to
reveal selective mechanisms of inhibitors to B-Site amyloid precursor protein
cleaving enzyme 1 (BACEI) and B-site amyloid precursor protein cleaving enzyme 2
(BACEZ2). J. Biomol. Struct. Dyn. 2020, 0, 1-14,
doi:10.1080/07391102.2020.1754917.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table
Figure S1 Binding mode of Inhibitor 1 in 5i3x different views
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FigureS2: : Different views of binding of inhibitor 4 in 5i3v
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FigureS4: protein view of inhibitor 7 in 3TPP
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FigureS5 surface areas of inhibitors and the BACEL1 surface
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Figure S6: Views of Inhibitor 3 binding protein view (5iel)
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Figure S7: views of inhibitor 2 to BACEL1 (5i3Y)
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Figure S8: 5i3W binding of inhibitor 5 to BACE1
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Figure 69: :
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