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Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder. One of the important 

therapeutic approaches of AD is the inhibition of β‐site APP cleaving enzyme‐1 (BACE1). This enzyme plays 

a central role in the synthesis of the pathogenic β-amyloid peptides (Aβ) in Alzheimer's disease.  A group of 

potent BACE1 inhibitors with known x-ray structures (PDB ID 5i3X, 5i3Y, 5iE1, 5i3V, 5i3W, 4LC7, 3TPP) 

were studied by molecular dynamics simulation and binding energy calculation employing MM_GB(PB)SA. 

The calculated binding energies gave Kd values 0.139 µM, 1.39 nM, 4.39 mM, 24.3 nM, 1.39 mM, 29.13 mM 

and 193.07 nM, respectively. These inhibitors showed potent inhibitory activities in enzymatic and cell assays. 

The Kd values were compared with experimental values, the structures were discussed in view of the energy 

contributions to binding. Drug likeness of these inhibitors is also discussed. Accommodation of ligands in the 

catalytic site of BACE1 is discussed depending on the type of fragment involved in each structure. Molecular 

dynamics (MD) simulations and energy studies were used to explore the recognition of the selected BACE1 

inhibitors by Asp 32, Asp228 and the hydrophobic flap. The results show that selective BACE1 inhibition 

may be due to the formation of strong electrostatic interactions with Asp32 and Asp228 and a large number 

of hydrogen bonds, π-π and Van der Waals interactions with the amino acid residues located inside the 

catalytic cavity. Interactions with the ligands show a similar binding mode with BACE1. These results help to 

rationalize the design of selective BACE1 inhibitors. 

Keywords: Alzheimer's disease; BACE1; Molecular dynamics; MM/GBSA ; Inhibitors; Drug likeness; 

Ligand efficiency, Kd. 
 

1. Introduction 

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease of the brain. 

AD and the associated dementia were connected to Amyloid plaque accumulated in the brain. 

The β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) is an aspartic protease 

enzyme fixed to the cell membrane; it acts to produce β-amyloid (Aβ) in the signaling 

pathways in Alzheimer’s disease (AD). Excessive accumulation Aβ is believed to induce 

pathological changes and causes dementia in brains of AD patients. 

  The enzyme BACE1 initiates the cleavage of amyloid precursor protein (APP) at the β-

secretase site, then Aβ is released as a result of further cleavage of the BACE1-cleaved C-

terminal APP fragment[1]. Blocking BACE1 proteolytic activity will suppress Aβ generation 

and reduce the formation of amyloid. Research has been directed towards potent BACE1 
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inhibitors for AD therapy. Recent breakthroughs in developing BACE1 inhibitors which can 

penetrate brain cells, made the targeting of amyloid deposition-mediated pathology as a 

therapy more reachable. Various strategies that have successfully led to the discovery of 

BACE1 inhibitor drugs that have reached the stage of clinical trials.  

BACE1consists of three domains: An N-terminal, a single transmembrane domain, 

and a cytosolic C-terminus. The catalytic ectodomain has an aspartic protease fold, with the 

substrate-binding cleft located between the N- and C-terminal lobes (Figure 1).  

 

Figure 1: Structures of BACE1 in complex with inhibitor 1 (PDB ID 5i3X. The inhibitor 68J 

(Pink), catalytic dyad D228 and D32, flap (Blue). 

 

The crucial catalytic aspartate (Asp) dyad, Asp32 and Asp228, is located at the 

interface of the two lobes[2]. A hairpin loop “flap” in the N terminal lobe partially covers the 

cleft in a perpendicular orientation and contains Valine 69 Tyrosine 71 and Threonine 72 

(colored blue in Figure 1). The conformational changes in the flap control the substrate access 

to the active site. The first BACE1 substrate analogue inhibitors to mimic the APP-cleavage 

sequence which contain a non-cleavable peptide bond, showed high potency, but gave poor 

oral bioavailability and low brain penetration which prevented therapeutic utility[3][4]. 

Amidine containing compounds that form optimal interactions with the Asp32 and Asp228 
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enhanced the search for BACE1 inhibitors[1] [2] [5]. These Asp-binding amidine and 

guanidine inhibitors have been studied and the cyclohexyl groups were found to bind the S1 

and the lipophilic S1′ pockets (Figure 1).  

Other compounds features a quaternary carbon that acts as a vector into the S1−S3 

and S2′ pockets of the catalytic site (Figure 1)[6]. In other inhibitors, the basicity of the 

amidine/guanidine function provides a formal positive charge which impacts the 

optimization of physicochemical parameters. In contrast, there are a few known ligands that 

bind to the catalytic cleft without interacting with the Asp32 and Asp228 residues. Merck 

reported an inhibitor (Pyrimidine) which binds to the S1 and S3 pockets[7] and Elan 

Pharmaceuticals reported an S2 pocket binding inhibitor[8].  

Researchers employed several methods to predict drug potency by calculating the 

binding free energies of potential drugs as ligands to protein targets[9][10][11]. 

Thermodynamic integration (TI) and free energy perturbation (FEP) have been successfully 

applied to calculate free energy values close to experimentally reported values[12]. These 

methods proved to be computationally expensive and not practical. On the other hand, 

docking programs were employed to obtain scores for large numbers of candidate drugs but 

proved to be not very accurate in predicting the free energies of inhibitor binding to potential 

sites on the proteins[13][14]. The approximations used in these methods such as ignoring 

protein flexibility, inadequate treatment of solvation and simplifying the energy functions 

used made them less valuable for studying drug binding. The MM/GBSA method provides 

faster estimates of the free energy of binding, as compared to the other computational free 

energy methods, such as free energy perturbation (FEP) or thermodynamic integration (TI) 

methods[15][16]. Comparison studies have also shown that MM/GBSA outperforms 

Molecular Mechanics/Poisson Boltzmann Surface Area MM/PBSA in calculating the 

inhibitor binding energy to protein receptors [17].The MM/GBSA method[17][18] has been 

widely exploited in free energy calculations and its rescoring generally yields better results 

than docking for the Directory of Useful Decoys, Enhanced data set [18]. MMGBSA when 

applied to any protein-ligand system requires the calculation of an explicit entropy 
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term[9][18] [19] and, for some systems, displays overly large contributions to the absolute 

free energy of binding[20][21]. 

The design of BACE1 inhibitors was concentrated on peptidic substrate transition-

state mimic inhibitors; these ligands showed low nanomolar inhibition potency for BACE1, 

but have poor pharmacokinetic properties[1]. Recently, second-generation inhibitors were 

designed based on structure-based drug design.  Low molecular weight molecules with 

excellent cell permeability like OM99-2, a substrate-based inhibitor with a highly potent 

BACE1 inhibition (IC50 =1.6 nM) have little peptidic character, and showed an enhanced 

pharmacokinetic profile. Fragment-based inhibitors discovered using a computational 

approach have led to designing potent small-size BACE1 inhibitors [22].  

 In this work, the binding energies of a group of inhibitors to BACE1 were calculated 

employing MD simulation and MM/GBSA. The contributing energies were analyzed and the 

values were correlated to experimentally found Kd values for the inhibitors. The feasibility 

of MM/GBSA to estimate Kd values for drugs and how to optimize drug structures in view 

of the results to give acceptable inhibition are discussed [23]. 

 

 

2.Methods 

2.1 Molecular dynamics simulations  

Molecular dynamics simulations were performed on the initial structures based on the x-ray 

crystal structure of the protein-inhibitor complexes with PDB identifications shown in Table 

1. MD simulations were carried out using the Amber18.0 package[24][25] [26]on GPU 

accelerated version[27],  employing the AMBER force field ff14SB for proteins and nucleic 

acids which describes the potential energy of the system[28][29]. All atom explicit water 

molecular dynamics simulations were performed on all systems. The PDB file was 

downloaded in pymol [30], and the complex prepared using pdb4amber program, inspected, 

salt and water were removed. The receptor, ligand and complex pdb files were saved 

separately using text editor. 

Preparing ligand, receptor and Complex files for Amber[31]:  
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Antechamber [32]package in Amber Tools[26] was used to create topology and coordinate 

files for the simulations of ligands, Antechamber is designed to be used with the "general 

AMBER force field (GAFF)"[32], for organic molecules. This force field has been 

specifically designed to cover most pharmaceutical (organic) molecules and is compatible 

with the traditional AMBER force fields in such a way that the two can be mixed during a 

simulation. Hydrogens were added to the ligand (using reduce) then the ligand. frcmod and 

library files were prepared for amber, and the tleap editor was used to load the complex or 

combine the ligand and receptor. The complexes were solvated in a TIP3P[33] cubic water 

box with water molecules extending 15Å from the complex surface to the water box 

boundary, Na+ or Cl- ions were added to neutralize the system depending on the charge. The 

structure of the complex was checked for errors and then converted to topology and 

coordinate files. The particle mesh Ewald method [34] was used for treating long range 

electrostatics, a 9Å cutoff was set for long range interactions. The force field energy of each 

structure was minimized by progressively relaxing the system before starting the MD 

simulations. Minimizations were performed employing steepest descent followed by 

conjugate gradient minimizations (1000 cycles in tandem).  

After relaxation of the system it was heated to 300K applying harmonic restraint (10 

Kcal/Å2.mol) on solute. This was followed by an unrestrained 2ns MD simulation at 300K 

and 1 atm to equilibrate the system and adjust the density. 

. SHAKE algorithm [35]was used to constrain hydrogen atoms in order to enable a longer 

time step (2fs) in the simulation. A Langevin thermostat [36][37]with 2 ps-1 collision 

frequency and weak coupling barostat with 2 ps of relaxation time were employed. 

Production MD simulations were carried out for 150 ns and gave converged trajectory 

evident in the RMSD behavior which showed good stability within 1.5Å. Trajectories were 

collected at 2 ps intervals. These trajectories were used to calculate the binding free energy 

using MMPBSA.py script[38]; 50 or 100 frames were used in the calculations. Loss in 

flexibility upon binding expressed as entropy change (TΔS) was calculated by normal modes 

using the same snapshots which were used for calculating ΔG binding. Then the absolute free 

energy of binding was calculated (equation 4). The binding energy of the complex was 

calculated using the MM/GBSA method.  
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2.2 The Generalized Born/Surface Area Model 

 

The MM/PBSA and MM/GBSA methods [44][9] have been used to estimate ligand-binding 

affinities in many systems, giving correlation coefficients compared with experiments of r2 

in the range of 0.3 to 0.9, depending on the protein, with MM/GBSA giving better results in 

this case. The results strongly depend on details in the method, especially the continuum-

solvation method, the charges, the dielectric constant, the sampling method and the entropies. 

The methods often overestimate differences between sets of ligands. 

 The (MM/PB(GB)SA method uses representative snapshots from an 

ensemble of conformations to calculate free energy change between the bound and 

unbound states of receptor and ligand, (equations 1A, 1B). Before using MM-

GBSA[11][45][46][39] the system equilibration was verified by considering temperature, 

density, total energy and root mean squared deviation of coordinates (RMSD). An RMSD 

value relative to the crystal structure of 1.5Å was deemed acceptable. Extensive analysis of 

each trajectory was performed to make sure the energies calculated are reliable depending on 

the snapshots [50][51][52]. To estimate the total solvation free energy of a molecule, ΔGsolv, 

one typically assumes that it can be decomposed into the "electrostatic" and "non-

electrostatic" parts 

ΔGsolv = ΔGel +ΔGnonel 

where ΔGnonel is the free energy of solvating a molecule from which all charges 

have been removed (i.e. partial charges of every atom are set to zero), and ΔGel is 

the free energy after removing all charges in vacuum, and then adding them back in the 

presence of a continuum solvent environment. Generally speaking, ΔGnonel comes from the 

combined effect of two types of interaction: the favorable van der Waals attraction between 

the solute and solvent molecules, and the unfavorable cost of breaking the structure of the 

solvent (water) around the solute. In the current Amber codes, this is taken to be proportional 

to the total solvent accessible surface area (SA) of the molecule, with a proportionality 
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constant derived from experimental solvation energies of small non-polar molecules, and 

uses a fast LCPO algorithm to compute an analytical approximation to the solvent accessible 

area of the molecule. Within Amber GB models, each atom in a molecule is represented as a 

sphere of radius Ri with a charge qi at its center; the interior of the atom is assumed to be 

filled uniformly with a material of dielectric constant 1. The molecule is surrounded by a 

solvent of a high dielectric constant 80 for water at 300 K) (Equation 2). The GB model 

approximates ΔGel while the nonpolar energy is usually estimated using the solvent-

accessible surface area (SASA) (Equation 6) [9] [47] 

 

 ΔG bind = G RL -G R -G L        where R = receptor, L= Ligand   (1A)   

       (1B) 

                                  

(2) 

 

                                   

(3) 

 

Δ G =Δ H − TΔ S =ΔEMM +Δ GSOL − TΔ S      (4) 

ΔE MM =ΔE internal +ΔE electrostatic +ΔE vdw      (5) 

ΔG SOL(PB/GB) =ΔG PB/GB +ΔG SA(PB/GB)      (6) 

 

 where ΔEMM is total gas phase energy (sum of ΔE internal + ΔE electrostatic + ΔE vdw). 

 ΔG SOL(PB/GB) is sum of nonpolar and polar contributions to solvation calculated by PB or 

GB. TΔS is conformational entropy upon binding computed by normal- mode analysis on a 

set of conformational snapshots taken from MD simulations. ΔEinternal is internal energy 

arising from bond, angle, and dihedral terms in the MM force field. ΔEelectrostatic is electrostatic 

energy as calculated by the molecular mechanics (MM) force field. ΔE vdw is van der waals 

contribution from MM. ΔGPB/GB is nonpolar contribution to the solvation free energy 

calculated by an empirical model. The nonpolar solvation free energy is typically given by 
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an empirical formula that is proportional to the solvent accessible surface area of the solute: 

Δ GSA=ɣ· SASA + b, where γ is the surface tension constant and b is a correction constant (γ 

= 0.00542 kcal·mol−1·Å−2 and b = 0.92 kcal/mol in the AMBER package).  ΔGSA/GB is the 

electrostatic contribution to the solvation free energy calculated by the PB or GB method, 

respectively.  

 One-thousand 2 ps spaced snapshots of each complex were generated from the MD 

trajectories, and all water molecules and counter-ions were removed before MM-

PBSA/GBSA calculations. Coordinates were extracted by using the extract-coords.mmpbsa” 

script and the ΔG values were calculated by using the “MMPBSA.py” script[38].  

3. Results and discussion 

3.1 Data analysis 

The RMSDs, dynamic cross-correlation analysis, principal component analysis (PCA), 

were processed using the CPPTRAJ module in Amber 18 package [42]. The principal 

component analysis (PCA)  was performed to help in sampling  [44][45] 

System stability under MD simulations (see Figure 2 a, b, c and d) 
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Figure 2: RMSD evolutions from MD simulations of (a) BACE1 (Green) and Inhibitor 68J 

(black) in 5i3X; (b) 5i3W BACE1 (green) and 68L inhibitor (black); (c) 5i3V the BACE1-

68M complex (d): pairwise plot of RMSD of BACE1-68J complex in 5i3X, RMSD 

pairwise computed for first 5000 snapshots and skip every 10 frames. 

 

 Before starting MD analysis, the root-mean square deviation (RMSD) evolution of the 

protein backbone Cα for each complex was monitored throughout the 200 ns MD 

simulations to ensure stability of the systems. As shown in Figure 2, the RMSD evolution 
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for Cα of BACE1 bound with inhibitors exhibited relatively small fluctuations at the start 

of simulation, then was stable and changes were within 1.0 Å. Accordingly, the RMSD 

evolution of the heavy atoms of the inhibitors, maintained relative stability (RMSD 

fluctuation <1 Å) during the 200 ns simulation. Pairwise RMSD for specific snapshots was 

Computed using pytraj in Amber. The RMSD to the 

experimental structure reference was computed, then, pairwise RMSD for first 5000 

snapshots and skipping every 10 frames was computed (Figure 2(d)). 

.  
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(1) 5i3X-68J   (2) 5i3Y-68K   (3) 5iE1-6BS 

 

 

 (4) 5i3V-68M                 (5) 5i3W-68L   (6) 4LC7-1WP 
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(7) 3TPP-5HA 

 

  

  (8) binding sites of 68J inhibitor  

 

Figure 3:  structures1 to 7 are selected BACE1 inhibitors with their PDB ID. 

Structure (8) shows the binding mode of inhibitors derived from MD simulation 

using 68J as an example. 

3.2 Prediction of binding mode and key interactions of Inhibitors to BACE1  

MD simulations were performed to elucidate the key interactions of inhibitors responsible 

for inhibitory activity against β-amyloid (Aβ) accumulation. The MD simulations were 

performed to evaluate the favored binding modes and key interactions of BACE1 with 

various inhibitors (Figure3 and Figures 6 and 8).  
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Table 1: The calculated energies of BACE1 Inhibitors 

 

PDB id 

-inhibitor 

Kd Exp [46][47] IC50 

[46][47] 

ΔHGBSA 

kcal/mol 

T∆S G binding 

Calculated 

kcal/mol 

ΔG 

exp 

Kd from 

calculated G 

bind** 

5i3x- (1) 8 nM , 0.8nM 191 nM, 9nM -44.5(4) -25.2(5) -19.3(5) 

 

-11.34 0.000139 nM 

5i3y-(2) 0.4000 nM 16nM, 0.8nM -37.4(3) -24.96(6) -12.4(7) -13.16 1.39 nM 

5ie1-(3) 140 nM 140nM -30.5(3) -22.98(6.2) -7.5 (6) -9.60 4.39 mM 

5i3w-(5) 0.6nM  -32.2(2.6) -24(4) -8.15 (4) -12.9 1.39 mM 

5i3v-(4) 16 nM 16 nM, 35 nM -32.92(5.2) -22.26(4) -10.66(4) -10.92 24.3 nM 

3tpp-(6)  

233 nM 

15 nM, 15nM -35.6(6) 

-26.21(5) 

-9.4 (4) -9.28 193.07nM 

4lc7 –(7)  11800 nM, 14nM -24.64(5) 
-22.5(5) 

-2.15 (5) -6.8 29.13 mM 

 

** ΔG =RTlnKd =1.4logKd (Kd in mol.L-1) 

 

The Binding energies of inhibitors with BACE1 are shown in Tables 1 and 2 and in Figures 

4 and 5; inhibitors under study bind Asp32 and Asp228 (Tables 4 and 5) and Figures 6 and 

9, except for 4LC7 which binds Asp93 and Asp289 (see Figure 9G).  
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Figure 4: The binding Energies of Inhibitors calculated by MM/GBSA 

Table 2: The different components of binding free energy (kcal/mol) between Inhibitors-BACE1 

complex evaluated using the MM–GBSA method. 

 

 

 

 

-60

-50

-40

-30

-20

-10

0

10

5i3x 5i3y 5ie1 5i3w 5i3v 3tpp 4lc7

k
c
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m
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inhibitor

ΔHGBSA

ΔG

Number 

(Figure 

2) 

PDB 

ID 

vdw E EL E GB E surf E solv ΔHGBSA 

1 5i3x -67.1(3.1) -26.99(6.1) 58.3(4.9) -8.72(0.24) 49.6(4.83) -44.52(4) 

2 5i3y -59.13(3.4) -16.8(3.4) 45.8(4.2) -7.2(0.5) 38.6(3.8) -37.36(3) 

3 5ie1 -39.15(2.96) -36.21(2.9) 50.77(1.5) 3.76(0.02) 44.9(0.7) -30.48(2.8) 

4 5i3v -43.69(3.4) -21.62(7.7) 38(5.6) -5.6(0.52) 32.4(5.4) -32.92(5.2) 

5 5i3w -55.34(2.86) -14.12(3.1) 44.1(2.6) -6.8(0.19) 37.3(2.5) -32.15(2.6) 

6 4lc7 -34.04(2.9) -13.2(13) 26.8(11) -4.3(0.3) 22.6(10.9) -24.64(5.02) 

7 3ttp -10.73(0.9) -66.97(1.9) -55.9(1) 5.6(0.03) -40.26(1.02) -35.6(6) 
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Figure5: The breakout of binding energy ΔH to its contributing energies for inhibitors 

under study. 

 

 The flap, a β-hairpin loop containing residues Tyr71to Val69, positioned directly over the 

catalytic dyad, can open and close to allow substrate and inhibitor access to the active site 

Figure1 and 6.  

 

Figure 6: A) structures of BACE1 complexed with 1(shown in cyan), it shows the distances 

of the residues from inhibitor 1 in 5i3X, The aspartate pocket (Asp32 and Asp228); the flap 

shown in orange which contains Val69, Tyr 71. Distances are listed in Table 3.  [ for views 
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of inhibitors binding to BACE1 see Figures 1-s to 8-S] 

 

Figure6: B) The binding pocket of BACE1; inhibitor 1 in 5i3X is shown (pink) and all 

potential binding residues labeled, the flap shown in blue. structure of BACE1 complexed 

with inhibitor 1 (shown in pink), interactions between ligand and protein at the catalytic 

aspartic acids Asp32 and Asp228 and at Trp72 of the S2’region (Table 3). 

 

 

Table 3:  some bond distances measured in the average structure using pymol 

Inhibitor  ASP32 

Oxygen Å 

ASP228 

oxygen Å 

Gly 13 

Å 

Ser35 Å Hydrophobic: 

Tyr71  

Å 

Hydrph:Val69 

Å 

5i3X N of 

pyridine 

ring 

2.6, 3. 6 4.9, 5.1    3.0 to 3.9 4.0 – 4.9 

 NH2 2.9, 3.6 2.9, 3.0     

5i3Y N of 

pyridine 

ring  

3.5 5.0, 5.2 3.8 4.1-5 4.2- 4.3 3.9-4.4 

 NH2 2.6 3.0, 3.1     
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3TPP  2.7, 3.5 2.7, 3.9 3.4 

Gly230: 

3.1 

 Gln 73: 3.2  

4LC7  Asp93: 

2.7, 2.7 

Asp289: 

2.8, 2.8 

Leu91: 

4.3 

Tyr132: 

3.6 

  

 

 

 

 

All inhibitors occupy similar binding pockets and more importantly form hydrogen bond 

interactions with the catalytic dyad of Asp32 and Asp228. The active site of BACE1 is 

mostly hydrophobic, with no charged residues within 8 Å distance of Asp dyad; the 

Aspartate residues form bonds with the amine and the nitrogen of the pyridine ring Figure 1 

structure 8 and Figure 8. 

 

Figure 7: Structure of the fragments in Inhibitors 1,2,3 and 4 

 

The hydrophobic interactions Tyr71, Val69, Gly13. Gly230. Phe108, Leu30 and Ile118 are 

common in all 68J, 68K, 68L and 68M inhibitors, all display hydrophobic contacts with 

residues The nitrogen containing heterocycles are often referred to as the aspartyl binding 

motif see Figure 8 shown below 
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2-Aminopyridine         

Figure 8: binding of Asp32 and Asp228 to the 2-aminopyridine moiety.  

Inhibitors 1,2,3 and 4 share fragments A and B in Figure 7, where the terminal CR3 forms 

hydrophobic interactions in S2’ pocket which contains D228. The correlation coefficient of 

binding energy (∆H) for these 4 inhibitors with Vdw energy is 0.95 and E surface is 0.63. The 

2-aminopyridine fragment forms hydrogen bonds with Asp32 (2.6Å) and a weaker 

interaction with Asp 228 (4.9 Å).  

Table 4: Correlation coefficients (R2) of ΔH with contributing energies (from Table II) for groups of 

inhibitors 

Inhibitors 

number(from 

Figure 2) 

vdw E EL 

electrostatic 

E GB 

polar 

E surf 

Surface area 

E solv 

desolvation 

1,2,3,4 0.95 0.1 0.41 0.63 0.29 

1,2,3,4,5 0.76 0.01 0.43 0.44 0.33 

1,2,3,4,5,6 0.85 0.075 0.68 0.29 0.62 

1,2,3,4,5,6,7 0.23 0.05 0.01 0.1 0.011 

The correlation with electrostatic energy is very small (Table 4) indicating a mostly 

hydrophobic interaction on this side. The phenyl rings in structure B (Figure 7) bind Tyr 71 

(3.0 Å) and Val69 (4.0 Å). Inhibitors 1 and 2 have an extra fragment C which binds the S3 

pocket and differ by one fragment (where fragment D is in inhibitor 1 and replaced by 

fragment E in inhibitor 2) which binds S1 pocket and Gly34, where in inhibitor 1 its D and 

in inhibitor 2 its E.  Fragment D in      Figure 7 with its Л cloud gives stronger 

interaction than E. All differences arise from different vdw interactions, the π–π stacking 

interaction between the phenyl-imino group and Phe108 added stability with the enzyme 
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5i3W-68L (inhibitor 5) binds Asp 32, Asp 228, Gly230, Tyr71, Leu30, and Gly13, See 

Figure 9E. This inhibitor shares fragment C in Figure 7 with inhibitors 1-4 which binds S1 

and gave an experimental ∆G value -12.5 kcal/mol and comparable vdw energy to other 

inhibitors1-4, while the calculated value is -8.15(4) kcal/mol . The fragment 

binds Asp32 and Leu30. The attachment of the phenyl ring could lead to a 

significant hydrophobic interaction, which would increase the probability of permeability 

into the brain. Thus, many BACE1 inhibitors were designed using phenyl -based analogs. 

 

In BACE1 bound to inhibitor 7 (4LC7), shown in Figure 6(G), the heterocyclic pentatomic 

ring  binds Asp93 and Asp289. This feature is shared with 5i3W (Figure 

9(E)) in which the same ring binds Asp32 and Asp228. 5i3W (Inhibitor 5) has an extra 

phenyl group that binds the hydrophobic pocket (near Tyr71) which enhanced its binding 

over 4LC7. Inhibitor 6 (3TPP) has a different structure but shares an aryl ring with other 

inhibitors and it showed enhanced binding (figure 6(F). The sulfate group binds Asn233 

and the attached aryl group interacts with Gln73, the fragment

cyclopropane ring-NH binds the other end of Asn233 and 

Thr231. The Asp 32, Asp 228, Gly230, Gly34 and the other side of Thr231 all make 

hydrogen bonds with the oxygen and nitrogen on the polar end (Figure 9F).  
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(A)  5i3X-68J (1)       (B) 5i3Y-68K (2) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 November 2020                   doi:10.20944/preprints202011.0292.v1

https://doi.org/10.20944/preprints202011.0292.v1


 

 

(C) 5i3V-68M (4)                        (D)   5ie1- 6BS (3) 
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(E)5i3W-68L (5)  (F)3tpp-5HA (7) 
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(G)4lc7 -1WP (6) 

Figure 8: binding of inhibitors to BACE1obtained from average structures after MD 

simulation using SPDV software. Structures are defined by their PDB ID of complexes of 

BACE1 and Inhibitor: (a) 5i3X-68J (1); (b) 5i3Y-68K (2); (c) 5i3V-69M (4); (d) 5ie1-6BS 

(3); (e) 5i3W-68L (5); (f) 3TPP-5HA (7); (g) 4LC7=1WP (6). [Inhibitor numbers in 

brackets from Figure 2], see also Figures 1-s to 8-S 
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Table 5: Details of Binding of inhibitors to BACE1 extracted from average structures 

 Protein-

Inhibitor 

complex 

PDB 

code[48] 

∆H 

Kcal/mol 

Inhibitor Binding sites to the protein 

5i3x 

I= 68J 

-44.5 N-(1-{3-[2-(2-amino-3-{3-[(3,3-

dimethylbutyl)amino]-3-oxopropyl} 

quinolin-6-yl)phenyl]prop-2-yn-1-

yl}cyclopropyl)-4-fluorobenzamide 

N-O:Asp228, Asp32, Gly13 

Hydrph:Tyr71, Val69, Ile118,  

Leu30, Phe108 

5i3y 

I= 68K 

-37.4 N-(6-{2-[2-(2-amino-3-{3-[(3,3-

dimethylbutyl)amino] 

-3-oxopropyl}quinolin-6-

yl)phenyl]ethyl}pyridin-3-yl)-4-

fluorobenzamide 

 

N-O:Asp 228, Asp32, Gly34, Gly230 

Hydrph:Gly13, Ser35, Tyr71,  

Val69, Ile118, Phe108 

5i3v 

I= 68M 

-32.9 (2R)-3-[2-amino-6-(3-methylpyridin-2-

yl)quinolin-3-yl] 

-N-(3,3-dimethylbutyl)-2-

methylpropanamide 

N(L)-O(rec):Asp228, Asp32, Gly34,  

Hydrph:Tyr71,  Phe108 

5i3w 

I= 68L 

-32.15 N-[(5S)-2'-amino-3-(5,6-dihydro-2H-pyran-3-

yl)-5'H 

-spiro[1-benzopyrano[2,3-c]pyridine-5,4'-

[1,3]oxazol]-7-yl]-5-chloropyridine-2-

carboxamide 

C25 H20 Cl N5 O4
 

Asp 32, Asp 228, Gly 230, Tyr 71 

Leu 30, Gly 13 

5ie1 

6BS 

-30.5 3-[2-amino-6-(2-methylphenyl)quinolin-3-yl]-

N-(3,3-dimethylbutyl)propanamide
 

N-O:Asp228, Asp32, Gly34 

Hydrph:Tyr71, Val69, Ile118, Leu30, 

Phe108 

3tpp 

5HA 

-35.6 N-[(1S,2R)-1-BENZYL-3-

(CYCLOPROPYLAMINO)-2-

HYDROXYPROPYL]-5-

[METHYL(METHYLSULFONYL)AMINO] 

-N'-[(1R)-1-

PHENYLETHYL]ISOPHTHALAMIDE 

C31 H38 N4 O5 S 

Asp 32, Asp 228 Gln 73 Phe 108,  

Gly 34 Asn 233 Gly 230, , Leu 30  

Trp 115, Thr231Gly230, Gln12 Thr232 Gly 

13 

4lc7 

1WP 

-24.64 (3aR,7aR)-3a-[3-(5-chloropyridin-3-yl) 

phenyl]-3a,4,5,6,7,7a-hexahydro-1,3-

benzoxazol-2-amine  

Asp93, Asp289, Tyr 132 Leu 91 
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 The aryl group on the opposite end makes hydrophobic interactions with Phe108, 

Gly13, Gln12 and Leu30. The oxygen of the peptide bond also interacts with Gln73. The 

sulfate fragment in 3TPP-5HA binds S2 as seen structure below 

 

 

 

3.3 Drug likeness 

Lipinski's rule of five was used evaluate drug likeness or determine if a compound with a 

certain pharmacological activity has properties that would make it a likely orally active 

drug in humans (Table 8).  
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Table 6: Drug likeness parameters for inhibitors under study (All rules are included) 

 

 

**Computed with XLOGP3    ++Computed with Open Babel 

 

The rule was based on the observation that most orally administered drugs are relatively 

small and moderately lipophilic. The rule predicts the absorption, distribution, metabolism 

and excretion of the compound. Lipinski's rule states that, in general, an orally active drug 

has no more than one violation of the following criteria; 

-No more than 5 hydrogen bond donors (total H_N, H_O bonds) 

-No more than 10 hydrogen bond acceptors (all N+O atoms) 

-Molecular mass less than 500 

PDB ID-

inhibitor 

M.Wt 

<500 

LogP 

<5 

PSA 

Å2 

 [47] 

No. H 

bond 

accepto

r atoms 

< 5 

No. H-

bond 

donor 

atoms 

<5 

N&O 

<10 

Number of 

Rotatable 

bonds 

No. 

rings 

>3 

5i3x-68J 590.730 7.16** 

8.18++ 

97.11 

 

3 3 

 

6 13 5 

5i3y-68K 617.55 7.18** 

8.59++ 

110 3 4 7 14 5 

5i3v-68M 404.548 4.96** 

5.89++ 

80.9 2 3  

 5 

8 3 

 

5i3w-68L 

488.902 2.77** 

4.43++ 

 

122.5

6 

1 3 

 

9 4 6 

5ie1-6BS 389.533 5.42** 

6.25++ 

 

 

68.01 

 

2  

 

2  

 

4 8 3 

 

4lc7-1WP 

328.122 3.88** 

4.23++ 

62.11 1 0 4 2 4 

 

3tpp-5HA 

597.730 3.6**  

3.86++ 

140.8 4 5 

 

9 16 4 
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-LogP less than 5 (octanol-water partition coefficient) 

-Drug likeness improved LogP (-0.4 to 5.6), molecular weight 180 to 480, Total atoms 20 

to 70 including N and O, Veber's Rule:  

 Good oral bioavailability, questioned the 500 molecular weight cutoff. Introduced PSA 

Polar surface area, no greater than 140 Å2 , and 10 rotatable bonds or less (Table 6).  PSA 

is a commonly used metric for the optimization of a drug's ability to permeate cells[49]. 

Molecules with a polar surface area of greater than 140 Å2 tend to be poor at permeating 

cell membranes. For molecules to penetrate the blood-brain a PSA less than 90 Å2 is 

usually needed[49] . Inspecting the properties of the 7 inhibitors used (Table 8), all seven 

inhibitors can be suitable drugs. 
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Table 7: The areas of hydrophobic pockets in BACE1 for each inhibitor binding [Figure 5-S]. The calculated 

energies resulting from hydrophobicity using the formula -25 cal/ Å2of surface area and comparing the 

estimated hydrophobic energy with that resulted from reported PSA[46] [50]  

 

Proteins in 

Figures 5-S 

Pockets found 

by spdv software 

Hydrophobic 

pocket area 

Å2, Volume 

Å3 

 

Hydrophobic 

E= -25x S.A 

(Å2) 

kcal/mol 

PSA 

(Å2) 

 

Estimated 

Hydrophobic 

Energy 

-25xPSA 

kcal/mol 

5i3x Bound CR3 106, 61    

 105, 75  -2.63 97.11 -2.42 

 90, 72     

 71, 45    

5i3y 93,  64    

Bound t CR3 87, 57  -2.18 110 -2.75 

 74, 48     

5ie1     

CR3, Hexane 

ring 

96, 71  -2.42 68.1 -1.7 

 82,55    

 67, 33     

5i3v 126, 107     

Bound CR3 61, 37  -1.54 80.9 -2.03 

 58, 33     

 55, 31     

3TPP no hyd 115, 71  140.8  

No hyd 74, 47 0.0   

No hyd 59, 35    

4lc7 165 , 101     

Hexane ring 100, 61 -2.52 62.11  

 89,  60    

5i3w 80,39    

Close to ring 61,35  -1.54 122.56 -3.06 

 61, 36    

 56,33    
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Inhibitors 1,2,3 and 4 , which share hydrophobic mioty (Figure 7) and the 2-aminopyridine 

fragment (Figure 7 ) in their structure,showed the best correlation with PSA with binding 

energy(∆H), Evdw, 

 E surface and E electrostatic Table 4 .  

 

 

 

 

 

 

And the vdw energy showed best correlation with PSA for these inhibitors. Inhibitors. 

1 to 6 showed best correlation with surface area energy. When structure 5 was added to the 

group, the correlation of PSA with E electrostatic improved due to the presence of  

hydrogen bond donors and acceptors in inhibitor 5 but to correlation with Esurface was not 

changedmantaing. .Analysis of energies involved in binding of  inhibitors  to BACE1 will 

aid the design of new inhibitors with more efficacy. Ligand efficiency[51][52][53] is 

calculated by scaling affinity by molecular size (Table 9). LE was introduced as a metric 

for the molecular structure to normalize the affinity with respect to molecular size by 

scaling the standard free energy of binding (ΔG°) with the number of heavy atoms (NnH), 

using the formula:  

LE (T, P, C) = - ∆G/Nnh.  
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Table 8: Correlation coeffecients of Polar surface are with each energy contribution for various inhibitors. 

 

Inhibitor PSA/∆H PSA/E vdw PSA/EGB PSA/E EL PSA/E surface PSA/E solv 

1,2,3,4,5,6,7 0.23 0.23 0.32 0.24 0.014 0.31 

1,2,3,4,5,6 0.3 0.14 0.17 0.14 0.4 0.13 

1,2,3,4,5 0.07 0.5 0.006 0.76 0.54 0.03 

1,2,3,4 0.5 0.8 0.02 0.64 0.69 0.003 

 

 

 LE values vary with conditions, a value of 0.3 or higher is considered favorable. 

LE decreases with increasing the number of heavy atoms. There is no obvious trend 

followed in the inhibitors in this work due to variation in structure. This variation 

results in high energy cost for desolvation of ligands depending on charges which 

took place. Ligand efficiency values of inhibitors were in the range of 0.09 to 0.41 

(Table 9).  

  Table 9:  Ligand efficiency (LE) and a comparison of G experimental with the calculated G values from 

MM/GBSA  

ΔG exp 

 

G bind 

Calculated 

 

LE = - 

 nh∆G/N

kcal/mol 

/heavy 

atom 

Nnh PDB ID-

inhibitor 

number 

(from 

Figure 2) 

-11.34 -19.3 0.41 44 5i3X-(1) 

-13.16 -12.4(7) 0.27 47 5i3Y-(2) 

-9.60 -7.5 (6) 0.26 29 5iE1-(3) 

-10.92 -10.66(4) 0.36 30 5i3V-(4)  

-12.9 -8.15 (4) 0.24 35 5i3W-(5) 

-9.28 -9.4 (4) 0.23 41 3TPP-(6) 

-6.8 -2.15 (5) 0.09 23 4LC7-(7) 

 

The drug-like properties when applying Lipinski’s Rule of five, Veber Rule and 

MDDR Rule changed depending on functional groups and molecular weights. There 

is a good correlation between the Gibbs free energy (∆G) calculated and the 

experimentally obtained values[46][54]. 

4. Conclusions 
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The parameters for successful drugs depend on the specificity and binding to the receptor, a 

500 molecuar weight is preferred for good absorption,  and a Kd value in the range of 1nM 

to 10nM , the potency depends on the specificity of binding (Asp)  and increased 

hydrophobic binding residues are preferred, but this comes on the account of specificity, a 

balnce between specific binding and hydrphobicity should be maintained. The higher LE, 

the more promosing is the drug binding to a specific target. 

The binding energy of drug to its target depends on a group of energies[55]; the first is 

desolvation energy needed to break the hydrogen bonds between inhibitor and solvent, then 

energy released upon binding of inhibitor to receptor and burying the inhibitor hydrophobic 

surface. Polar interactions and hydrophobic surface burial which depends on surface area 

(every 1Å2 of S.A releases approximately 25cal), see Table 6. The draw back, in the drugs 

under study, that is the limited surface area around 90 Å2 for drugs to enter brain cells. 

Differences between calculated and actual ΔG values are due to imperfect H-bonds due to 

steric factors and distance factors which result in higher E-cost for desolvation. 

 

Research on the mechanism of AD considered the BACE1 as a key enzyme which 

participates in the formation of Aβ, which broadly exists in the brains of AD patients. 

Compounds with peptidomimetic structures are effective in BACE1 inhibition according to 

experimental aspartic proteinase results in in vitro. Nevertheless, these kinds of BACE1 

inhibitors did not perform well in pre-clinical trials due to their excessive number of 

hydrogen bond donors and acceptors, which increase the polarity and further lead to a lack 

of permeability across the BBB. Based on molecular dynamics and energy studies, the 

amino acid residues Asp228 and Asp32 in the BACE1 enzyme play an important role in the 

interactions between compounds and the enzyme. Furthermore, S1, S3, S2’and other 

pockets also exhibited a central role in binding with the BACE1 inhibitors. In the light of 

these studies, compounds with amino heterocycles were designed and synthesized. The 

presence of amino and aromatic rings maintained the inhibitory ability and decreased the 

polarity of the structure at the same time. 
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MM/PBSA energies are calculated for snapshots obtained by MD simulations. Variations 

are normally solved by calculating only interaction energies, studying many snapshots and 

using several independent simulations. It has been suggested that the calculations can be 

performed by using only minimized structures, but such results may depend on the starting 

structures. Finally, MM/GBSA when compared with other ligand binding methods, showed 

reasonable accuracy.  

MM/GBSA is a popular method to calculate absolute binding affinities with a modest 

computational effort.  Energy results from six well-defined terms. However, the dielectric 

constant, parameters for the non-polar energy, the radii used for the PB or GB calculations, 

and whether to include the entropy term and whether to perform MD simulations or 

minimizations. In practice, it typically gives results of intermediate quality, often better 

than docking and scoring, but worse than FEP, for example, r2 = 0.3 for the whole PDB 

bind database, but r2 = 0.0 -- 0.8 for individual proteins. 
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table 

Figure S1 Binding mode of Inhibitor 1 in 5i3x different views 

Prediction of Drug Potencies of BACE1 inhibitors: A molecular Dynamics simulation and 

MM_GB(PB)SA Scoring 
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FigureS2: : Different views of binding of inhibitor 4 in 5i3v 

5i3V 
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Figure S3: Binding mode of Inhibitor 6 in 4LC7 Different views 
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FigureS4: protein view of inhibitor 7 in 3TPP 
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FigureS5 surface areas of inhibitors and the BACE1 surface 
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Figure S6: Views of Inhibitor 3 binding protein view (5ie1) 

 

Figure S7: views of inhibitor 2 to BACE1 (5i3Y) 
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Figure S8: 5i3W binding of inhibitor 5 to BACE1 
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Figure 69: : shows a dendogram (cluster trees) of the BACE1-Inhibitor in 5i3X 

 

Figure: shows a dendogram (cluster trees) of the BACE1-Inhibitor in 

5i3X complex employing RMSD. The Principal component analysis 

(PCA) technique transformed the trajectory frames into a set of 
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orthogonal vectors (PCs) to help explain the variance in coordinate 

space. PCs represent certain modes of motion with the first PC shows 

the largest variance and the dominant motion in the system. This 

helped to gain insight into the dynamics of the system (the actual 

motion of the system) throughout the course of a simulation which is a 

combination of the 
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