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Abstract: Increased levels of insecticide resistance in major malaria vectors such as Anopheles
funestus threaten the effectiveness of insecticide-based control programmes. Understanding the
landscape features impacting the spread of resistance makers is necessary to design suitable
resistance management strategies. Here we examined the influence of the highest mountain in
West Africa (Mount Cameroon; 4,100 meters elevation) on the spread of metabolic and target-site
resistance alleles in An. funestus populations. Vector composition varied across the four localities
surveyed along the altitudinal cline with major vectors exhibiting high parity rate (80.5%).
Plasmodium infection rates ranged from 0.79% (An. melas) to 4.67% (An. funestus). High frequencies
of GSTe2R (67% - 81%) and RdI® (49% - 90%) resistance alleles were observed in An. funestus
throughout the study area, with GSTe2R frequency increasing with altitude whereas the opposite is
observed for RdIR. Patterns of genetic diversity and population structure analyses revealed high
levels of polymorphisms with 12 and 16 haplotypes respectively for G5Te2 and Rdl. However, the
reduced diversity patterns of resistance allele carriers revealed signatures of positive selection on
the two genes across the study area irrespective of the altitude. Despite slight variations associated
with the altitude, the spread of resistance alleles suggest that control strategies could be
implemented against malaria vectors across mountainous landscapes.

Keywords: Malaria, Anopheles funestus, Insecticide resistance, Mount Cameroon.

1. Introduction

Vector control of mosquitoes is a critical part of the global strategy to manage
mosquito-associated diseases, and insecticides are the most important component in this effort. Four
insecticide classes namely organochlorines, organophosphates, carbamates and pyrethroids are
mainly recommended for use against adult mosquitoes [1]. Pyrethroids are the most widely used
insecticides for indoor spraying against mosquitoes worldwide, owing to their efficacy and safety
[2]. They are the mainly chemicals approved to treat mosquito nets [3, 4], the main tool for human
protection from malaria-carrying mosquitoes especially in Africa [1]. In the past, massive sprayings
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of insecticides greatly limited mosquito-borne diseases and even eradicated malaria in a few areas
[5, 6]. However, the widespread development of resistance in mosquitoes to the most commonly
used insecticides negatively impacted the fight against mosquitoes in many areas [7]. This has
resulted in a number of outbreaks of mosquito-borne diseases in recent years [8, 9].

In Cameroon, malaria is the leading cause of morbidity and mortality accounting for an
estimated 6.2 million clinical cases and 12,500 deaths [10]. Anopheles funestus sensu stricto (s.s.) is one
of the four major malaria vectors in the country [11, 12], being mostly prevalent in the Sudan
savanna domain. However, this species had been found transmitting Plasmodium falciparum malaria
parasite in Cameroon highlands such as the Mount Cameroon region [13] and the locality of
Santchou in the western Cameroon [14]. The resistance profile of An. funestus s.s. has previously
been explored for some populations, with multiple resistance to pyrethroids,
dichlorodiphenyltrichloroethane (DDT) and carbamates reported in the localities of the
soudano-sahelian [15-17] and forested [18, 19] zones of Cameroon. Two mutations, the L119F of the
glutathione s-transferases epsilon 2 (GSTe2) gene conferring resistance to DDT and pyrethroids [20],
and the A296S of the y-aminobutyric acid (GABA) gene implicated in resistance to dieldrin (Rdl)
[15], have been identified in An. funestus s.s. African populations. These markers have been
respectively associated to separated resistance mechanisms: the increased metabolic detoxification
of insecticides commonly known as metabolic resistance, and the decreased sensitivity of the target
proteins on which an insecticide acts, so called target-site resistance [21]. Additionally, cytochromes
P450s genes have been associated to pyrethroids resistance in the same vector [22, 23].

The spread of these resistance alleles are not uniformed across the African continent, with
A296S-Rdl and L119F-GSTe2 being present in West and Central Africa but absent in southern Africa
[15, 20], whereas the CYP6P9a/b resistance alleles present an opposite distribution [24, 25]. Presence
of barriers to gene flow has been suggested to explain the restriction in the spread of these alleles [26,
27]. Major landscape modifications such as Rift Valley have been suggested as the main
continent-wide barrier to the spread of resistance alleles in An. funestus [26, 27]. It remains to know
whether other major but local landscape modifications such as major mountain chains could also
restrict the spread of these resistance alleles. The Mount Cameroon chain with its highest peak at
4,100 meters above the sea level (m a.s.1.), is the highest mountain in West Africa and thus constitutes
a major landscape variation in the region with potential to impact patterns of gene flow between
populations of species across this region as. This potential influence on the spread of resistance
alleles across the region remains unknown.

The Mount Cameroon region is also an area of prime importance to the Cameroon agriculture
sector with industrial banana, rubber and palm plantations, activities relying on the intensive use of
agrochemicals likely to select resistance in local mosquito populations. This has already been shown
in An. coluzzii and An. gambiae which exhibit high resistance level to pyrethroids in this region [28].
Thus, similar resistance profile is expected in An. funestus vectors.

Understanding the influence of the high altitude of Mount Cameroon in the spread of resistance
alleles could help to improve the management of related resistance. Here we assess the impact of the
Mount Cameroon on the spread of both metabolic and target-site resistance by assessing the genetic
diversity of both GSTe2 and GABA receptor genes across an altitudinal transect. Based on analysis of
GSTe2 and Rdl markers, genotype and allele frequency distributions were compared between An.
funestus s.s. populations collected in four localities across the Mount Cameroon region. Furthermore,
we assessed signatures of selection these genes and established pattern of genetic structure between
the four An. funestus s.s. Beside this, the Plasmodium infection rate of An. funestus s.s. was also
assessed.
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2. Materials and Methods

2.1. Study site and adult mosquitio sampling

The Mount Cameroon is the highest active volcano in western Africa, rising from the Atlantic
Ocean at the Gulf of Guinea and having an elevation of 4095 meters above the sea level (m a.s.1.). The
study was conducted in low, mid and high altitude areas within the lowland rain forest from sea
level to 800 meters elevation across the Mount Cameroon area (precisely in the Fako division, South
west region of Cameroon), having different landscape and environmental patterns [29].
Entomological surveys were restricted at this altitudinal range (from sea level to 800 m a.s.l.) due to
previous surveys where the absence of Anopheles mosquitoes above 800 m elevation (precisely in the
localities of Bokova and Bonakanda situated between 800 and 870 m a.s.l.) was reported during four
consecutive seasons [30].

The localities surveyed during this study were: Tiko village (4°3" N, 9°22" E and elevation 9 m
a.s.l.) and Likomba (4°5" N, 9°20" E and elevation 70 m a.s.l) located in the Tiko municipality and
considered as lowlands (Tiko village and Likomba were further considered as a single collection site:
Tiko), Mutengene (4°05'57” N, 9°18'29” E, altitude 220 m a.s.l.) and Meanja (4°16" N, 9°23’ E, altitude
305 m a.s.l.) respectively located in the Tiko and Muyuka municipalities were considered as mid
altitude areas, and Likoko (4°8'41” N, 9°13'38” E, elevation 800 m a.s.l.) in the Buea municipality, a
highland area. Localities of Tiko, Likomba, Mutengene and Likoko follow an altitudinal transect on
the southwest and west edge of the mountain whereas Meanja was selected as a sided-elevated area
on the eastern edge of the mountain to assess if contrasting events occur across the mountain (Figure
1). Malaria transmission is perennial in low and mid altitude areas whereas in highland it is
heterogeneous [31, 32]. The region has an equatorial climate modified by a double influence of the
Atlantic Ocean and the mountain and it is characterized by a unique rainy season from March to
October while the dry season goes from November to February [33]. Anopheles gambiae, An. coluzzii
and An. melas sibling species of the An. gambiae s.1. complex, and An. funestus s.s. are the prevalent
malaria vectors [13, 34, 35].
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Figure 1. Map of the study area

Prior to the entomological field activities, authorisations were sought from village’s chiefs,
sub-chiefs and quarter’s heads. The permission to collect mosquitoes from households was obtained
from the household heads. Mosquito collectors were invited to sign a consent form before
participating in night collections and could withdraw whenever wanted. In addition, presumptive
malaria prophylaxes were given to them at the end of collections.
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Female adult Anopheles mosquitoes were collected from the year 2010 to 2014 (2010: May; 2011:
February-May-August-November; 2012: February-August-November; 2013: August-November;
2014: February) (Supplementary Table S1), indoor and outdoor households between 06:00 PM to
06:00 AM using the landing catch on volunteers’ technique as previously reported [35].

2.2. Species identification and Plamodium infection rate

Female Anopheles caught were morphologically identified according to the key of Gillies and de
Meillon [36], and ovaries were dissected for physiological age-grading [37]. For each specimen
identified as belonging to either the An. gambiae complex or the An. funestus group, genomic DNA
was extracted following the DNA extraction buffer protocol [38] on whole mosquitoes. Sibling
species of the An. gambige complex were distinguished using conventional PCR [39] and PCR-RFLP
[40] of the ribosomal intergenic spacer IGS of the nuclear rDNA gene, whereas members of the An.
funestus group were characterized by amplifications of the internal transcribed spacer ITS2 [41].
Mosquito infection status was assessed using TagMan assay as described by Bass, et al. [42] and
confirmed using multiplex single-round [43] and nested [44] PCR assays.

2.3. Genotyping of GSTe2 and Rdl resistance markers

GSTe2 mutation associated to DDT and pyrethroids’ resistance in An. funestus was genotyped
using an allele-specific PCR (AS-PCR) assay previously described by Tchouakui, et al. [45]. The same
was done for the Rdl mutation conferring resistance to dieldrin as described by Riveron, et al. [46].
The primers used for these assays can be found as Supplementary Table S2. Frequency distribution
of GSTe2 and Rdl genotypes and alleles were compared using the Chi-square (x?) test, with statistical
significance set at p < 0.05.

2.4. Polymorphism analysis of resistance genes

2.4.1. Genetic variability of An. funestus s.s. across the Mount Cameroon region based on GSTe2 and
RdI tull gene sequencing

Full-length sequences (all exons and introns) of GSTe2 and Rdl were individually amplified for
forty samples (ten samples per locality each: Tiko, Mutengene, Meanja and Likoko) according to
previous protocols [20, 46]. Details of the primers used are provided in Supplementary Table S2.
Thereafter, successful amplicons were purified using Exo-SAP clean up protocol (ThermoFisher
Scientific, Santa Clara, CA95051, USA) and directly sequenced on both strands. Other An. funestus
DNA samples have previously been sequenced based on GSTe2 mutation in Benin, Cameroon,
Ghana, Malawi, Mozambique and Uganda in a separated study [20]. These sequences were used in
the present study to assess the genetic variability patters of GSTe2 in An. funestus populations across
Africa. The polymorphic positions were identified through a manual analysis of sequence
chromatograms using BioEdit 7.2.5 [47] based on sequence differences in multiple alignments using
ClustalW [48]. Genetic diversity parameters (number of polymorphic sites S*, number of haplotypes
h, haplotype diversity Hd, Synonymous mutations Syn, Non-synonymous mutations Nsyn,
nucleotide diversity m, mean number of nucleotide differences k; Tajima D and Fu and Li F*
statistics) were computed using dnaSP 5.10 [49]. Haplotype networks were then built using the TCS
program [50, 51] to assess the connection between haplotypes. The level of pairwise genetic
differentiation were estimated using the Ksr statistics [52] as implemented in dnaSP 5.10. The
significance of the Ksr estimates were assessed by permutation of subpopulation identities and
re-calculating Ksr 10,000 times.

2.4.2. Phylogenetic trees of haplotypes

Prior to the construction of the Maximum-Likelihood (ML) phylogenetic trees for GSTe2 and
Rdl haplotypes, the best-fit substitution model for each dataset was assessed based on the Bayesian
Information Criterion (BIC) in MEGA 10.1.6 [53]. These analyses indicated that the Tamura
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3-parameter, Kimura 2-parameter and Hasegawa-Kishino-Yano models best described GSTe2
haplotype dataset of Mount Cameroon, GSTe2 haplotype dataset for Africa-wide analysis and Rdl
haplotype dataset, respectively. These models were then used to build the respective ML tree using
MEGA 10.1.6 with 500 bootstrap replications for the robustness of the trees. Neighbour-Joining trees
were also constructed with pairwise Gsr genetic distances [54] between subpopulations still in
MEGA 10.1.6.

3. Results

3.1. Mosquito species composition

A total of 4,911 female mosquitoes were collected across the study localities during the four
seasons of collections (Supplementary Figure 51 and Table S1). Four mosquito genera were found
present in the Mount Cameroon region, these are: 13.5% Mansonia spp., 19.9% Culex spp., 1.6% Aedes
spp. and 65% Anopheles spp. The highest number of mosquitoes was collected from Mutengene (n =
2,094) and the least number from Likoko (n = 319). A significant difference based on Chi-square test
was noted in mosquito distribution between all four sites (p < 0.0001).

Morphological identification of the 3,194 females Anopheles revealed that they mostly belong to
two major malaria vector species, An. gambiae complex (86%) and An. funestus group (12.2%) and
three secondary vector species (1.6% An. hancocki, 0.2% An. nili sl. and 0.03% An. ziemanni)
(Supplementary Figure S2), with a significant difference noted in the frequency distributions of
Anopheles sp. between localities (p < 0.0001). PCR-species identification performed from 3,135
females morphologically identified as An. gambiae s.l. and An. funestus s.l. revealed that three An.
gambiae siblings coexist in the study area: An. coluzzii (44.7%), An. gambiae (28.6%) and An. melas
(12%), in addition to 23 hybrids An. coluzzii x An. gambiae (0.7%). Whereas, all An. funestus s.l.
individuals were identified as An. funestus s.s.

3.2. Parity and Plasmodium infection rates

Of the 3,135 female Anopheles identified as either An. funestus s.s. or belonging to the An. gambiae
complex, the tracheal filament of 2,490 (79.4%) were analysed for physiological age determination
(parity rate). Of these, 2,004 (80.5%) dissected females were found parous (Supplementary Figure
S53). The highest parity rate was observed in An. melas (87%; 301/346), whereas 82.5% (558/676) An.
gambiae, 81% (243/300) An. funestus s.s., 77.2% (885/1147) An. coluzzii and 76.2% (16/21) An. coluzzii x
An. gambige hybrids were detected parous. Parity rates showed significant differences between
dissected mosquito species (p = 0.003) and between the surveyed localities except for the lowland
Tiko and Likoko highland (p = 0.764).

Similarly, a total of 2,746 An. gambiae s.1. specimens and 364 An. funestus s.s. were screened for P.
falciparum (falcip+) and P. ovale/P. vivax/P. malariae (OVM+) using TagMan assay on genomic DNA
extracted from whole mosquitoes (Supplementary Figure S3). An overall infection rate (IR) of 2.35%
(73/3110) was obtained, with An. funestus s.s. being more infected (4.67%, 17/364) while 0.79% An.
melas (3/381), 1.61% An. coluzzii (23/1428), 3.17% An. gambiae (29/914) and 4.35% An. coluzzii x An.
gambige hybrids (1/23) were tested positive for Plasmodium spp. infection. Of the 73 Anopheles
mosquitoes tested positive for Plasmodium spp. infection, 57 mosquitoes were falcip+ (78.1%), 14
OVM+ (19.2%) and 2 were Pf/OVM+ (2.7%). The multiplex PCR assays performed with infected
mosquitoes confirmed TagMan results and determined that the 16 OVM+ individuals specifically
corresponds to 15 P. malariae and one P. vivax. Mosquitoes presenting mixed infection Pf/OVM+
were mix-infected with P. falciparum and P. malarige. A significant difference was noted between the
infection rates of the different Anopheles species tested (p = 0.04). However, no significant differences
were observed in mosquito’s infection rates between Tiko/Meanja (p = 0.203) and Mutengene/Likoko
(p=0.863).
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3.3. Detection of mutations associated to DDT and dieldrin resistance in An. funestus s.s. mosquitoes

The presence of GSTe2 and Rdl mutations was investigated respectively in 339 and 218 An.
funestus s.s. specimens across the study area. Genotyping results showed high frequencies of GSTe2R
(66.7% - 97.1%) (Error! Reference source not found.A) and RdAIR (68.4% - 90%) (Error! Reference
source not found.B) resistance cases in An. funestus s.s. populations, with an overall resistant cases
estimated at 93.5% (317/339) for GSTe2 gene and 74.3% (162/218) for Rdl gene. It was interesting to
note that land elevation seems to reversely influence the occurrence of both mutations across the
study area. In fact, the frequency of GSTe2 resistant population increased with altitude whereas the
occurrence of dieldrin resistant specimens decreased with altitude. Conversely, while the frequency
of GSTe2 susceptible specimen decreased with altitude, the proportion of dieldrin susceptible
mosquitoes increased with climb in altitude. However, no significant differences based on
Chi-square test were noted in the overall distribution of both markers in An. funestus s.s. populations
across the study area (GSTe2 p = 0.446 and Rdl p = 0.543).
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Figure 2. Frequency distribution of GSTe2 (A) and Rdl (B) mutations in An. funestus s.s. populations
from the localities surveyed.

Specifically, GSTe2 mutation had an overall frequency of 64.3% (218/339) for homozygote
resistant mosquitoes (RR) and 29.2% (99/339) heterozygotes (RS) whereas 6.5% (22/339) were
homozygotes susceptible (SS). A predominance of homozygote resistant genotypes was observed
throughout the study area being 50% (3/6) in Tiko, 68.2% (180/264) in Mutengene, 45.7% (16/35) in
Meanja and 55.9% (19/34) in Likoko (Error! Reference source not found.A). Interestingly, an
increase in the frequencies of GSTe2 heterozygotes was noted with the climb in altitude whereas the
occurrence of susceptible mosquitoes decreases with land elevation. Meanwhile for Rdl mutation,
although homozygotes resistant mosquitoes almost dominated across the study area (Tiko: 90%
(9/10), Mutengene: 40.6% (25/128), Meanja: 64.3% (27/42), Likoko: 28.9% (11/38)), frequencies of
heterozygotes and susceptible mosquitoes followed reverse tendencies than that of GSTe2. Here, the
frequencies of heterozygotes seemed to decrease with altitude while the occurrence of susceptible
mosquitoes increased with land elevation. For both makers, Chi-square test statistical analysis of
genotype frequency distributions between localities showed significant differences except in
Tiko/Meanja (GSTe2: p = 0.273, Rdl: p = 0.244), Mutengene/Likoko (GSTe2: p = 0.17, Rdl: p = 0.423) and
Meanja/Likoko (only GSTe2: p = 0.354).


https://doi.org/10.20944/preprints202011.0277.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted

: 9 November 2020

do0i:10.20944/preprints202011.0277.v1

(A) (B)
RR rRs M ss R M s
100+ GSTe2 Lo- GSTe2
0.81
. 80 0.8 0.76
X 68.2 - 0.67
> 60 45.7 55.9 2 o0.6d4058
50 [J]
=
o A/ 42.9 1.2 = 0.42
=] - -
> 40 33.3 o 04 0.33
o 26.1 v 0.24
“ 204 1s. 0.2 OLS
11.4
H 2.9
0 . 0.0
Tiko Mutengene Meanja Likoko Tiko Mutengene Meanja Likoko
(9 - 70) (220) (305) (800) (9 -70) (220) (305) (800)
Rdl
1009 Rdl 1.09
90 0.9
o~ 80 0.8 0.73
E\./ 64.3 >
> 607 2 0.61 0.57 0;1
° g 0.49
o 0.43
40.6 . o
a_ 409 32 39 531 6 ] 0.4
o 27.3 19 28.9 1 w 0.27
“ 204 16.7v 0.2
10 0.1
o Il
0 0.0
Tiko Mutengene Meanja Likoko Tiko Mutengene Meanja Likoko
(9 -70) (220) (305) (800) (9 -70) (220) (305) (800)

Figure 3. Genotype (A) and allele (B) frequency distributions of GSTe2 and Rdl mutations in An.
funestus s.s. populations for the different localities surveyed (altitude in m a.s.l.).

Analysis of the allele frequencies of GSTe2 and Rdl mutations in An. funestus s.s. populations
from the four localities revealed same pattern than those obtained with genotyping results (Error!
Reference source not found.B). GSTe2® and RdIR resistant alleles were predominantly represented in
almost all the collection sites except in Likoko where the RdIS susceptible allele was predominant
(with a frequency of 0.51). However, both markers showed contrary evolution in their alleles’
frequency distributions when considering land elevation. For resistant alleles, while the frequency of
GSTe2R seemed to increase with altitude, RdIR frequency decreased with altitude. Rather for
susceptible alleles, as the GSTe2S frequency is decreasing with altitude, the RdIS increased with land
elevation.

3.4. Analysis of the polymorphism of GSTe2 and Rdl genes across Mount Cameroon An. funestus s.s.
populations

3.4.1. Sequence analysis of full length GSTe2 and Rdl genes

GSTe2 and Rdl full length fragments were successfully amplified in 36 and 34 (respectively for
both makers) An. funestus s.s. genomic DNA samples with specific primers for both mutations
(Error! Reference source not found.2). The alignment and comparison of sequences obtained with
that referenced in Genbank confirmed the presence of glutathione S-transferase Epsilon 2 protein of
An. funestus (AHC31021.1) and exon 7 encoding the M2 transmembrane domain region of An.
funestus GABA-receptor gene (AZB49494.1) respectively for GSTe2 and Rdl amplicons.

A point mutation (CTT to TTT) at position codon 119, inducing an amino acid change of leucine
to phenylalanine (L119F) and which confers resistance to pyrethroids in An. funestus s.s. mosquitoes
was observed in all GSTe2 resistant samples of the Mount Cameroon (Figure 4A). Likewise, the GCA
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(alanine) to TCA (serine) mutation at position codon 296 (A296S) was observed in An. funestus s.s.
dieldrin resistant samples (Figure 4B).
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Figure 4. Sequence chromatograms of a 729 bp fragment in GSTe2 gene (A) and a 1006 bp fragment

of the GABA-receptor gene (B); for susceptible (top), homozygote resistant (middle) and
heterozygote (bottom) An. funestus s.s.

3.4.2. Haplotype distribution of the G5Te2 gene

A total of 14 variable or polymorphic sites which led to the formation of 12 haplotypes were
observed within the 729 bp fragment of GSTe2 gene of An. funestus s.s. moquitoes across the Mount
Cameroon region (Figure 5A and Table 1). The nucleotide sequences of the haplotypes were
submitted to Genbank (accession numbers: MN562756, MN562757, MN562760, MN562764 —
MN562766, MN562768 — MN562771, MN562774 and MN562775).

Overall, the GSTe2 polymorphism level was average (haplotype diversity: Hd = 0.56). The
number of haplotypes (h) and its associated diversity indice (Hd) seemingly decreased (0.68 — 0.51)
from the lowland Tiko (9 — 70 m a.s.l.) to Likoko situated at the highest altitude (800 m a.s.L).
Samples carrying L119 susceptible allele were found highly polymorphic (h =9 and Hd = 0.91) as
compared to 119F resistant allele carriers (h =5 and Hd = 0.36).

Table 1. Genetic variability parameters of GSTe2 full mutation.

Samples N S* h (Hd) Syn NSyn T (k) D F*
Per allele
S 18 11 9 (0.91) 4 2 (D61E, L119F)  0.003 (2.69) -0.84~  -0.70"
R 54 6 5 (0.36) 2 1 (L119F) 0.001 (0.60) -1.36"  -0.27
Per locality
(altitude in m a.s.l.)
Tiko (9 - 70) 12 8 6 (0.68) 4 1 (L119F) 0.003 (1.97) -1.38s  -1.77n
Mutengene (220) 20 8 7 (0.58) 4 1 (L119F) 0.002 (1.38) -1.31»  -2.13
Meanja (305) 20 7 5 (0.56) 2 2 (D61E, L119F)  0.001 (1.04) -1.55"~  -2.54rs
Likoko (800) 20 7 5 (0.51) 1 1 (L119F) 0.002 (1.32) -1.40= -0.76™
All 72 14 12(0.56) 6 2 0.002 (1.36) -1.62  -1.02~

N = number of sequences (2n); S*, number of polymorphic sites; h, number of haplotypes (Hd = haplotype
diversity); Syn, Synonymous mutations; Nsyn, Non-synonymous mutations; 7, nucleotide diversity (k = mean
number of nucleotide differences); D and F* Tajima’s and Fu and Li’s statistics; ns, not significant; S =
susceptible; R = resistant; m a.s.l. = meters above the sea level.

Haplotype networks (Figures Figure 5B and Figure 5C) were built using TCS software. In one
hand, haplotype network representation with respect to collection sites (Figure 5B) showed the
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presence of a unique major haplotype (H2: 47/72 sequences) distributed from lowland to highland
across the study area. The ancestral haplotype (H1) appeared in lowland (Tiko: 9 — 70 m a.s.l.; one
sequence) and midlands (Mutengene: 220 m a.s.1., 2 sequences and Meanja: 305 m a.s.l., 4 sequences)
but not in highland (Likoko: 800 m a.s.l.). Three haplotypes (H4, H9 and H11) were half-shared
between Tiko and Mutengene located at 9 to 220 m a.s.l; another one haplotype (H3) was
concomitantly found in both Tiko (9 — 70 m a.s.1.; one sequence), Meanja (305 m a.s.l.; one sequence)
and Likoko (800 m a.s.l.; 2 sequences), and one other (H5) only found in Meanja (one sequence) and
Likoko (2 sequences). Out of the twelve haplotypes identified, five occurred as singletons and were
distributed as follows: two (H10 and H12) in Mutengene (220 m a.s.l.), one (H8) in Meanja (305 m
a.s.l.) and two (H6 and H7) in Likoko (800 m a.s.l.) (Figure 5A).

(A) HAP  Freq 00011112223345

37800372785718

49335759196382
H1(R/S) 7 TGACATTTGCTGCT Tik,Mut,Mea (F
H2(R/S) 47 ....ooon.... T. Tik,Mut,Mea,Lik .
H3(R) Tik,Mea,Lik Meanja
H4 (S) Tik,Mut —i "
H5 (S) Mea,Lik Likoko
H6 (R) Lik
HT(S) Lik Mutengene
H8 (S) Mea .
HO (R) Tik,Mut Tiko
H10(S) Mut R
H11(S) Tik ,Mut 0.0050

[IResistant [l Susceptible

[ Tiko I Meanja
[ Mutengene [ Likoko

Figure 5. Genetic diversity and polymorphism patterns of GSTe2 DNA sequences across the Mount
Cameroon. (A) Haplotype diversity patterns of the 729bp GSTe2 fragment in Tiko (Tik), Mutengene
(Mut), Meanja (Mea) and Likoko (Lik); H = haplotype; R = resistant; S = susceptible; polymorphic
sites are in red. TCS haplotype networks showing haplotype’s generation within GSTe2 gene in An.
funestus s.s with respect to localities (B) and allelic profiles (C): haplotypes are presented in circular
shape scaled to reflect their respective frequencies; Ancestral haplotype in red. Maximum likelihood
phylogenetic trees of GSTe2 DNA sequences among localities (D) and allelic profiles (E) showing an
apparent separation between susceptible samples and resistant ones. (F) Neighbour-joining tree of
the genetic distances showing a genetic relatedness to the landscape along the Mountain altitudinal
transect with Tiko and Mutengene (9 — 220 m a.s.l,, both located on the southwest edge) clustering
together than Likoko (800 m a.s.l., west edge) and Meanja (305 m a.s.l,, eastern edge).
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Comparatively, haplotype network representation with respect to the allele type (either
susceptible or resistant) carried by the sequences analysed (Figure 5C) showed that out of the twelve
haplotypes recorded only two (H1 and H2) were common to both L119 and 119F carriers whereas
three haplotypes (H3, H6 and H9) were strictly found in 119F carriers and the remaining seven
haplotypes (H4, H5, H7, H8, and H10 — H12) appeared only in L119 carriers. It was noted that
common haplotypes to both L119 and 119F carriers were predominantly found in resistance
sequences (H1: 4 sequences of 119F and 3 sequences of L119; H2: 41 sequences of 119F and 6
sequences of L119). Also, out of five haplotypes which appeared as singletons, four were strictly
associated to L119 carriers (H7, H8, H10 and H12) whereas only one haplotype (H6) originated from
a 119F carrier.

Evidence of selection acting on GSTe2 gene could be noted as 119F-resistant allele carriers
exhibited low diversity parameters (h = 5, Hd = 0.36 and = = 0.001), unless negative and
non-significant values were obtained from Tajima D and Fu and Li F* neutrality tests (Table 1).

e  Gste2 gene Africa-wide analysis

The alignment of the 72 GSTe2 sequences analysed in the present work with 90 other sequences
[17] carrying the same mutation and previously reported in Africa (Malawi: 18 sequences,
Mozambique: 10 sequences, Uganda: 10 sequences, Benin: 24 sequences, Ghana: 16 sequences and
North Cameroon: 12 sequences) revealed the presence of a total of 58 polymorphic sites resulting to
the formation of 53 haplotypes across Africa (Supplementary Figure S4 and Table S3). The most
prevalent haplotype H18 (48/162 sequences) appeared in both L119-susceptible (8 sequences) and
119F-resistance (40 sequences) allele carriers. It was shared by Mount Cameroun (8 sequences of
L119 and 39 sequences of 119F) and Ugandan (one 119F-sequence) populations (Supplementary
Figure S5). Another major haplotype H3 (16/162 sequences) was found in both L119 (11 sequences)
and 119F (5 sequences) allele carriers of Mount Cameroon (two L119 and five 119F sequences),
Malawi (six L119-sequences), Mozambique (two L119-sequences) and Uganda (one L119-sequence);
whereas two minor haplotypes still observed in L119 and 119F allele carriers were one shared by
Mount Cameroon/Malawian samples (H4: one L119 sequence from Malawi and one 119F sequence
from Mount Cameroon-Mutengene) and the other only noted in the Mount Cameroon area (H50:
one L119-Mutengene sequence and one 119F-Tiko sequence). TCS haplotype networks also showed
the presence of a major resistant haplotype (H26: 32/162 sequences) restricted to West and Central
African populations (22 in Benin, 5 in Ghana, 4 from Mont Cameroon and one from North
Cameroon). Overall, it was noted a high proportion of singletons (39/53 haplotypes) being mostly of
L119-suceptible allele carriers (30/39 haplotypes); thus suggesting a high polymorphism with
reduced numbers of mutational steps, in addition to a signature of selection within the GSTe2 gene
across some An. funestus African populations where a GSTe2-based resistance to pyrethroids/DDT
has been reported (haplotype diversity, Hd = 0.86; nucleotide diversity 7 = 0.005; Tajima D = - 2.03
with p <0.05) (Supplementary Figures S4 and S5 and Table S3).

The construction of maximum-likelihood (ML) phylogenetic trees revealed that haplotypes
cluster according to allelic profiles and irrespectively of their geographical origin. Rather, on a
neighbour-joining (NJ) distance tree Mount Cameroon clustered alongside the North Cameroon An.
funestus s.s. population, whereas the East-South (Uganda — Malawi and Mozambique) and West
(Benin and Ghana) African populations formed separated clusters (Supplementary Figure S5).

3.4.3. Haplotype distribution of the GABA-receptor gene across Mount Cameroon populations of
An. funestus s.s.

Analysis of 68 sequences for the 1006 bp fragment of the GABA-receptor gene (accession
numbers: Genbank MN562780 — MN562795) showed the presence of 16 polymorphic sites and the
formation of an equal number of haplotypes (Figure 6A and Table 2). Genetic variability parameters
with respect to allelic profiles and among the four tested An. funestus s.s. populations showed that
the high number of haplotypes occurred in A296-susceptible allele carriers (h = 10, with an
equivalent high haplotype diversity Hd = 0.90) and for the localities of Mutengene (at 220 m a.s.l, h=
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9 and Hd = 0.85) and Likoko (at 800 m a.s.l, h = 7 and Hd = 0.83) while the lowest number of
haplotypes was found in Tiko (h =1, Hd = 0.00) at the lowest base of the Mount Cameroon (9 — 70 m
a.s.l.) with no polymorphic site detected.

Table 2. Genetic variability parameters of Rdl full mutation.

Samples N S h(Hd) Syn NSyn e (k) D F*
Per Allele
S 25 11  10(0.90) 0 0 0.003 (2.53)  -0.44~ - 0.53n
R 43 6 6 (0.30) 1 0 0.0005 (0.54) - 1.61~ - 1.65
Per locality
(altitude in m a.s.l.)
Tiko (9 - 70) 12 0 1 (0.00) 0 0 0 (0.00) n.a. n.a.
Mutengene (220) 20 9 9(0.85) 1 1(A296S)  0.002(1.97) -076m  -0.39
Meanja (305) 20 10 6(0.68) 0  1(A296S)  0.002(2.00) -1.02%  0.04
Likoko (800) 16 8 7 (0.83) 0 1 (A296S) 0.002 (2.38) - 0.05™ - 0.21n

All 68 16 16 (0.71) 1 1 0.002 (1.85) -1.32ms - 1.870s
N = number of sequences (2n); S*, number of polymorphic sites; h, number of haplotypes (Hd = haplotype

diversity); Syn, Synonymous mutations; Nsyn, Non-synonymous mutations; 7, nucleotide diversity (k = mean
number of nucleotide differences); D and F* Tajima’s and Fu and Li’s statistics; ns, not significant; S =
susceptible; R = resistant; m a.s.1. = meters above the sea level.

The most common haplotype (H2: 36/68 sequences) was found to be carrying the 296S-resistant
allele and was distributed throughout the study area (Figure 6A, Figure 6B and Figure 6C), unlike
the ancestral haplotype (H4: 6/36 sequences) which carried the A296-susceptible allele and
distributed at low (Tiko: 9 — 70 m a.s.l.) and mid (Mutengene: 220 m a.s.l; Meanja: 305 m a.s.l.)
altitude but not in highland (Likoko: 800 m a.s.l.). Approximately one third of the haplotypes (6/16)
appeared as singletons shared half by A296 (H6, H12 and H13) and 296S (H7, H8 and H15) allele
carries, and identified from mid (Mutengene: H12, H13 and H15; Meanja: H8) to highland (Likoko:
H6 and H7).
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H3(8) 3 G ATOT.. .. Li
Bas) &

HS |H12

[
o \ H15
HB\"(LH16 \ H8

[ Tiko B Meanja
[ Mutengene B Likoko

(F) ME h11 (C)
Likoko I ;!"

Mutengene
Meanja
Tiko

[IResistant Il Susceptible

Figure 6. Genetic diversity and polymorphism patterns of the GABA-receptor gene across the Mount
Cameroon area. (A) Haplotype diversity patterns of a 1006bp fragment of the GABA-receptor gene in
Tiko (Tik), Mutengene (Mut), Meanja (Mea) and Likoko (Lik); H = haplotype; R = resistant; S =
susceptible; polymorphic sites are in red. TCS haplotype networks showing a high polymorphism of
the GSTe2 gene in An. funestus s.s with reduced number of mutational steps between haplotypes
with respect to localities (B) and allelic profiles (C); haplotypes are presented in circular shape scaled
to reflect their respective frequencies; Ancestral haplotype in red. Maximum likelihood phylogenetic
trees of Rdl-DNA sequences among localities (D) and allelic profiles (E) showing a marked
separation between A296 and 296S allele carriers. (F) Neighbour-joining tree of the genetic distances
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showing an apparent genetic relatedness associated with the altitude along the Mount Cameroon
with Tiko being genetically differentiated from other localities.

Overall, there were negative and non-significant values of the selection test from Tajima D and
Fu and Li F* (Table 2). However, the positive but not significant F* in Meanja (F*: 0.04), in addition to
low values of haplotype and nucleotide diversity recorded in 296S-resitant allele carriers (Hd = 0.30
and = = 0.0005 respectively) could be indicators of an ongoing selection acting on the GABA receptor
gene within the Mount Cameroon An. funestus s.s. populations.

3.5. Population structure at GSTe2 and Rdl mutations in An. funestus s.s. across Mount Cameroon

Analysis of the genetic structure at the 729bp GSTe2 fragment supported the genetic variability
observed between low (Tiko), mid (Mutengene and Meanja) and highland (Likoko). Construction of
the maximum likelihood (ML) phylogenetic tree with respect to localities (Figure 5D) showed the
presence of major consensus cluster across the Mount Cameroon, in addition to three apparent
separated clusters formed by haplotypes of low- to midland, midland and mid- to highland.
Whereas the construction of ML tree with respect to allelic profile (Figure 5E) highlighted the
reduced diversity of 119F resistant allele carriers across the study area. The patterns of clustering
according to locations was further supported by low values of genetic differentiation estimates
(-0.0006 < Kst < 0.010; all not significant) obtained between the four localities tested and the Nm gene
flow index which showed a marked genetic closeness between Tiko/Mutengene (low- and midland)
and Meanja/Likoko (mid- and highland) as illustrated on the NJ tree of genetic distances (Figure 5F
and Table 3).

Table 3. Patterns of genetic differentiation between An. funestus s.s. populations based on Ksr
estimates from GSTe2 mutation with (Nm).

Tiko Mutengene Meanja
Mutengene - 0.0277 (0.00)
Meanja 0.002"s (57.05) 0.003s (43.40)
Likoko - 0.0077 (0.00) 0.010"s (12.19) - 0.0006" (0.00)

PERMTEST calculates Hudson’s Ksr statistic of genetic differentiation. Ksr is equal to 12KS/KT, where KS is a
weighted mean of K1 and K2 (mean number of differences between sequences in subpopulations 1 and 2,
respectively) and KT represents the mean number of differences between two sequences regardless of their
subpopulation; ns, not significant.

Similarly, analysis of the ML phylogenetic tree at the GABA —receptor for Rdl mutation based
on localities highlighted the presence of a main consensus cluster across the Mount Cameroon and
three other apparent clusters generated by midland, mid-/highland and highland haplotypes (Figure
6D). Whereas the ML tree with respect to allelic profiles highlighted the marked reduced diversity of
296S resistant allele carriers (Figure 6E). The construction of a NJ tree of genetic distance (Figure 6F)
revealed that the lowland Tiko clusters separately from other localities aligned following the same
altitudinal transect (Mutengene and Likoko) or situated eastward of the mountain (Meanja), all at
higher elevation level (200 — 800 m a.s.l.). This latter observation was further supported by the
consistency of high and significant values of genetic differentiation estimates observed between Tiko
and the other three localities (0.037 < Ksr < 0.158) (Table 4).
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Table 4. Patterns of genetic differentiation between An. funestus s.s. populations based on Ksr
estimates from Rdl mutation with (Nm).

Tiko Mutengene Meanja
Mutengene 0.125** (1.24)
Meanja 0.037* (2.08) 0.0098" (15.82)
Likoko 0.158** (1.16) 0.007"s (25.82) 0.035* (14.54)

PERMTEST calculates Hudson’s Ksr statistic of genetic differentiation. Ksr is equal to 12KS/KT, where KS is a
weighted mean of K1 and K2 (mean number of differences between sequences in subpopulations 1 and 2,
respectively) and KT represents the mean number of differences between two sequences regardless of their
subpopulations. ¥, 0.01 <P <0.05; **, 0.001 < P <0.01; ns, not significant.

4. Discussion

The implementation of effective insecticide resistance management strategies relies on the good
understanding of the direction and speed of spread of resistance alleles among mosquito
populations. This study assessed the influence of the Mount Cameroon on the spread of both
GST-mediated metabolic resistance and Rdl-based target-site resistance among population of An.
funestus s.s. malaria vector.

Results from this study correlates with observations from previous reports [35, 55] indicating
the predominance of Anopheles mosquitoes within the overall mosquito fauna found in the Mount
Cameroon region. Anopheles mosquitoes were collected throughout the study area (from lowland to
highland), and a total of seven Anopheles species were identified; these included: sibling species (An.
coluzzii, An. gambiae and An. melas) of the An. gambiae sensu lato (s.l.) complex, An. funestus s.s., An
hancocki, An. nili and An. ziemanni. The same species have already been found in other elevated areas
such as those of the western [14] and north-western Cameroon [56]. Anopheles funestus s.s. appeared
as the second dominant vector species after An. gambiae s.l., confirming previous reports in these
sites [13, 57]. Overall, An. funestus s.s. abundance increased from the coastal lowland Tiko to Likoko
highland, with relatively high abundances observed in mid-altitude areas (Mutengene and Meanja)
probably due to its larval habitat preference. Breeding sites of An. funestus s.s. are limited to large
permanent waters with aquatic vegetation [58-60], habitats which are quite abundant in Mutengene
and Meanja areas [57].

In the Mount Cameroon area, An. funestus s.s. vector seemed to supplement malaria
transmission more than An. gambiae s.1. vectors especially during the dry season months (November
— February). This attested the role of An. funestus s.s. in bridging the gap of malaria transmission
between rainy and dry seasons [58], and compensating the lack of malaria transmission induced by
microclimatic conditions in highlands [14].

The genotyping of GSTe2-based DDT resistance maker showed the presence at high frequencies
of GSTe2R genotypes and alleles in all An. funestus s.s. populations tested throughout the Mount
Cameroon altitudinal gradient (7 — 800 m a.s.l.). This presence of GST-based metabolic resistance
was further confirmed after sequencing by the detection of a single substitution of nucleotide at
position 119 inducing an amino acid change of leucine (CTT) to phenylalanine (TTT) [20]. GST-based
metabolic resistance is common in a number of anopheline species including An. gambiae s.1. [61, 62]
and An. funestus s.s. [16, 45, 63], reflecting the heavy use of DDT and pyrethroids for malaria control
over several decades [7, 64]. In Cameroon, the intensive use of these insecticide classes to control
agriculture pests especially in agroecosystems such as those found in the Mount Cameroon region
(especially Tiko, Mutengene and Meanja in this study), may have contaminated mosquitoes
breeding sites, thus exerting significant and constant selection pressure on Anopheles populations
[55].

Similarly, An. funestus s.s. populations from the Mount Cameroon exhibited high levels of
mutations in the Rdl gene which encoded for the GABA-receptor subunit. Dieldrin resistance have
already been documented in insect species [65] including the malaria vectors An. stephensi [66], An.
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gambiae s.1. [67] and An. funestus [15]. In Cameroon, high frequencies of Rdl mutation have also been
reported in areas other than the Mount Cameroon region [16, 46, 68, 69] despite the fact that
cyclodienes are no longer used for control programs. Moreover, observations made in this study
raise concerns on the use of agrochemicals targeting the GABA-receptor in the agricultural
environment. Thus, understanding the factors which could possibly explain the persistence of this
resistance in Awn. funestus populations are greatly needed in order to get insights on resistance
management.

Thirty-nine percent (132/339) of An. funestus s.s. tested specimens were found carrying both
GSTe2Rand RdI® alleles simultaneously, confirming report of Menze, et al. [16] who had identified
multiple resistance markers in An. funestus s.s. populations from Gounougou, in the Northern part of
the country. The extensive use of agrochemicals for crop protection coupled to long lasting
insecticidal nets (LLINs) massively distributed since 2011 for public health activities through the
National Malaria Control Program of the Ministry of Public Health, might have also greatly
influenced the selection of these mutations in vector populations. However, investigations are
required on the frequency and distribution of metabolic and target-site resistant alleles as well as on
the validation of pyrethroids resistance in An. funestus s.s. populations from a thorough fully
representative sites across this agricultural domain which is highly favorable for human
implantation. These will represent an added value in further understanding the linkage between
resistance markers and the use of agrochemical and malaria public health activities.

Our results showed substantial variation in GSTe2-based and dieldrin resistance trends within
the Mount Cameroon domain. Interestingly, GSTe2R allelic frequencies increased with land elevation
whereas RdIR frequencies decreased with climb in altitude. These observations suggest that altitude
could positively favour the establishment of An. funestus GSTe2-resistant populations from mid-
(Mutengene and Meanja) to highland (Likoko) areas, unlike to dieldrin-resistant populations which
seemed to be more adapted to Tiko, the lowest elevated site of the Mount Cameroon region as
investigated in this study. Land elevation had previously been reported as one important influential
predictor of increase in pyrethroid resistance in the An. gambiae species complex in West Africa
though not in East Africa [70]. This study highlights some uncertainties of the potential influence of
altitude on the maintenance of insecticide resistances in malaria vector populations under specific
environmental conditions similar to that of the study area. In such areas, field sampling to measure
resistance is the only means of informing resistance management decisions alongside an assessment
of the historical and contemporary role of pesticide usage and the role of public health insecticide
use in the development of insecticide resistance in malaria vectors as previously reported [71].

It has been reported that landscape variations are associated with the risk of presence and
insecticide resistance for malaria vectors [72-74]. Topography and land use influence vector
densities, level of exposure to insecticide and resistance development in mosquitoes, especially in
areas with combined exposure to insecticide from agricultural and /or vector control activities [75].
Distribution of chromosomal inversions such as those found in resistance to insecticides had already
been extensively associated with latitudinal but less frequently with altitudinal changes [76-78], thus
investigations are needed in order to further elucidate the association between altitudinal changes
and the geographical distribution of insecticide resistance.

Patterns of genetic differentiation based on GSTe2 mutation revealed that Tiko (9 — 70 m a.s.l.)
and Mutengene (220 m a.s.l.) populations of An. funestus s.s. are genetically differentiated to that of
Meanja (305 m a.s.l.) and Likoko (800 m a.s.l.) as they formed a unique cluster compared to others on
the neighbour-joining tree of distance. Out of twelve haplotypes identified, An. funestus s.s.
populations from Tiko and Mutengene appeared to share six haplotypes of which three are
exclusively found in these localities. The causes of this clustering could be associated with the
similar geographical position of both populations around the Mount Cameroon (southwestern edge)
or the presence of the mountain itself which affects the population genetic structure and speed of
spread of GSTe2R allele between An. funestus s.s. populations. Patterns of GSTe2 population genetic
support the contrast in resistance patterns between An. funestus s.s. populations and further suggest
the presence of barriers to gene flow between these populations. Similar geographical barriers to the
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spread of resistance alleles has been mentioned for other resistance makers such as P450-based
metabolic resistance in An. funestus [79] or knock-down resistance (kdr) mutations in An. gambiae [9].

Comparatively, genetic variability patterns within the GABA-receptor based Rdl mutation
showed that An. funestus s.s. population from Tiko at the base of the Mount Cameroon is more
genetically differentiated to mid- and highland vector populations as it separately clusters to other
localities (Table 2). This strong differentiation observed on Rdl mutation in Tiko was confirmed by
the high and significant values of Ksr statistics of genetic differentiation obtained for An. funestus s.s.
population from Tiko (Table 4). Once more, it can be hypothesized that the presence of the Mount
Cameroon (mountain) influences the contrast in Rdl resistance patterns between populations of An.
funestus s.s. in the study area thus suggesting the presence of barriers of gene flow between An.
funestus s.s. populations. This is further supported by the reduced genetic diversities parameters (h
and Hd), positive value of Fu and Li F* index and significant Ksr statistics obtained in Meanja
midland (eastern edge of the Mount Cameroon) compared to mid- (Mutengene) and highland
(Likoko) localities of the Great West (Table 2 and Table 4). Nevertheless, investigations of more
vector populations from both sides of the Mount Cameroon are needed to validate such hypothesis.

A strong selection process was observed on both 119F and 2965 resistance allele carriers. This is
seen by the reduced genetic diversity parameters (h, Hd, = and k) with limited number of mutational
steps (polymorphic sites) between haplotypes in resistance allele carriers compared to susceptible
allele carriers which maintained high diversity parameters (Table 1 and Table 2). Analysis of ML tree
based on allelic profiles (Figure 5 and Figure 6) further illustrated the reduced diversity of resistance
allele carriers in both cases. Furthermore, the most predominant haplotype is found in 85%
(GSTe2-based mutation) to 100% (Rdl mutation) resistance allele carriers which is indicative of
ongoing selection on 119F and 296S alleles contrasting with L119 and A296 susceptible alleles which
maintained high number of singletons. Similar selection patterns have been observed in P450 [79]
and GSTe2 [20] genes in An. funestus populations from other African regions. The selection process
could be due to intensive use of insecticides through routine integrated control carried out by the
National Malaria Control Program in the Mount Cameroon region, particularly in the localities
surveyed. In addition, positive selection could also be associated with adaptation of mosquito larval
stages to agricultural pesticides and other adverse conditions, such as temperature and landscape
[80, 81].

Based on GSTe2 gene, comparing populations of An. funestus s.s. from the Mount Cameroon
region with other An. funestus African populations revealed that Cameroonian (including Mount
Cameroon and North Cameroon) populations of An. funestus seemingly present similar patterns of
genetic diversity. Despite the presence of GSTEeR allele recorded in the Mount Cameroon (at high
frequencies), high values of genetic diversity parameters were still obtained compared to that of
Benin where a marked reduced diversity was noted (Supplementary Table S3). However, the high
diversity observed in the Mount Cameroon besides high frequencies of GSTe2® allele, reflects a
situation of moderate selection of the 119F allele which could progressively change in the future to
become as Benin where the GSTe2® allele is nearly driven to fixation due to a greater selection of
resistance [20]. The high diversity obtained in Cameroon is further reinforced by the high level of
diversity in L119 susceptible allele carriers. Thereby, if selective pressure continues to act within An.
funestus populations, resistance profiles are likely to changes as previously reported for P450-based
metabolic resistance where CYP6P9a-R allele frequency increased from 7.5% in 2002 to 100% in 2017
due to scale-up of insecticidal bed-nets [82].

5. Conclusions

Broadly, this study highlights for the first time the presence of GSTe2-based metabolic
resistance and the GABA-receptor target-site mutation associated to dieldrin resistance in the
malaria vectors An. funestus s.s. across the Mount Cameroon domain. Both GSTe2® and RdI® alleles
were found with high frequencies in almost all the localities surveyed; however, the speed of spread
of these two molecular mechanisms appears to be influenced by the presence of a major
mountainous barrier, the Mount Cameroon which contrasts the resistance and diversity patterns of
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these two genes between populations of An. funestus s.s. in the study area. Furthermore, we provide
evidence of positive selection occurring on GSTe2R and RdIR throughout the Mount Cameroon
region, which if not adequately monitor could drive to fixation in response to a greater selection of
resistance in the future. This emphasizes the need of molecular studies of multiple collections sites
throughout such mountainous landscapes to fully elucidate the role of environmental changes on
the acquisition of insecticide resistance in Anopheles vector populations and to mitigate against
further spread of resistance through the development of new vector management strategies.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. Mosquito
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