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Abstract 
Dyadic data contains co-occurrences of objects, which is often modeled by finite mixture 

model which in turn is learned by expectation maximization (EM) algorithm. Objects in 

traditional dyadic data are identified by names, causing the drawback which is that it is 

impossible to extract implicit valuable knowledge under objects. In this research, I propose the 

so-called attributed dyadic data (ADD) in which each object has an informative attribute and 

each co-occurrence of two objects is associated with a value. ADD is flexible and covers most 

of structures / forms of dyadic data. Conditional mixture model (CMM), which is a variant of 

finite mixture model, is applied into learning ADD. Moreover, a significant feature of CMM is 

that any co-occurrence of two objects is based on some conditional variable. As a result, CMM 

can predict or estimate co-occurrent values based on regression model, which extends 

applications of ADD and CMM. 

Keywords: dyadic data, co-occurrence data, attributed dyadic data (ADD), mixture model, 

conditional mixture model (CMM), regression model. 

 

1. Introduction to dyadic data and mixture model 
Suppose data has two parts such as hidden part X and observed part Y and we only know Y. A 

relationship between random variable X and random variable Y is specified by the joint 

probabilistic density function (PDF) denoted f(X, Y | Θ) where Θ is parameter. Given sample 

{Y1, Y2,…, YN} whose all Yi (s) are mutually independent and identically distributed (iid), it is 

required to estimate Θ based on such sample whereas X is unknown. Expectation maximization 

(EM) algorithm is applied to solve this problem when only Yi (s) are observed. EM has many 

iterations and each iteration has two steps such as expectation step (E-step) and maximization 

step (M-step). At some tth iteration, given current parameter Θ(t), the two steps are described as 

follows: 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current parameter Θ(t), according to 

equation 1.1 (Nguyen, Tutorial on EM tutorial, 2020, p. 50). 

𝑄(Θ|Θ(𝑡)) =∑∫𝑓(𝑋|𝑌𝑖 , Θ
(𝑡))log(𝑓(𝑋, 𝑌𝑖|Θ))d𝑋

𝑋

𝑁

𝑖=1

 (1.1) 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) with subject to Θ. Note that Θ(t+1) 

will become current parameter at the next iteration (the (t+1)th iteration). 

EM algorithm will converge after some iterations, at that time we have the estimate Θ(t) = Θ(t+1) 

= Θ*. Note, the estimate Θ* is result of EM. 

Given two finite sets 𝒳 = {x1, x2,…, xN) and 𝒴 = {y1, y2,…, yM) with note that xi (s) and yj 

(s) represent 𝒳-objects and 𝒴-objects, respectively; exactly, they are names of objects. An 

observational pair (xi, yj) ∈ 𝒳 × 𝒴 is called a co-occurrence of xi and yj. Dyadic data or co-

occurrence data 𝒮 contains these co-occurrences with note that a co-occurrence (xi, yj) can exist 

more than one time. So, each co-occurrence (xi, yj) is indexed by an index r. As a result, each 

co-occurrence is denoted by the triple (xi, yj, r) and we have (Hofmann & Puzicha, 1998, p. 1): 
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𝒮 = {(𝑥𝑖 , 𝑦𝑗 , 𝑟): 1 ≤ 𝑟 ≤ |𝒮|} (1.2) 

Where, 

𝑥𝑖 ∈ 𝒳 = {𝑥1, 𝑥2, … , 𝑥|𝒳|}

𝑦𝑗 ∈ 𝒴 = {𝑦1, 𝑦2, … , 𝑦|𝒴|}
 

Of course, the size of 𝒮 is |𝒮|. As a convention, xi(r) and yj(r) indicate that 𝒳-object and 𝒴-

object at the rth co-occurrence are xi and yj, respectively. Thus, the triplet (xi, yj, r) can be 

denoted as (xi(r), yj(r), r).  

Suppose each co-occurrence (xi, yj) belongs to a latent variable C and C has K values ck (s). 

These values ck (s) are called classes or aspects and thus, mixture model for dyadic data is also 

called aspect model or latent class model which aims to discover the latent variable C. Without 

loss of generality, let ck = k where k = 1, 2,…, K. The random variable C has discrete 

distribution such that every value has an associated probability αk. Of course, there are K 

probabilities αk (s). There are three kinds of dyadic mixture model (Hofmann & Puzicha, 

Statistical Models for Co-occurrence Data, 1998, p. 2) for dyadic data such as symmetric 

mixture model (SMM), asymmetric mixture model (AMM), and product-space mixture model 

(PMM). In this section, EM algorithm is applied to build up these mixture models. 

SMM is defined as follows (Hofmann & Puzicha, Statistical Models for Co-occurrence 

Data, 1998, p. 2): 

𝑃(𝑥𝑖, 𝑦𝑗|Θ) = ∑𝛼𝑘𝑃(𝑥𝑖 , 𝑦𝑗|𝑘)

𝐾

𝑘=1

=∑𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘

𝐾

𝑘=1

 (1.3) 

By applying EM, given dyadic sample 𝒮, at some tth iteration, given current parameter Θ(t) = 

(αk
(t), pi|k

(t), qj|k
(t))T, the next parameter Θ(t+1) = (αk

(t+1), pi|k
(t+1), qj|k

(t+1))T of SMM is calculated at 

M-step as follows: 

𝛼𝑘
(𝑡+1) =

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.4) 

 

𝑝𝑖|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.5) 

 

𝑞𝑗|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.6) 

Where n(xi, yj) denotes the number of co-occurrences (xi, yj). The conditional probability P(k | 

xi, yj, Θ
(t)) of SMM is calculated at E-step according to Bayes’ rule as follows: 

𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑝𝑖|𝑘

(𝑡)𝑞𝑗|𝑘
(𝑡)

∑ 𝛼𝑙
(𝑡)𝑝𝑖|𝑙

(𝑡)𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 (1.7) 

The mixture model of dyadic data is called asymmetric mixture model (AMM) if αk (s) are only 

independent from xi or from yj. Without loss of generality, given αk (s) are only independent 

from yj (of course, it is dependent on xi), AMM is defined as follows (Hofmann & Puzicha, 

Statistical Models for Co-occurrence Data, 1998, p. 3): 

𝑃(𝑥𝑖 , 𝑦𝑗|Θ) = 𝑝𝑖𝑞𝑗|𝑖 = 𝑝𝑖∑𝛼𝑘|𝑖𝑞𝑗|𝑘

𝐾

𝑘=1

 (1.8) 
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By applying EM, given dyadic sample 𝒮, at some tth iteration, given current parameter Θ(t) = 

(αk|i
(t), pi

(t), qj|k
(t))T, the next parameter Θ(t+1) = (αk|i

(t+1), pi
(t+1), qj|k

(t+1))T of AMM is calculated at 

M-step as follows: 

𝛼𝑘|𝑖
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|

𝑗=1

 (1.9) 

 

𝑝𝑖
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.10) 

 

𝑞𝑗|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.11) 

Where the conditional probability P(k | xi, yj, Θ
(t)) of AMM is calculated at E-step as follows: 

𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘|𝑖
(𝑡)𝑝𝑖

(𝑡)𝑞𝑗|𝑘
(𝑡)

∑ 𝛼𝑙|𝑖
(𝑡)𝑝𝑖

(𝑡)𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 (1.12) 

Product-space mixture model (PMM) is derived from SMM with a minor change that the aspect 

set {1, 2,…, K} is Cartesian product of 𝒳-aspect set {1, 2,…, 𝐾𝒳} and 𝒴-aspect set {1, 2,…, 

𝐾𝒴}. In other words, the aspect space is still symmetric but is checked (stripped) according to 

two directions 𝒳 and 𝒴. 

{1,2, … , 𝐾} = {1,2, … , 𝐾𝒳} × {1,2, … , 𝐾𝒴}

𝐾 = 𝐾𝒳𝐾𝒴
 (1.13) 

For every k belongs to {1, 2,…, K}, there always exists a respective pair: 𝑘𝒳 ∈ {1,2, … , 𝐾𝒳} 

and 𝑘𝒴 ∈ {1,2, … , 𝐾𝒴}. However, for each 𝑘𝒳 or each 𝑘𝒴, there are many respective k. 

𝑘 ∼ {𝑘𝒳 , 𝑘𝒴}

𝑘𝒳~many 𝑘
𝑘𝒴~many 𝑘

 (1.14) 

The sign “∼” denotes correspondence. PMM is defined as follows (Hofmann & Puzicha, 

Statistical Models for Co-occurrence Data, 1998, p. 4): 

𝑃(𝑥𝑖, 𝑦𝑗|Θ) = ∑𝛼𝑘𝑝𝑖|𝑘𝒳𝑞𝑗|𝑘𝒴

𝐾

𝑘=1

 (1.15) 

By applying EM, given dyadic sample 𝒮, at some tth iteration, given current parameter Θ(t) = 

(𝛼𝑘
(𝑡), 𝑝𝑖|𝑘𝒳

(𝑡) , 𝑞
𝑗|𝑘𝒴

(𝑡)
)
𝑇

, the next parameter Θ(t+1) = (𝛼𝑘
(𝑡+1), 𝑝𝑖|𝑘𝒳

(𝑡+1), 𝑞
𝑗|𝑘𝒴

(𝑡+1)
)
𝑇

 of PMM is calculated 

at M-step as follows: 

𝛼𝑘
(𝑡+1) =

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.16) 

𝑝𝑖|𝑘𝒳
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘𝒳|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒳|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.17) 

𝑞
𝑗|𝑘𝒴

(𝑡+1)
=

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒴|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒴|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (1.18) 

Where (Nguyen, Learning Dyadic Data and Predicting Unaccomplished Co-Occurrent Values 

by Mixture Model, 2020, p. 10), 
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𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑝𝑖|𝑘𝒳

(𝑡) 𝑞
𝑗|𝑘𝒴

(𝑡)

∑ 𝛼𝑙
(𝑡)𝑝𝑖|𝑙𝒳

(𝑡) 𝑞
𝑗|𝑙𝒴

(𝑡)𝐾
𝑙=1

 (1.19) 

𝑃(𝑘𝒳|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) = ∑ 𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ

(𝑡))

𝑘:𝑘𝒳~𝑘

 (1.20) 

𝑃(𝑘𝒴|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) = ∑ 𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ

(𝑡))

𝑘:𝑘𝒴~𝑘

 (1.21) 

SMM, AMM, and PMM are defined in case of traditional dyadic data. The next section is main 

subject of this research where the so-called attributed dyadic data (ADD) is modeled by 

conditional mixture model (CMM). 

 

2. Learning attributed dyadic data by conditional mixture model 
In dyadic data 𝒮, if each co-occurrence of xi and yj is associated with a value z (Hofmann, 

Puzicha, & Jordan, Learning from Dyadic Data, 1998, p. 1), the triple (xi, yj, r) becomes the 

quadruplet (xi, yj, z, r) which is called valued co-occurrence of xi and yj. The value z is called 

associative value or co-occurrent value. If z is value of a variable Z then, Z is called associative 

variable. As a result, the sample 𝒮 is called valued dyadic data. Note, Z can be univariate or 

multivariate (vector). 

𝒮 = {(𝑥𝑖, 𝑦𝑗 , 𝑍, 𝑟): 1 ≤ 𝑟 ≤ |𝒮|} (2.1) 

Where, 

𝑥𝑖 ∈ 𝒳 = {𝑥1, 𝑥2, … , 𝑥|𝒳|}

𝑦𝑗 ∈ 𝒴 = {𝑦1, 𝑦2, … , 𝑦|𝒴|}
 

As a convention, Z(r) or z(r) indicates that the associative value at rth co-occurrence is Z=z. 

Thus, the quadruplet (xi, yj, Z, r) can be denoted as (xi(r), yj(r), Z(r), r). 

An extension of valued dyadic data is called attributed dyadic data in every xi has an 

attribute Xi and every yj has an attribute Yj with constraint that all Xi (s) are iid and all Yj (s) are 

iid. Of course, these attributes are considered as random variables. Let X and Y be random 

variable representing every Xi and every Yj, respectively. Note, X and Y can be univariate or 

multivariate (vector), which are called attribute variable. As a result, the sample 𝒮 is called 

attributed dyadic data (ADD). 

𝒮 = {(𝑥𝑖, 𝑋, 𝑦𝑗 , 𝑌, 𝑍, 𝑟): 1 ≤ 𝑟 ≤ |𝒮|} 

As a convention, Xr and Yr indicate that 𝒳-object attribute and 𝒴-object attribute at the rth co-

occurrence, respectively whereas Zr indicates associative variable at the rth co-occurrence. The 

attributed dyadic data 𝒮 is represented as follows: 

𝒮 = {(𝑋𝑟, 𝑌𝑟 , 𝑍𝑟): 1 ≤ 𝑟 ≤ |𝒮|} (2.2) 

Thus, each co-occurrence in attributed dyadic data is denoted as a triplet (Xr, Yr, Zr). The 𝒳-

object and 𝒴-object of Xr and Yr are denoted 𝒳(r) and 𝒴(r) which are some xi and yj, 

respectively. Here it is required to extends SMM, AMM, and PMM to represent ADD. 

The joint PDF of 𝒳-object attribute X = (x1, x2,…, xn)
T, 𝒴-object attribute Y = (y1, y2,…, 

ym)T, aspect k, and associative variable Z = (z1, z2,…, za)
T given conditional variable W  = (w1, 

w2,…, wb)
T is: 

𝑓(𝑋, 𝑌, 𝑘, 𝑍|𝑊) = 𝑓(𝑋, 𝑌|𝑘, 𝑍,𝑊)𝑓(𝑘, 𝑍|𝑊) 
Please distinguish partial random variable xj and yj here from object names xi and yj. 

Dimensions of X, Y, Z, and W are n, m, a, and b, respectively. We have: 

𝑓(𝑋, 𝑌, 𝑘, 𝑍|𝑊) = 𝑓(𝑋, 𝑌|𝑘, 𝑍,𝑊)𝑓(𝑘, 𝑍|𝑊) 
= 𝑓(𝑋, 𝑌|𝑘)𝑓(𝑘, 𝑍|𝑊) 

(Suppose the proposed model is symmetric such that f(X, Y | k) = f(X | k)f(Y | k)) 
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= 𝑓(𝑋|𝑘)𝑓(𝑌|𝑘)𝑓(𝑘, 𝑍|𝑊) 
= 𝑓(𝑘|𝑊)𝑓(𝑋|𝑘)𝑓(𝑌|𝑘)𝑓(𝑍|𝑘,𝑊) 
Thus, the joint PDF of 𝒳-object attribute X, 𝒴-object attribute Y, aspect k, and associative 

variable Z given conditional variable W is defined as follows: 

𝑓(𝑋, 𝑌, 𝑘, 𝑍|𝑊, Θ) = 𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)𝑣𝑘(𝑍|𝑊, 𝜃𝑘) (2.3) 

Where, 

𝑓𝑘(𝑊|𝛼𝑘) = 𝑓(𝑘|𝑊) 
𝑔𝑘(𝑋|𝛽𝑘) = 𝑓(𝑋|𝑘) 
ℎ𝑘(𝑌|𝛾𝑘) = 𝑓(𝑌|𝑘) 

𝑣𝑘(𝑍|𝑊, 𝜃𝑘) = 𝑓(𝑍|𝑘,𝑊) 
Of course, αk, βk, γk, and θk are partial parameters of fk(W|αk), gk(X|βk), hk(Y|γk), and vk(Z | W, 

θk), respectively. These functions are PDFs. The whole parameter is Θ = (αk, βk, γk, θk)
T. The 

PDF fk(W|αk) implies distribution of aspect k given conditional W. The two PDFs gk(X|βk) and 

hk(Y|γk) imply distributions of attributes with regard to 𝒳-object, 𝒴-object, and aspect k. The 

PDF vk(Z | W, θk) is conditional PDF of Z given W with regard to aspect k; later on we will 

know that it is more useful if it is considered as regression model. 

According to Bayes’ rule, the conditional probability of k given 𝒳-object attribute X, 𝒴-

object attribute Y, associative variable Z, and conditional variable W is: 

𝑃(𝑘|𝑋, 𝑌, 𝑍,𝑊, Θ) =
𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)𝑣𝑘(𝑍|𝑊, 𝜃𝑘)

∑ 𝑓𝑙(𝑊|𝛼𝑙)𝑔𝑙(𝑋|𝛽𝑙)ℎ𝑙(𝑌|𝛾𝑙)𝑣𝑙(𝑍|𝑊, 𝜃𝑙)
𝐾
𝑙=1

 (2.4) 

Symmetric model (SMM) for attributed dyadic data is called symmetric attributed mixture 

model (SAMM), which is defined based on the joint PDF f(X, Y, k, Z | W, Θ) and K aspects {1, 

2,…, K} as follows: 

𝑓(𝑋, 𝑌, 𝑍|𝑊, Θ) = ∑𝑓(𝑋, 𝑌, 𝑘, 𝑍|𝑊, Θ)

𝐾

𝑘=1

=∑𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)𝑣𝑘(𝑍|𝑊, 𝜃𝑘)

𝐾

𝑘=1

 

(2.5) 

Recall that the parameter of SAMM is Θ = (αk, βk, γk, θk)
T. Obviously, SAMM is an extension 

of conditional mixture model (CMM) (Nguyen, Conditional Mixture Model and Its Application 

for Regression Model, 2020) when fk(W|αk) and vk(Z | W, θk) are based on the condition W. 

SAMM is symmetric, which correspond to SMM. Here I focus on building up SAMM by 

mixture model and EM. Asymmetric model and product-space model for ADD will be 

mentioned later. 

SAMM represented by equation 2.5 will be more specific and useful if fk(W|αk), gk(X|βk), 

and hk(Y|γk) are multinormal PDFs and vk(Z | W, θk) is regressive PDF which represents 

regression model. Means and covariance matrices of fk(W|αk), gk(X|βk), and hk(Y|γk) are αk = 

(μαk, Σαk)
T, βk = (μβk, Σβk)

T, and γk = (μγk, Σγk)
T. 

𝑓𝑘(𝑊|𝛼𝑘) = (2𝜋)
−
𝑏
2|Σ𝛼𝑘|

−
1
2exp (−

1

2
(𝑊 − 𝜇𝛼𝑘)

𝑇Σ𝛼𝑘
−1(𝑊 − 𝜇𝛼𝑘)) (2.6) 

 

𝑔𝑘(𝑋|𝛽𝑘) = (2𝜋)
−
𝑛
2|Σ𝛽𝑘|

−
1
2exp (−

1

2
(𝑋 − 𝜇𝛽𝑘)

𝑇
Σ𝛽𝑘
−1(𝑋 − 𝜇𝛽𝑘)) (2.7) 

 

ℎ𝑘(𝑌|𝛾𝑘) = (2𝜋)
−
𝑚
2 |Σ𝛾𝑘|

−
1
2exp (−

1

2
(𝑌 − 𝜇𝛾𝑘)

𝑇
Σ𝛾𝑘
−1(𝑌 − 𝜇𝛾𝑘)) (2.8) 

Note, the superscript “T” denotes transposition operator for vector and matrix. The regressive 

PDF of Z given W denoted vk(Z | W, θk) is: 
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𝑣𝑘(𝑍|𝑊, 𝜃𝑘) = (2𝜋)
−
𝑎
2|Σ𝜃𝑘|

−
1
2exp (−

1

2
(𝑍 − 𝜔𝑘𝑊)

𝑇Σ𝜃𝑘
−1(𝑍 − 𝜔𝑘𝑊)) (2.9) 

Where, 

𝜃𝑘 = (𝜔𝑘, Σ𝜃𝑘)
𝑇

𝜔𝑘 =

(

 
 

𝜔𝑘10 𝜔𝑘11 𝜔𝑘12 ⋯ 𝜔𝑘1𝑏
𝜔𝑘20 𝜔𝑘21 𝜔𝑘22 ⋯ 𝜔𝑘2𝑏
𝜔𝑘30 𝜔𝑘31 𝜔𝑘32 ⋯ 𝜔𝑘3𝑏
⋮ ⋮ ⋮ ⋱ ⋮

𝜔𝑘𝑎0 𝜔𝑘𝑎1 𝜔𝑘𝑎2 ⋯ 𝜔𝑘𝑎𝑏)

 
 
=

(

  
 

𝜔𝑘1
𝑇

𝜔𝑘2
𝑇

𝜔𝑘3
𝑇

⋮
𝜔𝑘𝑎
𝑇 )

  
 

𝜔𝑘𝑗 = (𝜔𝑘𝑗0, 𝜔𝑘𝑗1, 𝜔𝑘𝑗2, … , 𝜔𝑘𝑗𝑏)
𝑇

 (2.10) 

Note, a and b are dimensions of Z and W. Mean and covariance matrix of Z given W are ωkW 

and Σθk, respectively. The partial parameter ωk is called regressive coefficient matrix, which is 

axb matrix having a rows and b columns. Note, the product ωkW is: 

𝜔𝑘𝑊 =

(

 
 
 
 
 
 
 
𝜔𝑘10 +∑𝜔𝑘1𝑙𝑤𝑙

𝑏

𝑙=1

𝜔𝑘20 +∑𝜔𝑘2𝑙𝑤𝑙

𝑏

𝑙=1

⋮

𝜔𝑘𝑎0 +∑𝜔𝑘𝑎𝑙𝑤𝑙

𝑏

𝑙=1 )

 
 
 
 
 
 
 

 (2.11) 

The equation 2.11 also specifies multivariate regression function. Of course, equation 2.11 

implies that: 

𝜔𝑘𝑗
𝑇 𝑊 = 𝜔𝑘𝑗0 +∑𝜔𝑘𝑗𝑙𝑤𝑙

𝑏

𝑙=1

 

By applying EM algorithm, given attributed dyadic sample 𝒮, at the tth iteration of GEM, given 

current parameter Θ(t) = (αk
(t), βk

(t), γk
(t), θk

(t))T, the conditional expectation Q(Θ|Θ(t)) of SAMM 

specified by equation 2.5 is: 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

𝐾

𝑘=1

|𝒮|

𝑟=1

∗ log(𝑓𝑘(𝑊𝑟|𝛼𝑘)𝑔𝑘(𝑋𝑟|𝛽𝑘)ℎ𝑘(𝑌𝑟|𝛾𝑘)𝑣𝑘(𝑍𝑟|𝑊𝑟 , 𝜃𝑘)) 

Note, all Xr (s) are iid represented by X, all Yr (s) are iid represented by Y, all Zr (s) are iid 

represented by Z, and all Wr (s) are iid represented by W. The 𝒳-object and 𝒴-object of Xr and 

Yr are denoted 𝒳(r) and 𝒴(r) which are some xi and yj, respectively. In short, we obtain: 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡)) (log(𝑓𝑘(𝑊𝑟|𝛼𝑘)) + log(𝑔𝑘(𝑋𝑟|𝛽𝑘))

𝐾

𝑘=1

|𝒮|

𝑟=1

+ log(ℎ𝑘(𝑌𝑟|𝛾𝑘)) + log(𝑣𝑘(𝑍𝑟|𝑊𝑟 , 𝜃𝑘))) 

(2.12) 

Following equation 2.4, the conditional probability P(k | Xr, Yr, Zr, Wr, Θ
(t)) is calculated at E-

step as follows: 
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𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

=
𝑓𝑘(𝑊𝑟|𝛼𝑘

(𝑡))𝑔𝑘(𝑋𝑟|𝛽𝑘
(𝑡))ℎ𝑘(𝑌𝑟|𝛾𝑘

(𝑡))𝑣𝑘(𝑍𝑟|𝑊𝑟 , 𝜃𝑘
(𝑡))

∑ 𝑓𝑙(𝑊𝑟|𝛼𝑙
(𝑡))𝑔𝑙(𝑋𝑟|𝛽𝑙

(𝑡))ℎ𝑙(𝑌𝑟|𝛾𝑙
(𝑡))𝑣𝑙(𝑍𝑟|𝑊𝑟 , 𝜃𝑙

(𝑡))𝐾
𝑙=1

 
(2.13) 

The next parameter Θ(t+1) = (αk
(t+1), βk

(t+1), γk
(t+1), θk

(t+1))T that maximizes Q(Θ|Θ(t)) at M-step of 

some tth iteration is solution of the equation formed by setting the first-order partial derivatives 

of Q(Θ|Θ(t)) regarding Θ = (αk, βk, γk, θk)
T to be zero. Because fk(W|αk), gk(X|βk), and hk(Y|γk) 

distribute normally, by referring to (Nguyen, 2020, p. 2), the next parameters αk
(t+1) = (μαk

(t+1), 

Σαk
(t+1))T, βk

(t+1) = (μβk
(t+1), Σβk

(t+1))T, and γk
(t+1) = (μγk

(t+1), Σγk
(t+1))T for SAMM are calculated at 

M-step as follows: 

𝜇𝛼𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))𝑊𝑟

|𝒮|
𝑟=1

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

Σ𝛼𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1 ((𝑊𝑟 − 𝜇𝛼𝑘

(𝑡+1))(𝑊𝑟 − 𝜇𝛼𝑘
(𝑡+1))

𝑇

)

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

 (2.14) 

 

𝜇𝛽𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))𝑋𝑟

|𝒮|
𝑟=1

∑ 𝑃(𝑘|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

Σ𝛽𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1 ((𝑋𝑟 − 𝜇𝛽𝑘

(𝑡+1))(𝑋𝑟 − 𝜇𝛽𝑘
(𝑡+1))

𝑇

)

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

 (2.15) 

 

𝜇𝛾𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))𝑌𝑟

|𝒮|
𝑟=1

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

Σ𝛾𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1 ((𝑌𝑟 − 𝜇𝛾𝑘

(𝑡+1))(𝑌𝑟 − 𝜇𝛾𝑘
(𝑡+1))

𝑇

)

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

 (2.16) 

Because vk(Z | W, θk) is regressive PDF known as adaptive regression model (ARM), by 

referring to (Nguyen, 2020, pp. 5-6), the next parameter θk
(t+1) = (ωk

(t+1), Σθk
(t+1))T is calculated 

as follows: 

𝜔𝑘𝑗
(𝑡+1) = (𝑾𝑇𝑼𝑘

(𝑡))
−1

𝑾𝑇𝑉𝑘𝑗
(𝑡)

 (2.17) 

 

Σ𝜃𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1 ((𝑍𝑟 − 𝜔𝑘

(𝑡+1)𝑊)(𝑍𝑟 − 𝜔𝑘
(𝑡+1)𝑊)

𝑇

)

∑ 𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

 
(2.18) 

Where, 

𝑼𝑘
(𝑡) =

(

 
 

𝑢10
(𝑡)(𝑘) 𝑢11

(𝑡)(𝑘) ⋯ 𝑢1𝑏
(𝑡)(𝑘)

𝑢20
(𝑡)(𝑘) 𝑢21

(𝑡)(𝑘) ⋯ 𝑢2𝑏
(𝑡)(𝑘)

⋮ ⋮ ⋱ ⋮

𝑢|𝒮|0
(𝑡) (𝑘) 𝑢|𝒮|1

(𝑡) (𝑘) ⋯ 𝑢|𝒮|𝑏
(𝑡) (𝑘))

 
 

𝑢𝑟𝑙
(𝑡)(𝑘) = 𝑤𝑟𝑙𝑃(𝑘|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ

(𝑡)), ∀𝑟 = 1, |𝒮|̅̅ ̅̅ ̅̅ ̅, 𝑙 = 1, 𝑏̅̅ ̅̅̅

 (2.19) 

And, 
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𝑉𝑘𝑗
(𝑡) =

(

 
 

𝑣0
(𝑡)(𝑘)

𝑣1
(𝑡)(𝑘)

⋮

𝑣|𝒮|
(𝑡)(𝑘))

 
 
, ∀𝑗 = 1, 𝑎̅̅ ̅̅̅

𝑣𝑖
(𝑡)(𝑘) = 𝑧𝑟𝑗𝑃(𝑘|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ

(𝑡)), ∀𝑟 = 1, |𝒮|̅̅ ̅̅ ̅̅ ̅, 𝑗 = 1, 𝑎̅̅ ̅̅̅

 (2.20) 

Note, a and b are dimensions of Z and W. The product ωk
(t+1)W is calculated by following 

equation 2.11 and equation 2.17. The conditional probability P(k | Xr, Yr, Zr, Wr, Θ(t)) is 

calculated at E-step according to equation 2.13. Moreover, wrl and zrj are extracted from Xr and 

Zr of 𝒮 where Wr = (wr1, wr2,…, wrb)
T and Zr = (zr1, zr2,…, zra)

T. Let, 

𝑾 = (

1 𝑤11 𝑤12 ⋯ 𝑤1𝑏
1 𝑤21 𝑤22 ⋯ 𝑤2𝑏
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑤|𝒮|1 𝑤|𝒮|2 ⋯ 𝑤|𝒮|𝑏

) 

𝒁 = (

𝑧11 𝑧12 ⋯ 𝑧1𝑎
𝑧21 𝑧22 ⋯ 𝑧2𝑎
⋮ ⋮ ⋱ ⋮
𝑧|𝒮|1 𝑧|𝒮|2 ⋯ 𝑧|𝒮|𝑎

) 

(2.21) 

Asymmetric model is not appropriate to ADD because the PDF of aspect k, fk(W|αk) becomes 

impractical if it depends on both W and X as fk(W | X, αk). However, product-space model 

(PMM) for ADD is still practical. PMM for attributed dyadic data is called product-space 

attributed mixture model (PAMM), which is defined as follows: 

𝑓(𝑋, 𝑌, 𝑍|𝑊, Θ) = ∑𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘𝒳)ℎ𝑘 (𝑌|𝛾𝑘𝒴) 𝑣𝑘(𝑍|𝑊, 𝜃𝑘)

𝐾

𝑘=1

 (2.22) 

The parameter of PAMM is Θ = (αk, 𝛽𝑘𝒳 , 𝛾𝑘𝒴 , θk)
T where 𝛽𝑘𝒳 = (𝜇𝛽𝑘𝒳 , Σ𝛽𝑘𝒳)

𝑇
 and 𝛾𝑘𝒴 =

(𝜇𝛾𝑘𝒴 , Σ𝛾𝑘𝒴)
𝑇

. Recall that the aspect set {1, 2,…, K} in product-space model is Cartesian 

product of 𝒳-aspect set {1, 2,…, 𝐾𝒳} and 𝒴-aspect set {1, 2,…, 𝐾𝒴}. For every k belongs to 

{1, 2,…, K}, there always exists a respective pair: 𝑘𝒳 ∈ {1,2, … , 𝐾𝒳} and 𝑘𝒴 ∈ {1,2, … , 𝐾𝒴}. 

However, for each 𝑘𝒳 or each 𝑘𝒴, there are many respective k. Of course, PAMM is an 

extension of CMM. 

At M-step of some tth iteration, the next parameters αk
(t+1) = (μαk

(t+1), Σαk
(t+1))T and θk

(t+1) = 

(ωk
(t+1), Σθk

(t+1))T for PAMM are as same as the ones for SAMM but the next parameters 𝛽𝑘𝒳
(𝑡+1)

 

and 𝛾𝑘𝒴
(𝑡+1)

for PAMM are estimated particularly as follows: 

𝜇𝛽𝑘𝒳
(𝑡+1) =

∑ 𝑃(𝑘𝒳|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))𝑋𝑟

|𝒮|
𝑟=1

∑ 𝑃(𝑘𝒳|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

Σ𝛽𝑘𝒳
(𝑡+1)

=

∑ 𝑃(𝑘𝒳|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1 ((𝑋𝑟 − 𝜇𝛽𝑘𝒳

(𝑡+1))(𝑋𝑟 − 𝜇𝛽𝑘𝒳
(𝑡+1))

𝑇

)

∑ 𝑃(𝑘𝒳|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

 (2.23) 
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𝜇𝛾𝑘𝒴
(𝑡+1)

=
∑ 𝑃(𝑘𝒴|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ

(𝑡))𝑌𝑟
|𝒮|
𝑟=1

∑ 𝑃(𝑘𝒴|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

Σ𝛾𝑘𝒴
(𝑡+1) =

∑ 𝑃(𝑘𝒴|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1 ((𝑌𝑟 − 𝜇𝛾𝑘𝒴

(𝑡+1)) (𝑌𝑟 − 𝜇𝛾𝑘𝒴
(𝑡+1))

𝑇

)

∑ 𝑃(𝑘𝒴|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 , 𝑊𝑟 , Θ
(𝑡))

|𝒮|
𝑟=1

 (2.24) 

Where, 

𝑃(𝑘𝒳|𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡)) = ∑ 𝑃(𝑘|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ

(𝑡))

𝑘:𝑘𝒳~𝑘

 (2.25) 

𝑃(𝑘𝒴|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ
(𝑡)) = ∑ 𝑃(𝑘|𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 ,𝑊𝑟 , Θ

(𝑡))

𝑘:𝑘𝒴~𝑘

 (2.26) 

Of course, the conditional probability P(k | Xr, Yr, Zr, Wr, Θ
(t)) is calculated at E-step according 

to equation 2.13. Please see equation 1.20 and equation 1.21 to understand equation 2.25 and 

equation 2.26. 

CMM (s) for ADD such as SAMM and PAMM can be used to estimate an unknown 

associative value Z given attribute variables (X, Y) and conditional variable W. Let �̂� be the 

estimate of Z. 

�̂� = 𝐸(𝑍|𝑋, 𝑌,𝑊, Θ) = ∫𝑍𝑓(𝑍|𝑋, 𝑌,𝑊, Θ)d𝑍

𝑍

 (2.27) 

It is easy to calculate the conditional PDF of Z given X, Y, and W according to CMM as follows: 

𝑓(𝑍|𝑋, 𝑌,𝑊, Θ) =
𝑓(𝑋, 𝑌, 𝑍|𝑊, Θ)

∫ 𝑓(𝑋, 𝑌, 𝑍|𝑊, Θ)d𝑍
𝑍

=
∑ 𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)𝑣𝑘(𝑍|𝑊, 𝜃𝑘)
𝐾
𝑘=1

∑ 𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)
𝐾
𝑘=1

 

(2.28) 

The estimate �̂� is resolved: 

�̂� =
∑ 𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)𝐸𝑘(𝑍|𝑊, 𝜃𝑘)
𝐾
𝑘=1

∑ 𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)
𝐾
𝑘=1

 (2.29) 

Where, 

𝐸𝑘(𝑍|𝑊, 𝜃𝑘) = ∫𝑍𝑣𝑘(𝑍|𝑊, 𝜃𝑘)d𝑍

𝑍

 

When vk(Z | W, θk) is a regressive PDF, the estimate �̂� given X, Y, and W is calculated smoothly 

as follows: 

�̂� =
∑ 𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)𝜔𝑘𝑊
𝐾
𝑘=1

∑ 𝑓𝑘(𝑊|𝛼𝑘)𝑔𝑘(𝑋|𝛽𝑘)ℎ𝑘(𝑌|𝛾𝑘)
𝐾
𝑘=1

 (2.30) 

The product ωkW is calculated by following equation 2.11. In general, equation 2.30 is the 

ultimate estimation formula of CMM (s) for ADD. 

 

3. Conclusions 
ADD is flexible and covers most of structures / forms of dyadic data. CMM (s) for ADD such 

as SAMM and PAMM help researchers to model ADD in a flexible, solid, reliable manner. For 

example, if aspects are independent from conditional variable, each PDF fk(W|αk) is reduced 

into a discrete probabilistic parameter. If each regressive PDF vk(Z | W, θk) is not formed in 

favor of regression model, it must be formed as probabilistic distribution like conditional 

multinormal PDF. An interesting application of SAMM is to build up a unified estimation 

model of content-based filtering, collaborative filtering, and context-awarded filtering, in 
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which attributes along with gk(X|βk) and hk(Y|γk) are responsible for content-based filtering 

whereas associative variable along with vk(Z | W, θk) and fk(W|αk) are responsible for 

collaborative filtering and context-awarded filtering. The attributes X and Y represent 

information about users and items in rating data with note that users and items are knowns as 

objects. The associative variable Z represents rating values in rating data. The conditional 

variable W represents contexts. Equation 2.30 is the ultimate formula of the unified estimation 

model. I hope that researchers will concern such proposed model because it is not realized yet 

when I compose this paper. 
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