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Abstract: Sorting nexins (SNXs) are a highly conserved membrane-associated protein 

family that plays a role in regulating protein homeostasis. This family of proteins is unified 

by their characteristic phox (PX) phosphoinositides binding domain. Along with binding to 

membranes, this family of SNXs also comprises a diverse array of protein-protein 

interaction motifs that are required for cellular sorting and protein trafficking. SNXs play a 

role in maintaining the integrity of the proteome which is essential for regulating multiple 

fundamental processes such as cell cycle progression, transcription, metabolism, and 

stress response. To tightly regulate these processes proteins must be expressed and 

degraded in the correct location and at the correct time. The cell employs several 

proteolysis mechanisms to ensure that proteins are selectively degraded at the appropriate 

spatiotemporal conditions. SNXs play a role in ubiquitin-mediated protein homeostasis at 

multiple levels including cargo localization, recycling, degradation, and function. In this 

review, we will discuss the role of SNXs in three different protein homeostasis systems: 

endocytosis lysosomal, the ubiquitin-proteasomal, and the autophagy-lysosomal system. 

The highly conserved nature of this protein family by beginning with the early research on 

SNXs and protein trafficking in yeast and lead into their important roles in mammalian 

systems. Underlying the importance of SNXs in protein homeostasis, genetic defects in 

SNXs have been linked with a variety of human diseases 
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Introduction.  

The integrity of the proteome is essential for maintaining homeostasis as well as 

coordinating stress response mechanisms. The job of maintaining homeostasis is handled 

by sophisticated protein quality control systems that ensure that malformed or excessive 

proteins are degraded at the appropriate time and location throughout the complete life cycle 

of a protein. Selective proteolysis is largely mediated by the ubiquitin-proteasomal pathway 

(UPS) and the autophagy-lysosomal pathway (ALP). In general, the UPS is the primary 

proteolytic route for short-lived, misfolded, or damaged proteins having essential functions 

in many critical cellular pathways, including cell cycle progression and transcriptional 

regulation [1].  The ALP tackles long-lived proteins, dysfunctional or superfluous organelles, 

and protein aggregates. As ALP is upregulated in response to cellular stress (nutrient 

deprivation, hypoxia, oxidative stress), it is considered a major adaptive mechanism, critical 

for cell survival following unfavorable environmental onslaughts [2, 3]. 

 

There are three major types of autophagy: macroautophagy, microautophagy, and 

chaperon-mediated autophagy (CMA) [4]. Macroautophagy (herein autophagy) is also 

further classified as being selective or non-selective. In non-selective bulk autophagy 

autophagic vesicles randomly engulf portions of the cytoplasm and various cytoplasmic 

components, predominantly in response to starvation signals. Selective mechanisms are 

predominantly utilized to maintain homeostasis under physiological conditions. Cargos 

include defective organelles including mitochondria, endoplasmic reticulum, peroxisomes 

[5], as well as cytoplasmic protein aggregates [6] and pathogenic intracellular invaders 

including RNA viruses like SARS-CoV-2 (COVID-19) [7-9]. In mammalian cells, 

ubiquitylation of the cargo is critical for recognition by the autophagic machinery, thereby 

linking UPS and ALP pathways [10, 11].  

 

The third protein quality control system, the endocytosis-lysosomal pathway, is intricately 

linked to UPS and ALP  [12]. Cargoes are transported from the plasma membrane to sorting 

endosomes where their fate is decided. In a ubiquitin and ESCRT dependent pathway, they 
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can be selected for inclusion into intraluminal vesicles, that by budding away from sorting 

endosomes are ultimately delivered to the lysosome for degradation [13]. Alternatively, they 

are prevented from this degradative fate, and selected for enrichment in endosomal 

“retrieval” subdomains, namely the trans-Golgi network (TGN), or recycling endosomes. 

From here they are ultimately for recycled back to the plasma membrane [12, 14]. Retrieval 

of cargos is mediated through by cargo retrieval complexes (retromer, retriever, CCC 

(CCDC22, CCDC93, and COMMD) WASH (Wiskott–Aldrich syndrome protein and SCAR 

homolog)) and branched actin [15, 16]. Two of these complexes, the retromer, and the 

retriever, are aided by the cargo-adapted family SNX proteins, the subject of this review [17]. 

Although initially thought of as independent pathways, these systems are now known 

to be interconnected. Within these three pathways ubiquitin plays an important role in 

substrate targeting and specificity. In yeast S. Cerevisiae (unless stated otherwise), and 

mammalian systems alike, the evolutionarily conserved sorting nexin (SNX) family of 

proteins plays a role in regulating these protein homeostasis pathways (Figure 1). 

Underlying their importance, genetic defects in SNX proteins have been linked with a variety 

of human diseases including neurodegenerative, cardiovascular diseases, and cancer [18, 

19]. In this review, we will discuss the growing evidence of SNXs in these three protein 

quality control pathways and as well as the interplay between SNXs and ubiquitin. 

 

1. Outline of endocytosis pathways.  

1.1 Overview. 

The endosomal system is comprised of an interconnected set of organelles whose principal 

functions are nutrient acquisition, the control of protein and lipid turnover, and protection 

from pathogens. These vesicle networks also serve as membrane reservoirs supporting 

rapid changes in the plasma membrane surface area. The system is characterized by 

early/sorting Rab5 GTPase positive endosomes formed from primary endocytic vesicles that 

have undergone homotypic fusion or fused with a pre-existing endosome. These mature into 

late Rab7 positive endosomes by gradually acidifying the fluid within the endosomal lumen, 

ending with a pH. of 5.5. Both early and late endosomes are characterized by a vacuolar 
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domain that contains intra-luminal vesicles (ILVs), formed by ESCRT (endosomal sorting 

complexes required for transport) complexes and enriched in proteins earmarked for 

lysosomal degradation. Early endosomes contain significantly fewer ILV's than late 

endosomes and are characterized by a tubular domain that buds from the endosome that 

ferries their contents to recycling pathways. 

 

The fate of endocytosed proteins is decided upon reaching early endosomes [13]. If 

they are not an ESCRT-lysosome cargo, they are recycled directly from endosomes to the 

cell surface (outlined in Figure 2). Alternatively, cargos can passage through the TGN to 

their new destination [20, 21]. These cargoes include members of the Vps10 domain family 

cargo receptors (such as the Alzheimer’s disease-linked proteins, sortilin, and SorLA/SorL1 

) [22, 23]. This endosomal sorting is crucial for maintaining cellular homeostasis and plays 

a critical role in development. Worth mentioning is the developmental role of the 

endopeptidase furin that proteolytically activates many proprotein substrates in secretory 

pathway. These substrates include include the pro-ß-nerve growth factor (pro-ß—NGF) pro-

bone morphogenetic protein 4 and the insulin pro-receptor [24] as well as protease systems 

that control disease including Anthrax and Ebola [25]. 

 

1.2 The role of Snx proteins in maintaining protein homeostasis.  

The trafficking of cargo from endosomes by degradative or retrieval pathways is 

mediated by distinct sorting nexins.  Here sorting nexins can either promote or prevent 

cargoes from being destroyed. For example, three nexins (SNX27, SNX17, and SNX4) 

prevent lysosomal degradation as their role is to ferry cargo. e.g., β1 integrins [26], to the 

plasma membrane or recycling endosomes. Other nexins (SNX1, SNX2, SNX3, SNX5, and 

SNX6) mediate retrograde trafficking of cargo to the TGN from endosomes. Likewise, SNX4 

interacts with β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and prevents 

BACE1 trafficking to the lysosomes, increasing the half-life of BACE1 and production of β-

amyloid [27]. In contrast, Snx11 promotes the trafficking of TRPV3 from the plasma 

membrane to lysosomes for degradation via protein-protein interactions [28]. Also, SNX1 
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and SNX6 facilitate the fate of epidermal growth factor receptor (EGFR) and the tumor 

suppression p27Kip1  [29, 30]. 

 

Sorting nexins also interact with cargoes outside of endo-lysosomal-TGN pathways 

(see Figure 1). Here they play significant roles in both selective and non-selective autophagy 

pathways in yeast and mammalian cells alike [31-34]. This serves to emphasize the diverse 

regulatory roles sorting nexins play in maintaining protein homeostasis. 

  

2. Classification of SNX proteins. 

The SNX family of cargo adaptor proteins is a large family of proteins, with 10 and 33 

members identified in yeast and mammals, respectively [35]. The members are classified 

into subfamilies based on the domain architecture of other conserved regions (Figure 3). 

They all contain a lipid binding phox homology (PX) domain that binds to phosphoinositide 

(PI) lipids decorating organelle membranes. This mediates their attachment to the 

cytoplasmic leaflets of endosomal compartments [35]. Most SNX family members also 

contain various other conserved structural domains, BAR and FERM domains being the 

most prevalent. These domains are targeted by the PX module to appropriate membranes 

within the endosomal network. Therefore, the SNX proteins are classified into different 

subfamilies based on the structural arrangements of their scaffolding, enzymatic, and 

regulatory domains [36]. This modularity confers a wide variety of functions to sorting nexins,  

from signaling to membrane deformation and cargo binding. Importantly sorting nexins are 

crucial modulators of endosome dynamics and as well as autophagic functions.   

 

2.1 Lipid binding PX domain of SNX proteins. 

Sorting nexins contain a canonical 100-130 amino acid phox homology (PX) domain that 

binds phosphoinositides (PtdIns)  [37] (Figure 3). The PX domain was first identified  in the 

NADPH phagocyte oxidase complex subunits p40phox and p47phox [38].  It is highly 

conserved and predominantly occurring in sorting nexins.  Despite this, the PX domains 

show little sequence conservation across the SNX family members [39]. However, PX 
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domains all possess the same core fold, consisting of three antiparallel β- strands (β1-β3), 

followed by three α-helices (α1–α3). Analysis of crystal structure has shown that the helices 

form a loop structure required for PtdIns3P binding. Mutations in the loop structure invariably 

result in the dissociation of PX domain proteins from endosomal compartments [40]. 

 

It is well established that different PtdIns (PtdIns3P, PtdIns(3,4)P2, PtdIns(3,5)P2, 

PtdIns(4,5)P2 and PtdIns(3,4,5)P3) decorate different membranes. This  has resulted in the 

concept of a phosphoinositide code, that provides membrane identity within the endocytic 

system [41]. The PX domains of SNX family members predominantly bind 

phosphatidylinositol 3-monophosphate (PtdIns3P), a signaling lipid enriched in the early 

endosome membrane [42, 43]. However, SNX proteins can also bind to the other PtdIns 

phospholipids such as PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2 and PtdIns(3,4,5)P3 

[39].  

 

2.2 SNX-PX proteins. 

The SNX-PX subfamily consists only of a PX domain. This family includes the SNX3-

retromer, which is multi-protein complex comprising of the core retromer (VPS26, VPS29, 

and VPS35) and SNX3. It retrieves transmembrane cargos from degradation by the 

lysosome by recycling them back to the cell surface via the TGN [44] (Figure 3). It is a multi-

protein complex comprising of the core retromer (VPS26, VPS29, and VPS35) and SNX3. 

As such, retromer dysfunction impairs many cellular processes and underlies the 

pathogenesis of various neurodegenerative disorders. For example, a mutation in VPS35, 

encoding a subunit of the retromer complex, causes late-onset Parkinson disease [45], and 

microarray studies have implicated the retromer complex in Alzheimer’s disease [18, 46]. 

 

Multiple SNX3-retromer cargos have been identified including Wnt sorting receptor 

Wntless [47, 48], the transferrin receptor [49] and the divalent metal ion transporter Dmt1‐II 

[50]. In-depth structural studies revealed that retromer cargoes and Vsp26 and Vsp35 bind 

to the PX domain but at different surfaces. In short, SNX3 binding to the retromer exposes 
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a binding site at the interface between SNX3 and VPS26 for cargo containing a Øx(L/M/V) 

sequence motif where Ø is a bulky aromatic residue) [51, 52]. The retromer trimer engages 

the Ankyrin-repeat protein ANKRD50 [53] and the actin-polymerizing Wiskott-Aldrich 

syndrome protein and SCAR homolog (WASH) complex, generating a branched actin 

networks on the endosomal surface (See Figure 2 and [54]). A different mechanisms is used 

for SNX16 association with E-cadherin. Here the PX domain of SNX16 is not used for 

membrane binding but instead is required for binding the cytoplasmic tail of E-cadherin [55]. 

 

2.3 SNX-FERM proteins (SNX17, SNX27 and SNX31).  

The PX-FERM containing sorting nexins is a sub-group of the PX superfamily. This 

subfamily has PX domain and a  C-terminal 4.1, ezrin radixin, moesin (FERM) domain with 

an atypical tertiary structure [56]. They are required for endosomal-to-cell-surface recycling 

of diverse transmembrane protein cargos [57]. PX-FERM nexins are further divided into two 

groups; SNX17 and SNX31 are cargo adaptor proteins for a retromer -independent complex 

called the retriever complex, whereas SNX27 associates with the retromer [58]. The retriever 

complex localizes to early endosomes and is primarily involved in driving the retrieval and 

recycling of its NPxY/NxxY-motif-containing cargo proteins [58] to the cell surface. Through 

quantitative proteomic analysis, over 120 cell surface proteins, including numerous integrins, 

signaling receptors, and solute transporters, that require SNX17–retriever to maintain their 

surface levels have been identified [58]. These include the LDL receptor, amyloid precursor 

protein and integrins [26, 56, 57, 59]. SNX17 also recognizes all Human Papillomavirus  

(HPV) L2 proteins. This interaction aids lysosomal escape thereby being crucial for HPV 

infection [60-62]. 

 

SNX27 is a unique SNX-FERM protein that contains an N terminal density 95/discs 

large/zonula occludens-1 (PDZ) domain. This domain binds PDZ-binding motif (PDZbm)-

containing cargo such as the β2-adrenergic receptor [36, 63, 64]. Quantitative proteomics 

of the SNX27 interactome has provided an unbiased global view of SNX27-mediated sorting. 

Here over 100 cell surface proteins, including the glucose transporter GLUT1, the Menkes 
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disease copper transporter ATP7A, various zinc and amino acid transporters, and numerous 

signaling receptors, were shown to require SNX27–retromer to prevent lysosomal 

degradation and maintain surface levels [65]. The FERM domain recognizes Asn-Pro-Xaa-

Tyr–sorting signals in transmembrane cargos. Some of these cargo proteins need to be 

phosphorylated to facilitate binding to SNX27 as well [26, 56, 57, 59]. SNX27 is highly 

enriched in the brain. Consequently, cargos include proteins involved in neuronal signaling, 

such, AMPA receptors [66]. Deficiencies in SNX27 function are associated with Down 

syndrome [67] and epilepsy [68]. More recently, SNX27-mediated recycling of  neuroligin-

2 (NL2), a protein required for stabilization of synaptic inhibitory receptors contributes to the 

regulation of inhibitory synapse composition [37]. 

 

2.4 SNX-BAR proteins. 

The SNX-BAR proteins contain 1-3 coiled-coil or BAR (Bin/Amphiphysin/Rvs) 

domains that have membrane-remodeling functions [69] (Figure 3). The BAR domains either 

homo or heterodimerize via extensive interactions between their BAR domains, generating 

a cup-shaped, concaved surface that sense high positive membrane curvature domains. 

This permits the BAR regions to induce membrane deformation, transitioning from flat 

membranes to tubular membrane surfaces [42]. Current models propose that both PX and 

BAR domains have to be engaged with the membrane to ensure specificity and efficient 

binding. Mammalian cells possess twelve SNX-BAR family members (SNX1, SNX2, SNX4, 

SNX5, SNX7 SNX8,SNX9, SNX18, SNX30, SNX32 and SNX33) [70]. The retromer-

related SNX-BAR proteins (SNX1, SNX2, SNX5, SNX6, and the neuronal SNX32) form 

heterodimeric complexes. These are critical for both endosome–to–plasma membrane 

recycling and endosome-to-TGN retrieval [71]. More recently, they have identified as 

important players in autophagic processes, which is discussed in more detail below in 

section 5 [34, 72].  

 

Despite holding extensive knowledge of the role of SNX-BAR proteins, how they 

recognize cargos has remained elusive. Recently, a conserved SNX-BAR-binding motif was 
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identified using SNX5 and its lysosome-destined cargo the cation-independent mannose 6-

phosphate receptor (CI-MPR) [70, 73]. In addition to the PX domain, SNX5 and CI-MPR is 

a bipartite motif, termed SNX-BAR-binding motif. This motif is also required for another SNX-

BAR cargo, Insulin-like growth factor 1 receptor (IGF1R). Spurred on, by these results, the 

authors performed an in silico analyses of the human proteome and discovered over 70 

putative SNX-BAR cargoes. Based upon these results, the authors propose a model in which 

SNX-BARs function as a direct cargo-selecting module for a large set of transmembrane 

proteins transiting the endosome.  

 

 Intriguingly, Snx-BAR proteins also recognize non-membrane proteins in yeast. For 

example, Vps5 (SNX1) interacts with the helicase enzyme Dhh1 (Miller, 2017). Mvp1 (SNX8) 

interacts with Sba1 a co-chaperone that binds and regulates the Hsp90 family of chaperones 

[74]. Also, the Snx4-Atg20 (Snx41) heterodimer to binds to the transcriptional regulator 

Med13 after TORC1 inhibition triggering its Snx4-Atg20 mediated autophagic degradation 

(see section 6.1 and [75]).  

 

 2.5 Other domains. 

Some SNX proteins also contain additional domains including SH3 (Src homology 

3), RA (RasGTP effector), and RGS (regulator of G-protein signaling) domains [76], [35] 

(Figure 3). These additional protein-protein binding domains enable SNXs to form homo- or 

heterodimers and associate with larger protein complexes such as the retromer or 

autophagy vesicles. In retromer mediated processes, SNX-BAR proteins that contain an 

extra Src-homology 3 (SH3) domain (SNX9, SNX18, and SNX33) homodimerize to 

coordinate actin polymerization with vesicle scission at sites of high membrane curvature 

[77, 78]. 

 

3. Snx cargo recognition in yeast.  

3.1. The yeast endosome system. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2020                   doi:10.20944/preprints202011.0241.v1

https://doi.org/10.20944/preprints202011.0241.v1


 

    In yeast, in response to different physiological conditions, the plasma membrane's 

makeup is adjusted to maintain homeostasis. This is achieved by the internalization of 

plasma membrane proteins (cargoes)  by endocytosis through a clathrin-dependent or 

independent mechanism. In clathrin-mediated endocytosis (CME), cargoes are first 

internalized in clathrin cages. Next the cages disassemble, thereby delivering cargoes to 

endosomes [79]. Some cargoes are recycled back to the cell surface either via the TGN or 

by a recycling pathway originating from endosome [80]. Others, tagged by ubiquitination, 

are degraded in the vacuole (the yeast equivalent of lysosomes ) [81]. 

 

Recently it has been proposed that unlike other eukaryotic species, budding yeast 

lack early endosomes [82, 83]. Instead, cargo-carrying vesicles are initially targeted to the 

TGN. From here, cargoes are either recycled or transferred to late endosomes  (also known 

as multivesicular bodies (MVBs) or pre-vacuolar endosome (PVE) compartments)[72]).   

PVE’s contain cargo-laden intraluminal vesicles which require ESCRT pathways for their 

formation. Here ubiquitin plays a key role, as the transport of cargoes to the vacuole depends 

on ubiquitin linkages. Thus, ubiquitination serves both as a signal for endocytosis from the 

plasma membrane and a specific sorting signal for entry into the vacuolar lumen [13]. In the 

final step, late endosomes fuse with the highly acidic vacuoles that contain proteases for 

degradation of the endosomal contents. Here very elegant experiments using an engineered 

fluorescent vacuolar cargo and 4D microscopy have suggested that transfer of material from 

PVE compartments to the vacuole most likely involves “kiss-and-run” fusion events [82, 84]. 

 

3.2 The yeast retromer. 

The highly conserved retromer (Vps35, Vps26 and Vps29), first identified in S. 

cerevisiae, generates cargo-selective tubulovesicular carriers from endosomal membranes 

[85, 86]. The best-characterized yeast retromer forms a pentameric structure with the Vsp1-

Vsp17, Snx-BAR sorting nexin [44]. This pentameric complex is required for retromer 

endosome localization where it generates cargo-selective tubulovesicular carriers from 

endosomal membranes [71, 87]. Using cryo-electron tomography, the structure of the 
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trimeric retromer assembled membrane tubules with Vps5 has been determined [88]. Here 

Vps5 homodimers attach the arch-like retromer structure to membranes. The  arches 

extend away from the membrane surface, with Vps35 forming its legs and Vps29 siting at 

the apex. This allows Vps29 to interact with regulatory factors. The bases of the arches 

connect to each other and to Vps5 through Vps26. These studies provide significant insight 

into how the retromer is assembled on tubular membranes, which is important for 

understanding tubular-based cargo sorting.  

 

Despite the high degree of conservation between the mammalian and yeast 

retromers, yeast do not recognize the mammalian retromer cargo recognition 

sequence [52]. This led to studies on Vsp10, the best characterized Vsp5 and Vsp17-

retromer cargo which is the first member of the Sortilin receptor family. Vsp10, a 

transmembrane protein receptor for carboxypeptidase Y (CPY), sorts CPY into vesicles at 

the Golgi. Thereafter CPY-containing vesicles plus Vsp10 are transported to the 

endosome, which upon maturation, fuses with the vacuole, delivering soluble CPY to the 

vacuole lumen. Vps10 escapes this fate, being recycled from the endosome back to the 

Golgi by the retromer complex, making Vps10 available for additional rounds of CPY 

sorting. Remarkably, two distinct motifs on Vsp10 were identified which serve as a bipartite 

recycling signal, with each motif being recognized by the retromer subunits, 

Vps26 and Vps35. These striking results show that the retromer utilizes different binding 

sites depending on the cargo allowing this complex to recycle different proteins.  

 

Other sorting nexins also contribute to retromer function [72]. Snx3 is an accessory 

protein that binds the retromer and recycles cargoes from endosomes to the TGN [89]. It 

recognizes relatively few cargoes, though a recent systematic genome‐wide screen 

expanded its repertoire [33, 72]. One cargo, Neo1, deserves a special mention as its 

discovery uncovered a previously unknown role for the Snx3-retromer [90, 91]. Neo1 is an 

aminophospholipid flippase, that contributes to the phosphatidylethanolamine asymmetry of 

endosomal membranes [92]. The deletion of the Snx3 recognition site in Neo1 revealed that 
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the Snx3-dependent sorting of Neo1 is required for the correct sorting of other Snx3 cargo 

protein [90]. Similarly, the packaging of human SNX3‐retromer cargo, Wntless, also requires 

NEO1 [91]. Taken together, this suggests that the incorporation of Neo1 into recycling 

tubules may influence their formation. 

 

Another less well understood sorting nexin that contributes to retromer function is 

the SNX-BAR protein Mvp1 [72, 93]. Mvp1 shares conservation with the mammalian SNX–

BAR SNX8, whose function, like Mvp1, is unclear but is involved in endosomal sorting [94, 

95]. Consistent with this, cells lacking Mpv1 exhibit defects retromer-dependent retrograde 

trafficking from the endosome to the TGN [96, 97]. Recent structural studies have revealed 

that the Mvp1 SNX-BAR protein exists as an autoinhibited tetramer in which the PX lipid-

binding sites are occluded. The Mvp1 dimer retains membrane-remodeling activity and 

exhibits enhanced membrane binding. This suggests a model in which the unmasking of the 

PX and BAR domains is required for Mvp1 function. As most SNX–BAR proteins are 

invariably dimeric, this finding adds a layer of complexity to the regulation of SNX–BAR 

function. 

 

3.3 Retromer-independent sorting nexin function in yeast. 

Snx4, Snx41, Atg20 form two distinct retromer‐independent complexes (Snx4‐Snx41 

and Snx4‐Atg20) and are required for are required for endocytic recycling and selective 

autophagy. Consistent with these roles they co-localize to the endosome and the pre-

autophagosomal structure (PAS) [32, 98, 99]. Moreover, we and others have shown that 

after nitrogen starvation, they sequester to the perinucleus where they transport nuclear 

cargos to the vacuole [31, 75](see section 5.1). 

 

The most studied cargo of the Snx4-Atg20 complex is Snc1, which is a plasma 

membrane-directed v-SNARE, required for fusion of secretory vesicles with the plasma 

membrane [100]. More recently two distinct pathways have been defined which move Snc1 

within the cell. Rcy1, which is an F-box protein interacts with Snc1 and is responsible for the 
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delivery of endocytic plasma membrane to the TGN. Snx4-Atg20 are required for the  

retrograde pathway, delivering Snc1 back to the TGN from late endosomes [101] 

 

Another important role in the function of Snx4‐Atg20 heterodimer is to mediating 

endosome‐to‐Golgi transport of Atg9, an integral membrane component of the autophagy 

machinery, [102]. Atg9 is an essential protein required autophagosome biogenesis. Atg27 

maintains a Golgi‐localized pool of Atg9, which is critical for autophagosome formation [103]. 

In turn, Atg27 recycling and trafficking is regulated by the retromer and Snx4 [104, 105]. 

More recently, it has been shown that Atg27 is recycled from the vacuole membrane using 

a 2-step recycling process. First, the Snx4 complex recycles Atg27 from the vacuole to the 

endosome. Then, the retromer complex mediates endosome-to-Golgi retrograde transport. 

[104]. This is exciting as it represents the first physiological substrate for the vacuole-to-

endosome retrograde trafficking pathway. 

 

4.0 Ubiquitin and Endocytosis. 

Ubiquitin (Ub) is a small molecule that covalently attaches to lysine resides on its 

targets. Ub itself can be conjugated to a second Ub molecule resulting in ubiquitin chains 

differing in linkage types and lengths [11, 106]. This wide variety of Ub modifications can 

have pleiotropic effects on its substrates [1]. K48-linked ubiquitin chains typically target 

proteins for degradation by the 26S proteasome [107]. On the other hand, K63-linked 

ubiquitination typically acts as a signaling event to modify function, such DNA repair, altering 

protein-protein interactions and protein trafficking [108].  

 

During endocytosis, membrane proteins are identified as cargo either as part of a 

programmed biological response (such as ligand mediated receptor down-regulation) or as 

a way to remove aberrantly folded or damaged proteins from the cell surface as a quality-

control mechanism. The proteins are decorated with Ub at plasma membranes and early 

endosomes to trigger their internalization and endosomal sorting respectively [109, 110]. A 

functional ESCRT pathway is also required. In short, cargoes are tagged with the ubiquitin 
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sorting signal are recognized by ESCRT-0. These are then sequentially handed to ESCRT-

I and -II or recruited to the ESCRT-I-II supercomplex before being incorporated into ILVs for 

delivery to lysosomes [81, 109].  

 

4.1 Sorting nexins and E3 ligase activity. 

Sorting nexins influence the regulation of proteasome activity and substrate 

degradation by a variety of different mechanisms. Some of the roles of SNXs in the UPS 

include blocking ubiquitination of protein substrates, inhibiting ubiquitin specificity factors, 

regulating protein stability of E3 ligase by either enhancing their recycling or degradation 

pathways and degrading inactive or excess proteasome complexes. These are summarized 

in Table 1. Intriguingly, there are several examples of the relationship of soring nexins 

proteins with E3. 

 

In yeast, the E3 ligase specificity factor for Rsp5-dependent ubiquitination, Ear1 is 

recycled by Snx3. Snx3, therefore, enhances  Ear1 protein stability protein thereby 

promoting the  Rsp5 activity [33]. In mammalian cells, SNX18 is regulated by the E3 ligase 

Mib1, which indirectly  promotes Notch signaling [111]. Likewise, Itch (atrophin-1 interacting 

protein 4), a member of the NEDD4 family of E3 ubiquitin ligases, ubiquitylates SNX9, 

thereby regulating intracellular SNX9 levels. [112]. In a seminal discovery, the E3 ubiquitin 

ligase partner of MAGE-L2, a protein that enhances E3  ubiquitin activity [113], was found 

to be the K48 E3 TRIM27 [113]. The MAGE-L2-TRIM27, localizes to endosomes through 

interactions with the retromer complex. The outcome of this interaction is  K63 ubiquitination 

of the WASH complex, a known regulator of retromer-mediated transport. This action 

permits WASH to nucleate endosomal F-actin (see Figure 2). Moreover, this pathway is 

regulated by the deubiquitinating enzyme USP7  [114]. 

 

4.3 Sorting nexins and E2 enzymes. 

Less is known about sorting nexins and E2 activity. In Drosophila,  UBC-13, the E2 

ubiquitin-conjugating enzyme that generates K63-linked ubiquitin chains, is essential for 
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retrograde transport of multiple retromer-dependent cargoes, including MIG-14/Wntless. 

Here UBC-13 function is required for retrograde transport of SNX1 retromer-dependent 

cargoes [115].  

 

4.4 Sorting nexins and deubiquitinases. 

Sorting nexins also interact with deubiquitinating enzymes [116]. The hormone 

Vasopressin increases the expression of the USP10 that deubiquitylates and stabilizes 

SNX3 [117]. SNX27 interacts with the deubiquitinase OTULIN (OTU Deubiquitinase With 

Linear Linkage Specificity) that specifically hydrolyzes methionine1 (Met1)-linked ubiquitin 

chains. SNX27 association with OTULIN antagonizes SNX27-dependent cargo loading, 

binding of SNX27 to the VPS26A-retromer subunit, and endosome-to-plasma membrane 

trafficking. Moreover, these findings define a non-catalytic function of deubiquitinases in 

sorting nexin function [118]. 

 

4.5 Sorting nexins an proteasomes.  

Following nitrogen starvation in yeast model system nuclear 26S proteasomes are 

first disassemble into 19S and 20S subcomplexes, transported through the nuclear pore 

complex (NPC) and targetted to autophagosomes for degradation [31, 119, 120]. The Snx-

Atg20 and Snx4-Snx42 heterodimer both are required for transport of the 19S and 20S 

complexes after they emerge from the NPC [31]. How these complexes interact with the 

proteasome remains unknown, but it adds another example of how sorting nexins regulate 

the UPS machinery.   

 

4.6 Oncogenic roles of sorting nexins and the UPS. 

In recent years oncogenic roles of sorting nexins have been reported. Therefore, it 

comes as no surprise that many of these roles lead to the activation of well-characterized 

oncoproteins. Recently, TRIM27 has been classified as an oncoprotein. Consistent with this 

role, it is overexpressed in many cancers, including breast, endometrial, ovarian, lung, and 

colon [121]. TRIM27 association with the retromer and activates the cytoplasmic 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2020                   doi:10.20944/preprints202011.0241.v1

https://doi.org/10.20944/preprints202011.0241.v1


 

transcription factor, STAT3 [122]. This is an important discovery as STAT3 plays central 

roles in various physiological processes and its aberrant and persistent activation results in 

serious diseases, including cancer [123]. It is a cytoplasmic transcription factor as its 

activation and translocation to the nucleus is dependent upon its passage through the 

endosome system. [124]. In response to several cytokines or growth factors including 

interleukin-6 (IL-6) STAT 3 is phosphorylated [125]. This promotes its release from the 

endosome and translocation to the nucleus, resulting in the induction of downstream effector 

genes. Intriguingly, the E3 ubiquitin ligase activity of TRIM27 is dispensable for its ability to 

mediate STAT3 activation. Confirming a retromer linked role, knockdown of each of the 

retromer components significantly inhibited IL-6-induced transcription of STAT-dependent 

genes [122]. It is well established that endocytosis is an effective mechanism to 

downregulate cellular signaling events by internalizing receptors or ligand-receptor 

complexes [126]. Further studies are needed to address if other signaling proteins that are 

imprisoned by endocytosis, e.g., the promiscuous kinase glycogen synthase 3 beta (GSK3-

β) are similarly regulated. This is important as this kinase has numerous phosphorylation 

targets in distinct pathways, including WNT, Hedgehog and MAPK signaling. [127]. 

 

Sorting nexins interaction with E3 ligases plays a role in oncogenesis in other cancers. 

In head and neck squamous cell carcinoma (HNSCC) SNX5 interacts with the E3 ligase F 

box proteins, thereby blocking FBW7 mediated ubiquitination of oncoproteins including c-

Myc NOTCH and cyclin E1 [128]. SNX16 also has oncogenic properties in colorectal cancer, 

where it is significantly upregulated. This affects eEF1A2/c‐Myc signaling, possibly by 

inhibiting proteasome‐dependent ubiquitination of eukaryotic translation elongation factor 1 

A2 (eEF1A2) [129]. As such, SNX16 has been implemented in the development of other 

tumors such as bladder and ovarian cancer [130, 131]. SNX10 also may be a tumor 

suppressor in mouse models of colorectal cancer. Here SNX10 deficiency prevents the 

degradation of LAMP-2A, the essential CMA lysosomal receptor [132 , 133]. Given the key 

role of soring nexins in many biological processes, there is no doubt that future work will 

reveal more links to cancer and other diseases. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2020                   doi:10.20944/preprints202011.0241.v1

https://doi.org/10.20944/preprints202011.0241.v1


 

 

5.0 Sorting nexins in the autophagy-lysosomal pathway (ALP). 

5.1 Autophagy mechanisms.  

Autophagy is thought of as the first line of defense in response to many forms of 

extracellular stress [11]. In contrast to the sophisticated ubiquitin-proteasomal system 

(UPS), the lysosome was once thought to be a dumpsite for proteolysis, degrading bulk, 

non-selective cytosolic components. The rapid growth of the autophagy field has 

revolutionized this paradigm. Three forms of autophagy have been described: chaperone 

mediated autophagy (CMA), microautophagy and macroautophagy (selective and non-

selcetive autophagy). CMA [134] and microautophagy [135] will not be discussed further 

here as their association with sorting nexins remains unknown. Sorting nexins have recently 

been identified as having a role in bulk autophagy and selective autophagy in yeast and 

mammalian cells.  

 

5.2 Sorting nexins in non-selective autophagy in yeast. 

In physiological conditions, SNXs primarily function within the endosomal pathway to 

maintain steady-state levels of membrane proteins. Following different stress cues such as 

nutrient depletion or starvation, SNXs engage in stress-induced regulatory roles. These 

stress-dependent functions require soring nexin cellular relocalization. This enables them to 

capture their cargos and engage the autophagic machinery. The role of sorting nexins in 

autophagy was first identified in yeast where it was found to be a  component of the Atg1 

initiation complex [98]. Here Snx4  binds the Atg17 scaffold complex which is required to 

localize the PAS to vacuole outer membranes [136, 137]. Consistent with this, deletion of 

Snx4  results in insufficient PAS formation and a delayed autophagic response [138]. In a 

more recent phosphoproteomics study, Snx4 was identified as a direct substrate for Atg1 

[139]. This phosphorylation event may direct Snx4 away from its physiological functions in 

endosomal sorting and selective autophagy and towards its role in starvation-induced 

autophagy.  Interestingly during selective autophagy. Snx42 interacts with the scaffold 

protein Atg11 that replaces Atg17 and initiates autophagosome assembly at the cargo site 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2020                   doi:10.20944/preprints202011.0241.v1

https://doi.org/10.20944/preprints202011.0241.v1


 

[136]. SNXs have also been implemented in later stages of autophagy involving 

autophagosome and vacuolar membrane fusion. It has been shown that Snx4 and Snx42 

promote non-selective autophagy by exporting lipids from the vacuole which maintains the 

fusion competence of this organelle and allows autophagosome fusion [140].  

 

 

5.3 Sorting nexins in non-selective autophagy in mammalian systems. 

In mammalian cells, siRNA suppression of SNX4 or SNX7 results in a significant 

reduction in LC3 puncta suggesting that this SNX-BAR heterodimer is required for 

autophagosome assembly. The SNX4/SNX7 heterodimer affected autophagosome 

assembly rather than autophagic flux. influenced autophagosome assembly by controlling 

ATG9 trafficking [34].  In a similar study, SNX18 along with Dynamin-2 regulates ATG9 

trafficking from recycling endosomes to autophagosomes [141]. In a complementary study, 

SNX18 positively regulates autophagosome formation by recruiting Atg16L1 and LC3-

positive membranes to the autophagosome. Here SNX18 requires membrane binding 

capacity as well as direct LC3 interactions [141] (Figure 4A). 

 

5.4 Sorting nexins in selective autophagy in yeast. 

In yeast, Snx4 and Snx42 are required for several selective autophagy pathways. 

Cargos include mitochondria [142], peroxisomes [143, 144], proteasomes [31], ribosomes 

[31], fatty acid synthase complexes [145] and transcription factors [75] (Figure 4B). A role 

for sorting nexins in selective autophagy was first identified while studying the cytoplasm-to-

vacuole targeting pathway (CVT). This pathway functions in physiological conditions to 

transport the aminopeptidase, Ape1, to the vacuole. Snx4 and Snx42 are required for the 

recruitment of proteins to the site for CVT formation [98]. Since then a role of Snx4 in other 

selective autophagy pathways has been uncovered. Despite being required for many 

pathways, the molecular details of Snx4’s role in these pathways remain unclear.  

 

5.5 TORC1 controls the endocytosis pathway. 
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The endocytosis pathway is controlled by the target of rapamycin complex 1 (TORC1). 

TORC1 signaling is required to promote the endocytosis of specific plasma membrane 

proteins [146]. TORC1 inactivation, induced by starvation [147], however, initiates the 

destruction of another set of cargoes [148], providing the cell with an immediate source of 

amino acids. These are sufficient to uphold protein synthesis until other autophagy pathways 

are activated. These findings show that endocytosis and autophagy are highly coordinated 

in maintaining intracellular amino acid homeostasis, thereby promoting cellular survival 

during starvation [149]. 

 

5.2 TORC1 controls the endocytosis pathway. 

The endocytosis pathway is controlled by the target of rapamycin complex 1 (TORC1). 

TORC1 signaling is required to promote the endocytosis of specific plasma membrane 

proteins [146]. TORC1 inactivation, induced by starvation [147], however, initiates the 

destruction of another set of cargoes [148], providing the cell with an immediate source of 

amino acids. These are sufficient to uphold protein synthesis until other autophagy pathways 

are activated. These findings show that endocytosis and autophagy are highly coordinated 

in maintaining intracellular amino acid homeostasis, thereby promoting cellular survival 

during starvation [149]. 

 

6. The interplay between soring nexins, lysosomal degradation and UPS-

mediated degradation 

In recent years, it has become apparent that the UPS and autophagy pathways are 

functionally interconnected [150-152]. Key findings from these studies have revealed that 

when the UPS is overwhelmed, autophagy pathways can step up to eliminate aberrant 

proteins [11]. Furthermore, ubiquitination is utilized as a degradation signal by autophagy 

pathways, being critical for removing damaged mitochondria by mitophagy in mammalian 

cells [153, 154].  Ubiquitin is required for autophagic degradation of protein aggregates 

[155, 156], peroxisomes [157]pathogens [158] and ribosomes [159, 160]. Here the Crosstalk 

between ubiquitination and autophagy is provided by autophagic adaptor proteins (or 
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autophagy receptors), which bind both ubiquitin and autophagy-specific UBL modifiers (Atg8 

and its homologues) [161, 162]. This has led to the more current hypothesis that the UPS 

and autophagy pathways constitute a single integrated degradation system, which together 

determine the fate of many proteins [136]. Consistent with this, following TORC1 inhibition, 

in yeast, nuclear proteasomes are disassembled and then destroyed by Snx4-Atg20 and 

Snx4-Atg42 mediated autophagy [31, 120, 163].  

 

5.5 Snx4 OR the SCFGrr1 mediate the destruction of regulate Med13 following stress. 

There are a limited group of proteins that are substrates for both lysosomal and 

proteasomal degradation. Our group has discovered that Med13, a conserved member of 

the cyclin-dependent kinase (Cdk) module of the mediator complex, is degraded either by a 

novel Snx4-mediated autophagy pathway or by the UPS in response to survival and cell 

death signals respectively (Figure 5) [75, 164, 165]. Med13 is a member of the conserved 

Cdk8 kinase module (CKM) that predominantly repress genes induced by environmental 

stress [166-168]. Activation of these genes is achieved by disrupting the CKM association 

with the mediator [167, 169]. Med13 and cyclin C are both targets of the UPS system 

following oxidative stress, but cyclin C is only destroyed after it has executed its “night job”. 

Here, cyclin C but not Cdk8, translocates to the mitochondria where it mediates stress-

induced mitochondrial fission and promotes cell death in both yeast and mammalian cells 

[170-172]). In mammalian cells, mitochondrial located cyclin C also associates with Bax to 

promote its activation [171].  

 

In contrast, following a survival cue (nitrogen starvation), cyclin C is rapidly destroyed by 

the UPS before its nuclear release that prevents mitochondrial fission, upregulates 

Autophagy genes ATG (AuTophaGy) genes promoting survival [173]. Here Med13 is 

removed from the nucleus by a Snx4-mediated autophagy pathway. After transitioning 

through the nuclear pore complex, Med13 is transported by the Snx4-Atg20 heterodimer to 

Atg17-initiated phagophores attached to PAS complexes originating at the vacuole [75]. 

Moreover, two transcriptional activators (Rim15 and Msn2) that regulate also 
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ATG expression, are degraded upon nitrogen starvation by this mechanism. Taken together, 

this suggests a model in which Snx4-mediated autophagy of ATG transcriptional regulators 

allows fine-tuning of the autophagic response.  

 

6.2 p27 is regulated by SNX6, proteasome degradation and endo-lysosomal pathways. 

In mammalian cells the growth suppressor, kinase inhibitor p27 facilities cell cycle 

progression in arresting the cell cycle in response to a variety of environmental cues [174]. 

UPS mediated degradation of p27 by SCFSkp2 occurs in the nucleus in G1/S phase whereas 

the Kip1 E3 liagse mediates its 26S turnover in the cytoplasm in G(1).  Together this 

ensures cell cycle progression by making S-phase entry irreversible [175, 176]. Cytoplasmic 

p27 is also directed for endo-lysosomal degradation SNX6. This is also important for cell 

cycle progression as silencing SNX6 delays S‐phase entry on serum stimulation of 

starvation‐synchronized NIH‐3T3 cells [30]. Further studies are needed to understand if 

sorting nexins play key roles in coordinating these proteolysis systems. 

 

7. Sorting nexins in disease 

The etiology of several diseases such as cancer, cardiovascular and neurodegenerative 

diseases is linked to dysregulation of sorting nexin function.  As deficiencies or 

dysregulation of sorting nexins results in protein homeostatic, current research is focusing 

on SNX-mediated regulatory mechanisms and their role in the pathophysiology of various 

disease states. 

 

7.1 The role of sorting nexins in cardiovascular disease.  

Sorting nexins are implemented in the development of cardiovascular diseases such 

as hypertension, coronary heart disease, and heart failure [19]. Here SNXs influence the 

maintenance of blood pressure by regulating the expression and function of GPCRs such 

as dopamine receptors, ion channels, and transporters [19, 117, 177].Consistent with this, 

knockdown/knockout animal models of SNX1, SNX5, and SNX19 correlate with 

hypertension. This has led testing if  SNXs could potentially be a therapeutic target for 
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hypertension. Therapeutic strategies have focused on expressing specific SNX subtypes 

within the kidney to decrease blood pressure [19].  

 

SNXs also influence the pathogenesis of coronary artery disease by regulating lipid 

metabolism. SNXs interact with the leptin receptor and the low-density lipoprotein (LDL) 

receptor [37, 178] and decreasing SNX1 levels results in increased levels of triglycerides 

and cholesterol [37, 178]. SNXs may also influence coronary artery disease by regulating 

inflammation, which is linked to the etiology of vascular diseases [179]. SNX13 deficiencies 

also correlate with decreased heart function associated with cardiomyocyte apoptosis. 

SNX13 mediates the recycling of the apoptotic repressor, ARC. Loss of SNX3 results in the 

degradation of ARC and promotes cardiomyocyte apoptosis and heart failure [180]. 

 

Insulin insensitivity is a major  hallmark of type 2 diabetes mellitus are characteristic 

feature of heart failure.  Sorting nexins are linked to this pathophysiology as  SNX5, SNX19 

and SNX27 regulate of insulin degradation, secretion, and signaling. Silencing SNX5 in 

animal models increases blood insulin, decreases insulin excretion and causes insulin 

resistance [65, 181, 182].  

 

7.2 The role of sorting nexins in neurogenerative diseases.   

SNX dysregulation has been linked to several neurodegenerative diseases such as 

Alzheimer’s disease (AD), Parkinson’s disease, and Down’s syndrome [183]. In neuronal 

cells, the composition of the cellular membrane is essential for responding to extracellular 

stimuli and neuroplasticity. SNX-mediated regulation of the cellular membrane composition 

influences several processes such as neuronal excitability, plasticity, neural development, 

signaling, psychostimulant response, and cellular drug resistance [184].  

 

Best described is the role of sorting nexins in the pathogenesis of Alzheimer’s disease 

(for details see [185]). This is characterized by brain accumulation of extracellular neuritic 

plaques containing deposits of β-amyloid (Aβ) peptide and neurofibrillary tangles 
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compromised of microtubule-associated protein tau. One of the proteins, APP, innovled in 

regulating the (Aβ) peptide is SNX33 retromer complex. 

 

 

SNX33 inhibits endocytosis of APP which in turn lead to retention at the APP at the 

plasma membrane which promotes to plaque formation [186]. SNX15 and SNX17 also 

regulate APP processing [187]. SNX4, SNX6 and SNX12 have been shown to regulate 

BACE1 trafficking which also  controls Aβ peptide generation [27, 188]. In addition, SNX27 

has also been shown to bind and inhibit ϒ-secretases thereby decreasing Aβ peptide [189]. 

 

Parkinson’s disease (PD) is defined by the loss of dopaminergic neurons and the 

accumulation of α-synuclein-enriched Lewy bodies. Genome-wide association studies have 

identified various mutations that increase Parkinson’s disease susceptibility such as PINK1 

and Parkin whose gene products regulate mitophagy [190, 191]. As such mitochondrial 

defects such as disruptions in mitochondrial fission and mitophagy are hallmarks of PD. 

Genetics relevance of SNXs in Parkinson’s has not been determined however it can be 

speculated that dysregulation of SNXs may perturb autophagy pathways that are necessary 

to clear α-synuclein aggregates and damaged mitochondria. In support of this, the 

pathophysiology of Parkinson’s disease in linked with mutation in VPS35, a member of the 

retromer complex [183]. This is relevant as mutations in VPS35 are linked to decreased 

association with the WASH complex which perturbs ATG9 transport, ultimately 

compromising autophagosome biogenesis [192, 193] Lastly, as VPS35 interacts with the 

mitochondrial fission regulator, Dynamin-1-Like Protein [194]. VPS35 mutations are also 

linked to increased mitochondrial fragmentation and cell death [195]. In neurons this 

particularly devastating as, mitochondrial fission directs mitochondrial transport to their 

potential docking sites in axons and dendrites [196].  

 

SNX deficiencies have been implemented in Down’s syndrome [67] as well as 

associated with epilepsy, developmental delays, and subcortical brain abnormalities [184]. 
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SNX27 knockdown/knockout animal models or human patients with non-functional SNX27 

variants exhibit a wide range of neurological aberrations that may be associated with defects 

in cell surface receptors [68].Some of these receptors include neuroreceptors (AMPA, 

NMDA), ATPase copper transporters, glucose transporters, disintegrin /metalloproteinase, 

and adhesion proteins (NLGN2) [184]. For example, SNX27 expression is downregulated in 

human Down’s syndrome brains. Mechanistically, SNX27 may regulate the retention of cell 

surface membrane proteins such as the myelination-related protein, GRP17 which play an 

important role oligodendrocyte development respectively [197] 

 

7.3 Coronaviruses hijack the endosomal-lysosomal pathway for host cell entry and infection. 

Coronaviruses (CoVs) are a group of enveloped, single-stranded positive genomic 

RNA viruses that are known to cause severe respiratory diseases in humans. Coronaviruses 

can be categorized into three groups: α-CoVs, β-CoVs, γ-CoVs. Two members of the β-

CoVs group include the Middle East respiratory syndrome coronavirus (MERS-CoV) and the 

serve acute respiratory syndrome coronavirus (SARS-CoV) which shares high sequence 

identity with SARS-CoV-2 (COVID-19) [198].In the field of virology, viral entry has been 

extensively studied for its promising impacts in future therapeutic strategies. Endocytosis is 

thought to be a key regulator of viral host entry and infection. In support of this, CoVs were 

found to accumulate in the lysosomes of cells after infection. In addition, several studies 

have shown that different CoVs hijack the endosomal-lysosomal pathway by engaging the 

initiation of endocytosis thereby entering the host cell and using lysosomal machinery to 

release their RNA contents for subsequent replication [199]. The mode of endocytosis varies 

between different viruses and hot cell types. Coronaviruses can use several endocytosis 

mechanisms. For example, SARS-CoVs employs clathrin-dependent, caveolae-dependent, 

and clathrin- and caveolae-independent mechanisms involving lipid rafts [200].    

The exact mode of endocytosis utilized by the SARS-CoV-2 has not yet been 

identified, however it is known that SARS-CoV-2 requires the same receptor SARS-CoV, 

which is angiotensin converting enzyme II (ACE2) for host cell entry. ACE2 is highly 

expressed in human epithelial cells of the lung and small intestine.  ACE2 is located at the 
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cell surface of many types of cells and regulates the renin-angiotensin-aldosterone system 

(RAAS) pathway. SARS-CoV-2 has been shown to directly interact with ACE2 via its spike-

like protein on surface of the viral envelope which engages the endocytic pathway and 

thereby entering the host cell [199]. 

 

Currently it is unknown whether sorting nexins play a role in SARS-CoV-2 host cell 

entry. However other viral pathogens have been shown to exploit the trafficking role of 

sorting nexins for host cell entry and infection. One of the best examples of viruses hijacking 

the intracellular trafficking networks within the cell is the human papillomavirus (HPV) and 

SNX17 [60]. Here the PDZ domain of SNX17 and SNX27 interacts with the viral capsid 

protein L2. The capsid protein L2 ensures that the viral DNA enters the nucleus for 

propagation of viral transcripts by interacting with trafficking proteins within the cell. SNX17 

and SNX27 therefore enhances HPV infection by trafficking L2 and the bound viral DNA 

from the late endosomes to the TGN and subsequently to the nucleus [201]. In a similar 

way, SNX2 traffics the human respiratory syncytial virus (HRSV) structural proteins to 

enhance viral infection [202]. Other pathogens have also evolved elegant mechanisms to 

inhibit the innate immune response roles of SNXs. SNX5 and SNX6 are inhibited by 

Legionella RidL and Chlamydia IncE to evade the lysosomal mediated degradation [203]. It 

would be of great interest to see if SARS-CoV-2 and other pathogenic viruses regulate SNX 

trafficking activity in order to enhance viral progeny production or evade the innate immune 

response. 

 

Conclusions. 

Cells sense and respond to various internal and external stimuli to regulate 

processes such as gene expression, cell cycle progression, metabolism, and protein 

homeostasis. In the cell, there are severe quality control mechanisms held in place to 

regulate protein degradation. The mode of protein degradation depends on several factors 

including size, localization, and timing of substrate proteolysis. For example, the large size 

of organelles and multiple subunit complexes requires lysosomal degradation. Localization 
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of proteins such as transmembrane proteins requires lysosomal degradation because these 

proteins are embedded within the membranes making proteasomal-mediated degradation 

unfavorable. For the cell to quickly turn genes on and off transcription factors are degraded 

via nuclear 26S proteasomes. This mode of degradation, therefore, relies on spatiotemporal 

factors because degradation needs to happen rapidly, and proteasomes are localized in 

close proximity within the nucleus. Understanding the molecular details behind SNX cargo 

recognition, membrane binding, and protein degradation provides insight into the diverse 

roles of SNXs in various biological processes. The growing evidence of SNXs in protein 

homeostasis will shed light on pathologies associated with perturbed proteolysis and provide 

innovative targets for therapeutics.  
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Table 1. List of mammalian sorting nexins and associated proteins (WASH) that play a role 

in the UPS. 

SNX UPS activity role Ref 

SNX3 ubiquitin-specific protease 10 

(USP10) 

Deubiquitylates and stabilizes 

SNX3  

 

[117]. 

SNX5 Fbw7 SNX5 interacts with FBW7 

and blocks FBW7-mediated 

ubiquitination of oncoproteins 

such as c-Myc, NOTCH1, and 

Cyclin E1 

[128] 

SNX9 Itch (atrophin-1 interacting 

protein 4, Nedd family member) 

Itch regulates intracellular 

levels of SNX9 

[112] 

 

SNX16 indirect Postulated that SNX16 

interacts with and inhibits 

proteasome‐dependent 

ubiquitination of eukaryotic 

translation elongation factor 1 

A2 (eEF1A2), thereby 

activating c‐myc signaling. 

[129] 

SNX18 Mib1 E3 ligase Promote the endocytosis of 

Delta-like protein 1 (Dll1) 

which is the transmembrane 

ligand protein for the Notch 

proteins. 

[111] 

SNX27 Non-catalytic role of the 

deubiquitinase OTULIN  

OTULIN antagonizes SNX27-

dependent cargo loading, 

binding of SNX27 to the 

VPS26A-retromer subunit and 

endosome-to-plasma 

membrane trafficking. 

[118] 

retromer TRIM27 E3 ubiquitin ligase 

(non-catalytic role) 

Mediates the phosphorylation 

and activation of STAT 

[122] 

retromer MAGE-L2-TRIM27 E3 ubiquitin 

ligase 

The MAGE-L2-TRIM27 E3 

ubiquitin ligase localizes to 

retromer-positive endosomes. 

[204] 

WASH K63-linked ubiquitination and 

deubiquitinase USP7 

WASH is activated by K63-

linked ubiquitination of WASH 

K220 by MAGE-L2-TRIM27. 

USP7 regulates this activity. 

[114, 204]. 
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Figure 1. Sorting nexins (SNX) play a role in regulating protein homeostasis within three 

distinct but interconnected proteolysis pathways. The endocytosis-lysosomal pathway 

regulates steady-state levels of membrane proteins and consists of endosome vesicles, the 

trans-Golgi network (TGN), and the lysosome. Cargoes destined for delivery to the lysosome 

are ubiquitinated (Ub) and internalized into ILV’s (not shown) using ESCRT pathways (ES). 

In the autophagy-lysosomal cargoes are sequestered to the vacuole by double-membraned 

vesicles called autophagosomes.. Cargoes include, but are not limited to, single proteins, 

protein aggregates, multi-subunit complexes, and organelles. In mammalian cells 

recognition of selective autophagy targets is dependent upon ubiquitination. Sequestration 

of these cargos usually requires the de novo synthesis of double-membraned vesicles 

termed autophagosomes. The third proteolysis pathway within the cell is the ubiquitin-

proteasomal system (UPS). This mode of proteolysis targets short-lived regulatory protein 

that are selectively targeted and degraded. UPS-mediated degradation requires 

ubiquitination of substrates.  
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Figure 2. The role of SNXs in mammalian endocytosis. Mammalian cells have a complex 

and dynamic endomembrane network that consists of different three different endosome 

vesicles (early, late, and recycling). Retrograde transport of membrane proteins requires 

recycling endosomes and the TGN for delivery back to the plasma membrane. Degradation 

of membrane proteins requires late endosomes and the lytic organelle (lysosome). Different 

sorting nexins (SNX) are indicated in the different endocytosis pathways.  
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Figure 3. Structural classification of SNX subfamilies. Domain architecture describes the 

functional domains within different SNX subfamilies. PX denotes the highly conserved lipid 

binding domain that unifies the SNX protein family. SNX-BAR proteins are the largest 

subfamily and contain coiled-coil regions that enhance membrane binding, membrane 

remodeling, and protein-protein interactions. PDZ, postsynaptic density 95/discs 

large/zonula occludens domain; FERM, protein 4.1/ezrin/radixin/moesin domain; SH3, SRC 

homology 3 domain, MIT, microtubule interacting and trafficking domain, Kinesin motor 

domains. 
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Figure 4. SNX play a role in autophagy following starvation stress. A) In mammalian cells 

SNXs play a role in autophagy-dependent localization of ATG16 and ATG9 from recycling 

endosomes to the pre-autophagosomal site (PAS) requires SNX4/SNX7 and SNX18. ATG9 

containing vesicles are required for PAS formation and autophagosomes biogenesis. B) In 

yeast, Snx4 and Snx42 regulate many forms of selective autophagy including pexophagy, 

mitophagy, ribophagy, proteophagy, and degradation Fatty Acid synthase complexes as well 

as nuclear transcription factors.  
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Figure 5. Med13 is destroyed either by the UPS or Snx4-Atg20 mediated autophagic 

degradation following cell death (left) or survival signals (right). Cartoon outlining stress-

dependent fates of cyclin C and Med13, two members of the Cyclin Dependent kinase 

module (CKM). Here the subcellular address of cyclin C following stress mediates cell fate 

decisions by affecting mitochondria morphology. See text for details and [75, 164, 165, 173]. 
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