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Abstract: Segmentation of Magnetic Resonance Images (MRI) of abdominal organs is useful for 

analysis prior to surgical procedures and for further processing. Deep Learning (DL) has become 

the standard, researchers have proposed improvements that include multiple views, ensembles and 

voting. Loss function alternatives, while being crucial to guide automated learning, have not been 

compared in detail. In this work we analyze limitations of popular metrics and their use as loss, 

study alternative loss variations based on those and other modifications and search for the best 

approach. An experimental setup was necessary to assess the alternatives. Results for the top scoring 

network and top scoring loss show improvements between 2 and 11 percentage points (pp) in 

Jaccard Index (JI), depending on organ and patient (sequence), for a total of 22 pp over 4 organs, all 

this being obtained just by choosing the best performing loss function instead of cross-entropy or 

dice. Our results apply directly to MRI of abdominal organs, with important practical implications 

for other architectures, as they can be applied easily to any of them. They also show the worth of 

variants of loss function and loss tuning, with future work needed to generalize and test in other 

contexts. 
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1. Introduction 

Magnetic Resonance Imaging (MRI) is a medical imaging technique that forms images of the 

anatomy and physiological processes of some part of the body. MRI is obtained using strong 

magnetic fields, gradients and radio waves. For acquisition, radiofrequent pulses are triggered that 

will make the protons spin change their orientations, and receiver coils of the MRI equipment capture 

corresponding magnetic signal changes. Further processing of those signals results in MRI images 

that can then be used to gain insight and further knowledge concerning the structures and organs. In 

that context, precise segmentation is useful for advanced computer-aided analysis, measurements 

and visualizations related to medical procedures.   

 

In recent years, Deep learning (DL) has quickly revolutionized the quality and flexibility of 

segmentation. The segmentation network is an evolution of the (deep) convolution neural network 

(DCNN) used for classification. The classification DCNN learns to classify images, and its structure 

is a sequence of encoder convolution stages that extract and compress features from the image 

directly into feature vectors, followed by a fully-connected neural network that classifies the image 

based on that feature vector. The segmentation network replaces the fully connected part by a 

decoder that restores the full image-size using de-convolution layers, and outputs segment labels for 

each pixel. The capacity to learn automatically in DL networks comes from a large number of 

iterations adjusting thousands of weights of convolution and de-convolution filters automatically 

based on back-propagation of the loss (a.k.a. error), a fundamental measure of the distance between 

the current quality of segmentation of training images and the groundtruth segmentation of those 

training images. Computation of the loss is a crucial step in this procedure: a loss function that fails 

to reveal deficiencies in segmentation of specific organs will not learn to segment those organs well. 

That is the reason why validation loss can be very low (e.g. below 1%) during training and yet the 
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resulting segmentation network may still fail to segment some organs and some slices with the 

quality that would be expected just by looking at the loss. For instance, figure 1 shows segmentations 

of two test slices (the groundtruth segments are the left images shown on black background), with 

the one in (b) in particular being far from perfect in spite of the fact that final validation loss reported 

a very low cross entropy loss (0.3%), and both class re-balancing and data augmentation were used 

during training.   

 

  
(a)                                    (b) 

Figure 1. Example MRI segmentation of independent test images using DeepLabv3 segmentation network. 

The left of each image is the groundtruth on a black background, the right is the segmentation: (a) is a slice 

showing the liver and spleen; (b) is another slice showing the kidneys and a small extremity of the liver 

There is no magic solution to the limitations of metrics used as loss function, and there already 

exist sufficient metrics that characterize segmentation quality. Our focus is not on devising 

completely new elaborate loss functions for the sake of novelty, but rather to engage in a careful 

consideration of metrics and experimental evaluation to help discover the best performing 

alternative. Intuitively, the best metric and loss function would be one that would best reveal 

deficiencies segmenting individual organs, but it is not clear how best to translate this into a single 

loss value. Besides comparing loss functions and variations in loss formula, such as different weights 

to false positives and negatives, we compare the alternative of not considering the background at all 

in the loss function, and also the alternative of simply replacing multiclass by uniclass segmentations. 

Based on the study of the alternatives we were able to improve 22 percentage points (pp) on the sum 

of pp improvement over the 4 organs tested. 

 

Related work 

Next, we briefly review works on segmentation of MRI and CT scans, plus works modifying loss 

and also works discussing metrics. Most works on segmentation of MRI and CT actually propose 

modifications of architectural details, only a few test a different loss function, and none compares the 

effect of loss function variations that we compare in this work. Prior to the use of deep learning (DL), 

segmentation would most frequently be based multi-atlas approaches. [1] uses 3D models of the liver 

and probability maps, [2] is based on histograms to segment the liver, followed by active contours 

for refinement, [3] applies watershed together with active contours. Then deep learning-based 

segmentation revolutionized the field. Zhou [4] achieved top scores using a fully convolutional 

networks (FCN) by taking 3-D CT images and applying a majority voting scheme on the output of 

segmentation of 2D slices taken from different image orientations. [5] applied a similar approach to 

abdomen segmentation from MRI sequences, scoring (dice similarity coefficient=DSC) 0.93, 0.73, 0.78, 

0.91, 0.56 for spleen, left kidney, right kidney, liver and stomach. Larsson [6] proposed SeepSeg which 

segments abdominal organs using 3 steps, regions localization by multi-atlas approach, CNN for 

pixel binary classification and post-process using thresholding to remove positive samples except 

those of the largest connected region. The proposed approach scored (Jaccard Index=JI) 0.9; 0.87; 0.76; 

0.84 for liver, spleen, right and left kidney. [7] proposed multi-slice 2D neural network designed in a 

way that considers information of subsequent slices, plus augmented data and multiview training. 

Groza [8] presents an ensemble of DL networks with voting to achieve improved segmentation scores 

for MRI scans, proposing five networks and a voting-based ensemble mechanism. In another work, 

[9] tests different architectures (the basic U-Net, a deeper U-Net with VGG-19 layers, a cascade of two 

networks and a Generative Adversarial Network (cGAN). Only a few works modified the loss 

function to try to improve segmentation scores, and usually in slightly different contexts: [10] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2020                   doi:10.20944/preprints202011.0023.v1

https://doi.org/10.20944/preprints202011.0023.v1


 

proposed improving deep pancreas segmentation in CT and MRI images via recurrent neural 

contextual learning and “direct” loss function. They propose a Jaccard Loss (JACLoss) for training 

the neural network. As explained by the authors, “to optimize the Jackard Index (JI) (a main 

segmentation metric) directly in network training makes the learning and inference procedures 

consistent. It empirically works better than the cross-entropy loss or the class-balanced cross-entropy 

loss when segmenting small objects, such as pancreas in CT/MRI images”. [9] also replaced cross-

entropy but by the dice function to better deal with class imbalance. In a different context, [13] also 

investigated a modified loss function that is useful in our work. These works touch the surface of the 

relevance of the loss function in the quality of segmentation, but they do not study and compare the 

various alternatives that we do, and we arrive at best performing solution that extends their results. 

Investigating limitations of metrics is also important for a thorough investigation of loss, since loss is 

a metric itself. The authors in [12] identified a relevant limitation of metrics that we also discuss in 

this work. Regarding evaluation of segmentation of eye-fundus images, [12] states that “many scores 

are artificially high simply because the background is huge and hence the term TN (true negatives) 

is also huge, making specificity, ROC and AUC inviable as scores”. Our analysis of metrics includes 

this problem, and the identification and analysis of those limitations is very important to define a 

suitable loss function. 

 

2. Materials and Methods 

In this section we first analyze metrics and their limitations, proposing loss function variations 

and alternatives based on that analysis. Then we describe an experimental setup that we use to 

evaluate the quality of segmentation using the varied loss alternatives. 

2.1. Discussing metrics and loss 

Both segmentation evaluation metrics and loss are expected to quantify the difference (error) 

between the groundtruth (GND), representing a correct segmentation of the image, and the 

segmentation output (SEG). The loss is f(SEG, GND), a quantity between 0 and 1, and the quality of 

segmentation is (quality=1-loss). SEG and GND are labelmaps, i.e. each position (pixel) in the 

labelmap is a class label. In most bibliography, metrics are defined considering a binary classification 

problem that classifies into two classes: positive (P), with the meaning “is”, and negative (N), with 

the meaning “is not”. The quantities TP, TN, FP and FN correspond to the number of pixels that are 

true positives, true negatives, false positives and false negatives, respectively. Given those quantities, 

some of the most frequent metrics are: 

 

Accuracy (ac) = (TP+TN)//TP+TN+FP+FN);          (1) 

Sensitivity (se) = recall= True Positive Rate (TPR)=TP/(TP+FN)     (2) 

Specificity (sp) = TN/(TN+FP)            (3) 

Precision (p) = TP/(TP+FP)             (4) 

False Positive Rate (fpr) = FP/(FP+TN)           (5) 

ROC, a plot of TPR vs FPR, and AUC, the area under the curve of ROC    (6) 

IoU = JI = TP/(TP+FN+FP)             (7) 

Dice (dice) = DSC = 2TP/(2TP+FP+FN)=2JI/(JI+1), which is highly correlated with JI (8) 

 

In multiclass problems we can apply the same formulas, but considering the following 

quantities: a TP pixel is a pixel that belongs to one class c different from background in groundtruth 

and also in the segmentation; a TN pixel is a pixel that belongs to background in both groundtruth 

and segmentation; an FP pixel is a pixel that belongs to background in groundtruth but is classified 

as some other class c in segmentation; an FN pixel is a pixel that belongs to some class c different 

from background in groundtruth but is then classified as background; 
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The following three observations are important reasons why the metrics defined in equations 

(1) to (8) can fail to evaluate segmentation correctly in many medical imaging contexts:  

 

a) the number TP is always huge in all metrics, because TP of background pixels is huge. As a 

consequence, all metrics (1) to (8) report high scores regardless of the actual quality of segmentation 

of individual organs if evaluated over all pixels;  

b) TN is also huge because it includes a huge number of background pixels that are well classified. It 

means that specificity (SP), FPR, ROC and AUC do not evaluate the quality of segmentation of organs 

well; 

c) Sensitivity (a.k.a recall or TPR), although useful because it quantifies the fraction of organ pixels 

classified correctly as such, fails to capture very important possible deficiencies, because it does not 

include FP (background classified as organ) in the formula, a frequent occurrence. 

 

The problems identified in a) and b) are a consequence not only of class imbalance, but most 

importantly of the fact that background pixels are much easier to segment (score much higher) than 

organ pixels because they are more constant across most slices and patients (since they include all 

pixels “framing” the image except the organs). The issue identified in a) means that it is necessary to 

use metrics that evaluate each class separately instead of computing them over all pixels, requiring 

modifications to how equations (1) to (8) were defined above. Additionally, since b) and c) discard 

many metrics that are inappropriate, the metrics that are left for use are JI, DSC and precision (which 

should be used together with recall). Given the observations in a), these need to be evaluated 

separately for each class. That means each quantity TP, TN, FP and FN must be replaced by TPc, TNc, 

FPc and FNc respectively, where c is a class, and the metrics should be obtained and reported 

separately for each class c. 

 

But while we can report a different value of JI or DSC for each class when evaluating 

segmentation quality, the loss function needs to output a single value to be used as delta in 

backpropagation learning. Therefore, the final loss must be averaged over the loss of each class. This 

solution is still not perfect because the loss of class “background” is in practice always almost zero 

(due to a) and b)), contributing to push the average loss down even if specific organs are very well 

segmented. Based on these observations, we define the loss functions and variations to consider in 

the next sub-section.      

2.2. Defining metrics for use as loss function 

Based on the previous analysis we define a set of loss functions besides cross entropy and a set 

of variations and alternatives that may contribute to improve the quality of the learning process. Of 

course we also include the standard cross entropy as one of the options to compare to. 

 

Cross entropy (crossE, the default to compare with): cross-entropy is well-known and the default 

loss function. Given the set of probabilities p of a single pixel of the segmentation output to be of each 

possible class, and the real probabilities (one-hot encoding of the class), cross entropy measures 

dissimilarity between p and q. If ti and si are the groundtruth and the CNN score of each pixel for 

each class i respectively, 

  
By applying a class frequency inverse weight to the value for each pixel we obtain class-weighted 

cross-entropy, which is the variant we use and denote as “crossE”. 

 

Intersect over the Union (IoU): IoU is a convenient measure of the degree of overlap or match 

between segmentation-obtained regions and the corresponding groundtruth regions. Given the 

number of true positives (TP), false positives (FP) and false negatives (FN) in the classification of 

pixels, loss is (1-IoU),  
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But since this IoU averages over all pixels and we identified the problem with that measurement, IoU 

averaged over the classes is used instead, 

 

Dice (dice): The dice or Dice Similarity Coefficient (DSC) is a metric that is highly correlated and can 

be obtained from IoU directly. The loss formula for the dice is: 

 

As with IoU we use an average over classes, 

 

Intersect over the Union with penalties (IoUxy): IoUxy is similar to IoU but penalizes differently FP 

and FN in the denominator of the formula. The resulting formula weighting over classes is: 

  

In these formulas  and  are such that +=2,  ,>=0. The question to answer is whether giving 

different weights to FN and FP (the two types of unwanted errors) will allow the approach to better 

segment each organ, and what is the winning  and  combination. We evaluate this by means of 

experimentation. 

 

Loss without considering the background (diceBK): Since the background is easier to segment than 

organs and huge, diceBK is an alternative that removes the background from the loss formula (i.e. it 

averages loss over all classes except the background). The objective is to try to emphasize the need to 

segment the organs well. An experimental approach is necessary to evaluate if this alternative 

improves the outcome. 

 

Uniclass segmentation: instead of a single multi-class problem with a single segmentation network, 

we can have one specific segmentation network specializing in segmenting each organ. The potential 

advantage is that we will be replacing a difficult multi-objective optimization problem [14] (minimize 

loss of segmentation of each organ) by n easier to optimize single objective uniclass problems (each 

one optimizes segmentation of one organ). Note however that, on the other hand, in uniclass versions 

all organs are marked as background except the one being segmented, and since organs have 

similarities that can be confounded, it may be difficult for the network to classify well. An 

experimental approach is necessary to reach conclusions regarding which alternative scores best, 

either a single multiclass segmentation network or n uniclass segmentation networks, one for each 

class. 

2.3. Experimental setup 

The segmentation network architecture is a relevant factor for the quality of segmentation. For 

this work we pick some of the most well-known generic segmentation networks, the U-NET [15], 

FCN [16] and DeepLabV3 [17]. The U-Net uses a 58-layer segmentation network with VGG-16 (7 

stages, corresponding to 41 layers) for feature extraction (encoding). The FCN also used VGG-16 as 

encoder, and its total network size is smaller than UNet (51 layers). The decoder stages of U-Net are 

symmetric to the encoder stages, while FCN uses simple interpolation in the decoder stages. Both 

networks also include forward connections feeding feature maps from encoder to decoder stages. 

The two networks (U-Net and FCN) are the most-frequently used ones in segmentation of medical 

images. The third network, DeepLabV3, is a well-known segmentation network oft used in object 

recognition applications that outperformed most competitors due to some innovations. It is the 
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deepest network tested in this work, with 100 layers and uses Resnet-18 as feature extractor (8 stages, 

totaling 71 layers). DeepLabV3 incorporates two important segmentation quality enhancing 

improvements, the Atrous Spatial Pyramid Pooling (ASPP) (improving segmentation of objects at 

multiple scales) and fully connected Conditional Random Fields (CRF) for improved localization of 

object boundaries using mechanisms from probabilistic graphical models. All segmentation networks 

were pre-trained versions based on object recognition data.  

 

The Magnetic Resonance Imaging data used in our experimentation is a set of scans available in 

[18]. It consists of (MRI) acquisitions of 120 MRI sequences capturing abdominal organs (liver, 

kidneys and spleen) obtained using T1-DUAL fat suppression protocol. The sequences were acquired 

by a 1.5T Philips MRI, which produces 12-bit DICOM images with a resolution of 256 x 256. The ISDs 

varies between 5.5-9 mm (average 7.84 mm), x-y spacing is between 1.36 - 1.89 mm (average 1.61 mm) 

and the number of slices is between 26 and 50 (average 36). In total there are 1594 slices (532 slice per 

sequence) used for training and testing, with the testing sequences being chosen randomly to include 

20% of all sequences in 5-fold cross-validation runs. Given the relatively limited size of the dataset, 

data augmentation was added after we verified that it contributes to improved scores, by increasing 

diversity and size of the dataset. Data augmentation was defined based on random translations of up 

to 10 pixels, random rotations up to 10 degrees, shearing up to 10 pixels and scaling up to 10%. 

 

The experiments reported in this work were preceded by a set of iterations tuning configurations 

to the best possible results. Those iterations were based on setting configuration parameters, running 

training and testing data and interpreting output metrics. With this process we arrived at a set of 

configurations that would result in improved performance. The final network training parameters, 

used in our experimental work, were: learning function SGDM, with an initial learning rate=0.005, 

piecewise learning rate with drop period of 20 and learn rate drop factor of 0.9 (i.e. the learn rate 

would decrease to 90% every 20 epochs). Class balancing was applied in the pixel classification layer; 

training iterations were 500 epochs; minibatch sz=32; momentum= 0.9. But the factor that most 

improved performance was data augmentation, which we described before. A machine with a GPU 

NVIDEA G Force GTX1070 was used for the experiments. 

 

The experiments were divided into two phases. The first phase chose the best performing 

segmentation network among the three candidates, using the default cross entropy loss function. 

Using the best performing chosen network, we then tested the various loss functions (we actually 

also tested the different loss function alternatives on FCN, but the results were worse than 

DeepLabV3, as expected). The loss functions used are cross entropy (crossE), IoU (IoU11) and IoUxy 

with different configurations of x and y, dice and dice without considering the background (diceBK). 

In the case of IoUxy we test the following options, besides IoU11: IoU1505 = IoUxy with =1.5, =0.5, 

IoU0515= IoUxy with =0.5, =1.5. Finally, we also compared multiclass versus n uniclass 

segmentations, the last alternative that we discussed in our proposals. In what concerns metrics used 

to evaluate the quality of the resulting segmentations, we focused mostly our analysis on per-class 

IoU (JI), since it allows us to assess the quality of segmentation of each organ separately. We also 

include initially an evaluation using different “global” metrics (metrics with scope over all pixels and 

averaged over classes), where it will be visible that some of the metrics do not evaluate well because 

they always score very high, due to the factors a), b) and c) that we studied before. In those results, 

besides mean and weighted IoU and mean and weighted accuracy, we also report mean BFScore. The 

BFScore measures the degree of matching between boundaries of the found segments and those of 

the corresponding groundtruth segments. Although BFScore is interesting because it applies a 

different perspective based on degree of match between boundaries, its scores depend on  the 

settings of a boundary distance threshold (we used a default value is 0.75% of the length of the image 

diagonal) to detect a match or not between the two boundaries.   

 

3. Results 
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3.1. Choose best-performing network 

Table 1 shows the IoU (JI) of three segmentation network architectures (the default cross-entropy 

crossE loss function is used in this experiment). The best-performing network was deepLabV3 (2 

percentage points (pp) better than FCN, FCN being 3 pp better than UNET). For that reason, we 

concentrate on reporting the results we obtained with deepLabv3 for the remainder of this work.  

 

Table 1. IoU of segmentation networks with base crossE loss 

class DeepLabV3 FCN UNET 

Background 99% 99% 98% 

Liver 86% 86% 74% 

Spleen 82% 74% 73% 

rKidney 77% 78% 75% 

lKidney 81% 77% 78% 

Avg IoU 85% 83% 80% 

3.2. Comparison of loss function variations 

Table 2 shows the global scores of the different loss functions, and table 3 details the results 

further by displaying loss scores for each organ measured as IoU. First of all, note that accuracy and 

weighted IoU always scored very high, they fail to detect deficiencies that exist in the segmentation 

for reasons we have discussed in section 2 of this work. The remaining metrics show different 

absolute values but rank different loss functions similarly to each other. We will focus the rest of the 

analysis on (mean) IoU because, contrary to sensitivity and BFScore, it does not depend on the setting 

of a distance threshold (BFScore) and accounts for FP (which sensitivity does not). 

Based on the scores of mean IoU from table 2 we conclude that the best performing loss function 

was IoU0515, scoring 0.9 and improving 5 percentage points (pp) when compared with the default 

cross entropy (crossE) loss function (and 6 pp on sensitivity). Apart from IoU0515, all other 

alternatives tested except IoU1505 (i.e. crossE, IoU11, dice, dice no BK) had similar average scores 

(0.85); IoU (i.e. IoU11) and dice are highly correlated, which is confirmed by their close results (and 

those results were also similar to crossE).  

Table 3 shows the detail for each organ. There we can see that IoU0515 achieved scores between 

0.85 and 1 for the different classes, with the lowest scoring organ being the left kidney with a score of 

0.85. 

We conclude that IoU loss with higher weights on FN than on FP can improve segmentation 

quality. Recall that IoU0515 corresponds to the coefficient for mean false positives (FP) being assigned 

a weight of 25% (0.5/2) and that of false negatives (FN) being given 75% weight (1.5/2). Hence, quality 

of segmentation was improved by penalizing more the existence of false negatives than of false 

positives. False negatives correspond to an organ being classified as another organ or the background, 

so this alternative is focusing especially in optimizing the network to avoid this possibility.   

 

 

 

 

Table 2. Global metrics for segmentation network DeepLabV3 with base crossE loss 

 Accuracy Mean Sensitivity Mean IoU Weighted IoU Mean BFScore 

crossE 0.99 0.88 0.85 0.99 0.90 

iou11 0.99 0.88 0.85 0.99 0.90 

iou1505 0.99 0.83 0.79 0.98 0.85 
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iou0515 1.00 0.94 0.90 0.99 0.92 

dice 0.99 0.87 0.85 0.99 0.91 

dice noBK 0.99 0.89 0.85 0.99 0.90 

 

Table 3. IoU of segmentation network DeepLabV3 with diff. loss functions 

IoU crossE IoU IoU Iou dice  dice  BK 

 

 
- 

1 

1 

1.5 

0.5 

0.5 

1.5 
- - 

BackGround 0.99 0.99 0.99 1.00 0.99 0.99 

liver 0.86 0.84 0.68 0.88 0.87 0.84 

spleen 0.82 0.84 0.79 0.87 0.80 0.81 

rkidney 0.77 0.82 0.76 0.88 0.81 0.82 

lkidney 0.81 0.74 0.71 0.85 0.76 0.79 

avg 0.85 0.85 0.79 0.90 0.85 0.85 

rank 3 2 9 1 3 3 

 

Table 4 tests another alternative: it compares the scores of the multiclass problem with those 

obtained for n uniclass problem (n=4, one for each organ). As discussed in section 2, the objective of 

this alternative is to evaluate whether replacing one multi-objective loss minimization problem by n 

single objective minimization tasks (i.e. training to segment a single organ in each separate network) 

would improve or damage segmentation quality. To compare the two options, the next experiment 

reports results of two runs: in the first run we used the original multiclass groundtruths provided by 

the dataset and configured different loss functions in order to run the multiclass problem segmenting 

into a set of organs simultaneously (liver, spleen, right and left kidney). For the second run we first 

transformed the multiclass groundtruth dataset into 4 uniclass groundtruth datasets, one for each 

organ, trained one segmentation network for each of the uniclass problems and used those networks 

to classify organs of the test images.  

The results reported in table 4 show that the multiclass alternative obtained higher scores for 

any of three reported loss functions. Taking the average IoU over all classes, which is reported as the 

last row of table 4, crossE, dice and IoU improved from (0.77,0.73,0.79) to (0.85,0.85,0.85) when the 

multiclass version is ran instead of the uniclass networks. Looking at the details per organ, we can 

see that the liver actually scores the same (crossE, dice) or better (IoU11) using the uniclass alternative, 

but the other organs have worse scores in general. Note that, as we already hypothesized in section 

2, the reason why uniclass fails more should be related to the increased chance of confounding 

background with the target organ, because in this formulation of the problem all other organs except 

the target organ are part of the background in the segmentation network of a specific organ. 

      

 

 

Table 4. IoU achieved with multiclass vs uniclass 

 multiclass  uniclass 

IoU crossE IoU dice   crossE IoU dice 

 

 
- 

1 

1 
-   

1 

1 
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BackGround 0.99 0.99 0.99  - - - 

liver 0.86 0.84 0.87  0.86 0.89 0.87 

spleen 0.82 0.84 0.80  0.58 0.62 0.52 

rkidney 0.77 0.82 0.81  0.72 0.50 0.79 

lkidney 0.81 0.74 0.76  0.70 0.67 0.79 

avg 0.85 0.85 0.85  0.77 0.73 0.79 

 

4. Discussion, comparisons and illustration of results 

In this section we first analyze and conclude based on the results reported in the previous 

section. Then we compare to results obtained in related works, and finally we illustrate MRI 

segmentations and 3D visualizations.   

4.1. Discussion 

From the previous experiments we conclude that IoU with modified FP and FN weights to 

weight FN more heavily was the best performing loss function variant in our experimental setup, 

and improved segmentation quality (measured as JI) significantly. We also conclude that cross 

entropy, dice and “balanced” IoU (IoU without modification to FP and FN weights) scored very 

similarly, but lower than the best variation. Note that we were already expecting dice and IoU to 

score very similarly because they are highly correlated, in fact one can be obtained from the other 

using as simple formula. Also interestingly, dice without background scored similarly to dice with 

background and most other options, we couldn’t notice any sensible improvement or degradation 

with that choice. This is most probably related to the fact that the organs are “immersed” in the 

middle of the background, and the dice formula for each organ, with its factors (FP, FN, TP, TN), 

already accounts for the factors that are accounted by the dice of the background class. The conclusion 

is that there was no sensible advantage of excluding background from the loss function. Finally, we 

have seen that the single multiclass problem is preferable to n uniclass problems, as JI of organs in 

the uniclass problems were consistently lower than in the multiclass problem.  

In what concerns generalization of our results to other data and techniques: the purpose of our 

experimentation was to use a statistically relevant experimental setup that would allow us to 

compare and validate loss function alternatives and variations. Hence, the results obtained should be 

generalizable to other segmentation networks segmenting MRIs (or CTs) of abdominal organs. That 

means it is preferable to apply IoUxy with higher weight on FN to improve segmentation quality. 

The remaining conclusions also apply to other techniques segmenting MRI of abdominal organs. On 

the other hand, we believe more work would be necessary to reach comparable conclusions in other 

medical imaging segmentation tasks, e.g. segmenting tumours or eye lesions or other body parts, 

since important factors may vary in those cases. Additionally, given our focus on testing alternatives 

to loss functions, we chose to test only three discrete choices of x and y in the best scoring IoUxy (11, 

1.5/0.5, 0.5/1.5). One obvious generalization is to experiment with a more complete range of values 

and choose the combination yielding top JI. However, the precise combination that optimizes quality 

(JI) will depend on the dataset, therefore the most important conclusion is that it is worth tuning the 

weights on FN and FP in the loss formula with higher FN weights. In a practical system implementing 

these recommendations in some segmentation task, a calibration run of that task could be done to 

tune the best FN/FP weight combination (with FN weight higher than FP).     

4.2. Comparison to other works 

In this section we put our results into perspective by comparing with what was reported in other 

works regarding segmentation of abdominal organs, all of them proposing modifications of network 

architecture. Note also that our conclusions could be applied to improve any of those approaches 
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further. Tables 5 and 6 show the IoU reported by those related approaches, including both MRI and 

CT sequences (computer tomography) (in fact, most works segment CT scans).  

First, Table 5 compares our scores with those of a few other approaches running on the same 

MRI dataset as ours (therefore directly comparable). We can see that our best performing approach 

was superior to those compared. Both V19pUnet1-1 and V19pUnet can also be improve further if ran 

with our best found IoU0.5/1.5 loss or some tuned IoUxy alternative. 

Table 6 shows a broader picture of scores reported in other works which implemented enhanced 

networks with architectural modifications to improve segmentation quality of CT and MRI scans of 

abdominal organs. These works use different datasets from ours, and many of them segment CT 

instead of MRI, therefore they are not directly comparable to our results, however it is interesting to 

analyze their scores. In those results, [19] and [20] achieved highest scores in segmentation of MRI 

images, and Hu et al. [21] and [22] obtained the best scores for CT. The results we obtained in this 

work, in spite of using only a general-purpose segmentation network and not testing other 

architectural modifications that were proposed in each of the works referenced in table 6, are still 

“competitive”. Most importantly, they could be applied to any of those works to improve 

segmentation quality further. Note also that, in general, in table 6 segmentation of CT scans achieved 

better top scores than segmentation of MRI scans.  

Table 5. Comparing to IoU of related approaches (CHAOS dataset) 

MRI JI=IoU Liver spleen R Kidney L kidney 

[9] teamPK     

U-Net 0.73 0.76 0.79 0.83 

V19UNet 0.76 0.79 0.84 0.85 

V19pUNet 0.85 0.83 0.85 0.86 

V19pUnet1-1 0.86 0.83 0.86 0.87 

deeplabV3 iou 0.5/1.5 0.88 0.87 0.88 0.85 

 

Table 6. IoU as reported in some related approaches (MRI and CT) 

MRI JI=IoU Liver spleen R Kidney L kidney 

 [5] 0.84 0.87 0.64 0.57 

 [20]  0.90(LiverNet) - - - 

[19] 0.91 - 0.87 0.87 

CT JI=IoU Liver spleen R Kidney L kidney 

[23] 0.938 0.945   

 [24] 0.85 -   

[4] 0.88 0.77   

[21] 0.92 0.89   

[22] 0.96 0.94 0.96 0.94 

[25] 0.9 - 0.84 0.80 

[8]     

F-net 0.86 0.79 0.79 0.80 

BRIEF 0.74 0.60 0.60 0.60 
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U-Net 0.89 0.80 0.77 0.78 

[6] 0.90 0.87 0.76 0.84 

 

4.3. Illustrative MRI segmentations and 3D visualization 

We end this work with a few examples of segmentation outputs obtained using the DeepLabv3 

segmentation network. These serve an illustrative purpose. Figure 2 shows three randomly picked 

pairs of test slices, showing the segmentation groundtruths and the corresponding segmentation 

outputs. Figure 3 shows a 3-dimensional view of the stacked slices of one MRI sequence. We also 

provide a video with an animation of the sequence of slices as supplementary material.  

In what concerns Figure 2, by comparing groundtruths with segmentations, we can see that the 

segmentations succeed at finding the organs and filling the organs areas, although with some 

imperfections, including spilling into the neighborhoods. In Figure 3 we can see both a 3D slices 

stacked model and a coloured model that distinguishes organs by colour. On the left we have the 

groundtruths and on the right we have the segmented outputs. It is possible to see some 

imperfections in this specific sequence as well, but in both illustrative examples the results are quite 

good. 

 

 

(a)           (b)          (c) 

Figure 2. Three slices with groundtruth and segmentation output (DeepLabV3). The left of each image is 

the groundtruth shown on a black background, the right is the segmentation. The segmentation succeeds at 

correctly finding the organs areas (liver and kidneys in (a) and (b), liver and spleen in (c)), with slight 

imperfections. In (a) both the liver and kidneys overflow slightly to neighborhood regions and there is a 

very small spurious spleen marking as well. In (c) the spleen overflows more seriously and the liver also 

overflows slightly in the segmentation output.  

 

  

(a)          (b) 

  

(c)          (d) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2020                   doi:10.20944/preprints202011.0023.v1

https://doi.org/10.20944/preprints202011.0023.v1


 

Figure 3. 3D model with slices of Abdomen. (a) is the groundtruth shown as a 3d model built with stacked 

slices, top and bottom view; (b) is the corresponding segmentation output 3D stacked model, showing some 

slight imperfections when compared with the groundtruth model; (c) is a coloured sketch of the 3D stacked 

model, showing each organ in a different colour, top and bottom view. (d) is the corresponding 

segmentation output, where a few imperfections are also visible.     

5. Conclusions and future work 

In this work we proposed and evaluated loss functions and loss function-related variations to 

improve quality of segmentation of MRI of abdominal organs using deep learning. Our work was 

driven by the observation that metrics and how metrics are evaluated is a relevant detail in scoring 

segmentation quality, and since loss is also a metric, one should explore the best possible loss 

variations and alternatives to improve segmentation outcome. We defined a set of loss functions and 

further variations, including multiple loss functions, uneven weighting of false positives and false 

negatives, not considering the background in the loss formula and also comparing multiclass with 

uniclass problem. We picked three segmentation networks that are most popular and frequently used 

in medical imaging to test the solutions. Our experiments allowed us to conclude that a certain 

variant of IoU (JI) that weights FN more than FP achieved the best scores on the best performing 

DeepLabV3 network, other alternatives tested did not improve the quality of segmentation as 

measured by JI. Since we studied a common theme to all deep learning segmentation networks, our 

conclusions can be applied further in the future to improve quality of segmentation in any advanced 

segmentation network architecture. Our future work on this issue will focus on investigating per-

organ loss functions in some form of modified network architecture to allow multiple loss functions, 

applying the approaches to advanced segmentation architectures and an FN/FP weights calibration 

step for optimal loss function in any segmentation network.     

Supplementary Materials: The following are available online at eden.dei.uc.pt/~pnf/MRIexample.mp4, a short 

movie illustrating segmentation output.  
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