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Abstract: Ocean temperatures are increasing. Little work has been done to examine the effects that 
these changes will have on fishery production. The study at hand seeks to incorporate the influence 
of climate change into established bioeconomic fishery models. Stock biomass is approximated to 
be a function of sea surface temperature. Following a feasible generalized least squares regression 
using data from the Western and Central Pacific, the interaction between fishery effort and 
temperature is found to be statistically significant. From this model, various functional forms 
relating effort, catch, and temperature are specified. In particular, a function that returns an effort 
requirement given a target catch level and temperature forecast is generated.The importance of 
these tools for fishery management is explored through application to Western and Central Pacific 
tuna fisheries. Recommendations for extensions into future research are made and the foundation 
for a model of efficient effort allocation across time and the entirety of a management area, given 
changing temperatures, is specified. 
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1. Introduction 

It is beyond doubt that ocean temperatures are rising globally. The past thirty years have seen 
mean January temperatures across the Pacific rise more than five percent1. These temperature 
increases cause dramatic habitat changes and will likely affect the biological processes and ecology 
of marine species. While there has already been a wealth of literature produced that examines the 
changes to abundance and distribution of various marine species, examinations of the interplay 
between these ecological changes and fishery processes and outcomes have only recently begun to 
receive their due attention.  

Bioeconomic modeling methods are an ideal tool for this sort of analysis. The basis of the 
bioeconomic fishery model originated in the work of Schaefer (1954, 1957).  Schaefer’s model looked 
at fishery catch as a function of the interplay between effort, a species’ growth rate, and that species’ 
environment’s natural carrying capacity (Schaefer, 1954). This model was notably expanded upon by 
Lynn et al. (1981). In this paper the model was expanded to include the influence of an environmental 
factor on a particular fishery. In this case, the impact of the mangrove area on a Florida crab fishery 
was examined. This model is notable in that the actual functional relationship between stock biomass 
and the environmental variable (mangrove area) was not known. Rather, Lynn et al. posited several 
potential functional forms, based on certain hypothesized marginal properties, and then utilized the 
form which validated these assumptions and best fit their data. Other notable bioeconomic models 
that seek to incorporate environmental influences include Barbier & Strand (1998) and Ellis & Fisher 
(1986). For a survey of various bioeconomic fishery models which incorporate environmental 
variables see Knowler (2002) and Foley et al. (2012). 

There has been significantly less work done in incorporating temperature effects into fishery 
models. Bell (1972) provided one of the first examinations of its kind, in which he sought to model 
the relationship between lobster catch and sea surface temperature as a linear function. This work 

 
1 Based on the years 1985-2015, data taken from: 
 NOAA, N. (2020, August 01). [NOAA Optimum Interpolation (OI) SST V2 (Top Dataset, noaa.oisst.v2, sst. mnmean), 1.0°, 
1981-present]. Unpublished raw data. 
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provides the foundational basis for much of the research that has followed. Following in this vein are 
Sun et al. (2006), Garza-Gil et al. (2010),  and Sanz et al. (2017); all studies in which the relationship 
between sea surface temperature and fishery catch were examined.  However, none of these studies 
provide a replicable methodology that could be utilized for the purpose of the study at hand.  Sun et 
al. (2006) did not seek to generate a general model relating temperature and catch, but rather sought 
to quantify the effect that the El Niño has on catch. Garza-Gil et al. (2010) focused their study on 
Sardines, which compared to various tuna species are not a highly migratory fish. As such, stock 
biomass data was readily available for their study. This allowed for the determination of a specific 
functional form relating temperature to the observed biomass. Sanz et al. (2017) examined a non-
migratory species and utilized a general Cobb-Douglas production function, rather than the Schaefer 
(1954) model used in the study at hand.  

Developing a generalized methodology for understanding the relationship between ocean 
temperature and fishery catch is crucial given the reliance on fisheries in much of the developing 
world. The focus of the study at hand is on the various tuna species fisheries of the Western Central 
Pacific. Tunas are extremely responsive to changes in temperature (Brill, 1994). He established that 
tunas regulate body temperature by swimming, and as such may be forced out of desirable habitat 
due to overheating (Brill, 1994, p. 205). As such, warming ocean temperatures put the future of 
locality specific tuna fisheries in jeopardy. Bell et al. (2013) elucidated the problem that this may pose 
for many of the small island developing states of the Pacific Ocean. These tuna fisheries provide a 
significant portion of government revenue and GDP to these small island states through domestic 
fleets, domestic tuna processing, and licensing fees to foreign fleets (Bell et al., 2013). Further, most 
inhabitants of these small island developing nations derive the majority of their dietary animal 
protein from fish (Bell et al., 2009). In fact, for one nation, the Solomon Islands, 92% of inhabitants’ 
animal dietary protein is derived from fish (Bell et al., 2009, p. 66). Given the paramount role that 
tuna plays both in the scope of economic development and for food security in these small island 
states, and the manner in which tuna species are influenced by temperature changes in their 
environment, serious examination of the relationships between catch, effort, and temperature is 
warranted. 

Lehodey et al. (2013) examined changes in spatial distribution of skipjack tuna catch in relation 
to oceanic temperature changes. However, their work did not seek to model the relation between 
catch and sea surface temperature, but rather to model spatial distribution changes. Monllor-Hurtado 
et al. (2017) modeled changes in tuna catch as a function of temperature and a latitude time 
interaction. Their model did not account for the impact of effort on catch or for the interplay between 
effort and temperature. They did, however, hypothesize that effort trends were related to catch trends 
as a result of fishery strategies changing with changes in stock abundance. Notably, Mediodia et al. 
(2020) recently released findings from a current working paper in which results obtained and 
methodology utilized in examining the relationship between sea surface temperature and tuna catch 
were similar to those of the paper at hand. Testing several functional relationships, a quadratic model 
was ultimately decided upon and utilized to quantify the effect of temperature on tuna, catch 
(Mediodia et al., 2020, p. 10). However, while their methodology and results are similar, the model 
in which those authors utilized was not derived directly from the established Schaefer (1954) model, 
as extended via the Lynn et al. (1981) model. As such, the model derived and expanded upon in the 
remainder of this paper differs in functional form and in the interpretation of its parameters.  

The study at hand examines the relationship between catch, effort, and temperature for the tuna 
species of the Western Central Pacific. This is accomplished through the vehicle of a bioeconomic 
model, consistent with the theoretical foundations of Schaefer (1954, 1957). The incorporation of Sea 
Surface Temperature into this model allows for an adaptable form that is readily able to be utilized 
in the study of the fisheries of other migratory species. From this model optimal temperature and 
effort functions are derived. Statistical software packages were utilized to generate parameter values, 
which in turn were input into the optimal temperature and effort functions to provide optimal values 
for the fishery under examination. These optimal values are used to identify where overfishing is 
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occurring, relative to temperature levels, and where decreases in catch-per-unit-effort can be 
expected based on temperature trends and predictions.  

 

2. Theory and Model  

The Shaefer (1954) model forms the basis for much of the work that has been done on bioeconomic 
fishery modeling. His model take the form of: 

𝐶 ௧ = 𝑘𝐵 ௧𝐸 ௧ −
௞ 2

௥
𝐵 ௧𝐸 ௧

2      (1) 

Where: 
𝐶 ௧is the catch in period t, 
𝑘 is a catchability coefficient, 
𝐵 ௧ is the maximum potential biomass of the stock in period t, 
𝐸 ௧  is the fishery effort in period t, 
𝑟is the stock’s natural growth rate, 
 

 This model is often modified to include a lagged dependent variable, catch, term. This is 
because stock adjustment may not be instantaneous. This model takes the form: 

𝐶 ௧ = 𝑘𝐵 ௧𝐸 ௧ −
௞ 2

௥
𝐵 ௧𝐸 ௧

2 + 𝜆𝐶 ௧ି1     (2) 

  
Lynn et al. (1981) expanded upon this model with their inclusion of the influence of an 

environmental variable upon maximum potential stock biomass. Based upon hypothesized 
marginal properties of the functional form of the relation between this environmental variable and 
maximum potential biomass, they utilized the following functional form: 

𝐵 ௧ = 𝑚(𝑙𝑛𝑀 ௧ି1)      (3)  
Where: 
    𝑀 ௧ି1is marshland acreage in the previous period 
 
 Incorporating (3) into (2) provided: 

𝐶 ௧ = 𝛽 0 + 𝛽 1(𝑙𝑛𝑀 ௧ି1)(𝐸 ) − 𝛽 2(𝑙𝑛𝑀 ௧ି1)(𝐸 2) + 𝛽 3(𝐶 ௧ି1) + 𝜀 ௧   (4) 
Where: 

𝛽 0is an intercept term, 
𝛽 1is 𝑘𝑚, 

𝛽 2is 𝑚(
௞ 2

௥
), 

𝛽 3is 𝜆, 
𝜀 𝑡is an error term 
 

 For the study at hand, the relationship between maximum potential stock biomass and sea 
surface temperature, 𝐵 ௧ = 𝑓(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒), was hypothesized to have the following marginal 
properties: 
 

𝛿௕௜௢௠௔௦௦

ఋ௧௘௠௣௘௥௔௧௨௥
> 0for 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 𝑡 ∗ , 

𝛿௕௜௢௠௔௦௦

ఋ௧௘௠௣௘௥௔௧௨௥௘
< 0for 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 𝑡 ∗,  

and 𝛿 2௕௜௢௠௔௦௦

ఋ௧௘௠௣௘௥௔௧௨௥௘ 2 < 0 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2020                   doi:10.20944/preprints202011.0014.v1

https://doi.org/10.20944/preprints202011.0014.v1


 

    𝑡 ∗is some optimum temperature level 
  

The functional form for the maximum potential biomass and temperature relationship was 
posited to be2: 

𝑓(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 𝐵 ௧ = −𝛼 1(𝑡 ௧) 2 + 𝛼 2(𝑡 ௧) + 𝛼 3     (5) 
  

Inputting (5) into (2) yields the following: 
𝐶 ௧௝ = 𝛽 0 + 𝛽 ௔(𝑒 ௧௝)(−𝛼 1𝑡 ௧௝

2 + 𝛼 2𝑡 ௧௝ + 𝛼3 ) − 𝛽 ௕(𝑒 ௧௝) 2(−𝛼 1𝑡 ௧௝
2 + 𝛼 2𝑡 ௧௝ +

𝛼3 ) + 𝛽 ௖𝐶 (௧ି1)௝ + 𝜀 ௧   (6) 
Where: 
    𝛽 0is an intercept term, 

𝛽 𝑎is catchability coefficient 𝑘, 

𝛽 𝑏is (௞ 2

௥
), 

𝛽 𝑐is 𝜆, 
𝜀 𝑡is an error term, 
𝑗indicates the particular geographic position of the observation 

  
Multiplying this out provides: 
𝐶 ௧௝ = 𝛽 0 − 𝛽 ௔𝛼 1(𝑒 ௧௝)(𝑡 ௧௝

2 ) + 𝛽 ௔𝛼 2(𝑒 ௧௝)(𝑡 ௧௝) + 𝛽 ௔(𝑒 ௧௝)(𝛼3 ) +

𝛽 ௕𝛼 1(𝑒 ௧௝) 2(𝑡 ௧௝
2 ) − 𝛽 ௕𝛼 2(𝑒 ௧௝) 2(𝑡 ௧௝) − 𝛽 ௕(𝑒 ௧௝) 2(𝛼3 ) + 𝛽 ௖𝐶 (௧ି1)௝ + 𝜀 ௧         

(7) 
 
  This can be simplified to3: 

𝐶 ௧௝ = 𝛽 0 − 𝛽 1(𝑒 ௧௝)(𝑡 ௧௝
2 ) + 𝛽 2(𝑒 ௧௝)(𝑡 ௧௝) + 𝛽 3(𝑒 ௧௝) + 𝛽 4(𝑒 ௧௝) 2(𝑡 ௧௝

2 ) −

𝛽 5(𝑒 ௧௝) 2(𝑡 ௧௝) − 𝛽 6(𝑒 ௧௝) 2 + 𝛽 7𝐶 (௧ି1)௝ + 𝜀     (8) 

Where: 
𝛽 𝑎𝛼 1 = 𝛽 1 
𝛽 𝑎𝛼 2 = 𝛽 2 
𝛽 𝑎𝛼 3 = 𝛽 3  
𝛽 𝑏𝛼 1 = 𝛽 4 
𝛽 𝑏𝛼 2 = 𝛽 5 
𝛽 𝑏𝛼 3 = 𝛽 6 

𝛽 𝑐 = 𝛽 7 
 

 In theory both temperature and effort can vary without bounds4. As such, the optimum 
combination of effort and temperature can be easily determined. First obtained is the catch 
maximizing optimal effort level for any given temperature. This conditional effort function is: 

𝐸(𝑡 ௧௝) =
ఉ 1(௧ ೟ೕ) 2ିఉ 2(௧ ೟ೕ)ିఉ 3

2ఉ 4(௧ ೟ೕ) 2ି2ఉ 5(௧ ೟ೕ)ି2ఉ 6
      (9) 

 
2 This model and other functional forms were tested using catch per unit effort as a proxy for biomass. The model utilized 
was best able to explain variation in CPUE. 
3 It bears stating that the model will be input into statistical software with positive signs on all coefficients. As such, when 
interpreting regression results the signs of several of the coefficient values will need to be inverted.  
4 Ocean temperatures are of course actually limited by the freezing point of the ocean and by its boiling point. However, for 
the purposes of this study these improbable extremes can be neglected. 
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The optimal effort level and temperature combination obtained is: 

𝐸 ∗ =
ఉ 1ିఉ 2

2ିఉ 3
2(ఉ 4ିఉ 5 2ିఉ 6)

and 𝑡 ∗ =
ఉ 2ାఉ 5

2(ఉ 1ାఉ 4)
    (10) and 

(11) 
 The marginal rate of technical substitution of effort for temperature can be found easily 
enough: 
 

𝑀𝑅𝑇𝑆 ௘ ௙௢௥ ௧ =  −(
ఋ஼ ೟ೕ

ఋ௧ ೟ೕ
)/(

ఋ஼ ೟ೕ

ఋ௘ ೟ೕ
)    

   (12) 
 

    𝑀𝑅𝑇𝑆 ௘ ௙௢௥ ௧ =

2ఉ 1(௘ ೟ೕ⋅௧ ೟ೕ)ିఉ 2௘ ೟ೕି2ఉ 4(௘ ೟ೕ) 2(௧ ೟ೕ)ାఉ 5(௘ ೟ೕ) 2

ିఉ 1(௧ ೟ೕ) 2ାఉ 2௧೟ೕାఉ 3ା2ఉ 4(௘ ೟ೕ)(௧ ೟ೕ) 2ି2ఉ 5(௘ ೟ೕ)(௧ ೟ೕ)ି2ఉ 6(௘ ೟ೕ)
  (13) 

  
The necessary algebra is a bit more complicated in determining the functional form 

conditional effort function if both temperature and catch level are held constant. Some 
manipulation, and the quadratic formula yield: 

𝐸(𝐶 ௧௝, 𝑡 ௧௝) =

(ିఉ 1௧ ೟ೕ
2 ାఉ 2௧ ೟ೕାఉ 3)ିට(ିఉ 1௧ ೟ೕ

2 ାఉ 2௧ ೟ೕାఉ 3) 2ି4(ఉ 4௧ ೟ೕ
2 ିఉ 5௧ ೟ೕିఉ 6)(ఉ 7஼ (೟ష1)(ೕ)ାఉ 0ି஼ ೟ೕ)

2(ఉ 4௧ ೟ೕ
2 ିఉ 5௧ ೟ೕିఉ 6)

 (14) 

Since ocean temperature levels are beyond the control of fishery managers, the conditional 
effort functions will be the primary vehicles utilized to evaluate the sustainability of the tuna 
fisheries of the Western Central Pacific, and to make recommendations as to what changes should 
be made to best protect these fisheries in the face of rising ocean temperatures. 

3. Data 

Data utilized came from a variety of sources. Catch data was taken from the Western & 
Central Pacific Fisheries Commission’s (WCPFC) “Public Domain Aggregate Catch/Effort” dataset. 
This data was provided in a monthly time series of 5° by 5° gridded coordinate squares. Longline 
effort was used in this study’s analysis due to the random sampling effect inherent in longline 
fishing methods. There is little targeting of effort beyond selection of a generalized geographic area 
in which to set the longline, which can be in excess of 20 miles in length5. The variety and 
abundance of species that are caught on the longline, in effect, will represent a more or less 
randomly generated sample of the area’s biodiversity.  

Temperature data was drawn from the NOAA Optimum Interpolation (OI) SST V2 dataset. 
This dataset was provided in a monthly time series of 1° by 1° gridded coordinate squares, with sea 
surface temperatures provided in monthly mean ℃. Since both types of data were provided in 
different coordinate systems, to coordinate this SST data with the catch and effort data the 1° by 1° 
gridded coordinate square corresponding to the bottom left corner of each 5° by 5° square was used 
as representative of the entire 5° by 5° square.  
 The timespan represented by the data ranged from January 1985 to December 2018. Data 
was given in a monthly format. Due to the large size of the dataset, any observation (coordinate 
square in a particular month) which lacked any fishing effort was dropped from the dataset. This is 

 
5 Source: NOAA fisheries 
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logically consistent, as an observation absent any effort is unable to provide information on fishery 
trends relevant to the study at hand. After dropping these observations  408 unique time periods 
remained represented, along with 321 unique coordinate squares. Further observations were 
dropped by the statistical software while computing regression estimates, due to incomplete 
observational data.  
 Three unique species of tuna were examined separately: yellowfin, albacore, and big eye. It 
bears stating that effort is not species specific. The same unit of effort is capable of catching any of 
these tuna species, or any number of other marine species, with likelihoods varying solely based on 
distribution and stock abundance. Also as a caveat to the data, the minimum effort level reported 
was 100,000 hooks in a coordinate square in a particular month. Small scale fishing effort was not 
recorded or not not reported by WCPFC. However, the average longline has some 3,000 hooks6. As 
such, the minimum level of effort recorded is sufficient to capture the bulk of commercial fishing 
activity in each roughly 87,000 square mile 5° by 5° coordinate square. 

 
Table 1. Table of variables and summary statistics 

 

 
6 Source: FAO fisheries 
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Table 2. Mean catch per unit effort by species and latitudinal distance from equator  

 

4. Empirical Methodology and Results 

The model derived in equation (8) was fit to the data at hand using a feasible generalized 
least squares (FGLS) panel data method. The FGLS method was selected due to the number of time 
periods being examined exceeding the number of coordinate squares examined. Each gridded 
coordinate square was taken as a separate panel with every month representing a separate time 
interval. Tests were conducted for autocorrelation and for heteroskedasticity. Wooldridge tests for 
autocorrelation in panel data were conducted for the specified model for each species. The models 
were each tested with and without the presence of the lagged dependent variable. The Wooldridge 
test takes there being autocorrelation as the null hypothesis. Its test statistic follows an F 
distribution. This null hypothesis was rejected in each case and autocorrelation was found to be 
present in each model. 

To proceed in testing for heteroskedasticity, FGLS models were specified with 
homoskedastic and with heteroskedastic panel variance. The two models were then compared with 
a likelihood ratio test. This test’s statistic follows a chi-squared distribution. The test takes 
homoskedasticity as the null hypothesis. The test for the model for each species failed to reject the 
null hypothesis. The results of these specification tests are summarized in table 3.  

 

 
Table 3. Autocorrelation and heteroskedasticity testing results 
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  Due to missing observations the data could not be tested with typical unit root 
tests. Instead, by regressing the model’s two stochastic elements, effort and temperature, against 
their own lag, a unit root test was able to be approximated. The coefficient generated was then 
tested against a null hypothesis of unit equality. The same process was repeated for the various 
species’ catch observations on their respective lags. In all cases, this null hypothesis was rejected 
and the possibility of a unit root was ruled out. This indicates stationarity in the time trends that 
can be addressed adequately by the one period autoregressive means employed. These test statistics 
are reported in table 4.  

 
 
 

 
Table 4. Unit root test results 

 
Following the results of these tests, the models were fit with specifications for 

homoskedastic variance and the presence of autocorrelation within panels. These regression results 
are summarized in table 5.  

 
Table 5. Regression output results 

 
 It bears noting that FLGS methodologies do not produce a standard 𝑅 2goodness of fit 
measure for the model. As such, the correlation coefficient between the model’s fitted and observed 
values is used instead to assess model fit. These values are reported below. 
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Table 6. Correlation coefficients between fitted and observed values 

 
 The parameter values derived from these estimates can be input into equations (9) through 
(14) to generate useful predictions regarding the management of the region’s fisheries. Equation’s 
(10) and (11) will provide the optimum effort and temperature combinations for each species. These 
combinations are a useful benchmark against which to measure a fishery’s current state.  These 
results are reported in table 7. It is of note that Yellowfin catch is maximized at such low 
temperature levels, near the minimum point at which catch is observed. This is more a factor of the 
mathematics of the model, in which the extremely high level of effort plays a larger part. This 
illustrates that these hypothetical optimum effort and temperature combinations are not an ideal 
standard for fishery management.  

 
Table 7. Optimum effort and temperature and effort combinations  

 
 Equation (9) provides a much more useful measure for setting fishery goals with the 
objective of maximizing catch. Approximating necessary effort levels to maximize fishery yields in 
the face of changing ocean temperatures allows for fishery managers to plan accordingly against 
the forecasts of oceanographers and climate scientists. The results, reported below, show that the 
optimal effort level respective to temperature for each species is unique. Catch of Bigeye at low 
temperatures was nearly negligible in the data, as was the catch of Albacore at high temperatures. 
Optimal effort levels trend differently for each species group. Maximizing Albacore catch would 
require higher effort levels at lower temperatures, while both Bigeye and Yellowfin catch are 
maximized with higher effort levels at higher temperatures. These effort levels are observably quite 
high, due to their representing the highest level of extraction possible without consideration for the 
long term economic or biological sustainability of the yield. As such, they solely represent catch 
maximizing effort levels at various temperatures in an open access environment. The primary value 
of these estimates is in illustrating the optimal trends in effort respective of temperature; that each 
species of tuna responds differently to different temperature levels.  

 
Table 8. Optimal effort levels at varying temperatures 

 
 Equation (13) is interesting in that it is able to provide us with tradeoffs inherent in 
maintaining a consistent level of catch as temperatures change. It is apparent from the equation that 
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its resulting value will change as the values of effort and temperature themselves change. Despite 
this, it can still be a useful measure for assessing what changes would be necessary to maintain a 
given level of input. For example, in an arbitrary recently observed period, January 2018, the fishery 
located out of Honolulu, Hawaii (found in the 20°N by 155° W coordinate square) observed a catch 
of roughly 18,000 kg of Yellowfin tuna with roughly 180,000 longline hooks set and a mean sea 
surface temperature of 27.1°C. If this location’s fishery managers were to desire to maintain this 
level of catch in the face of an expected 1° rise in ocean temperatures, they would need some 21,000 
more hooks to be set. This result demonstrates a decreasing catch per unit effort, and implies a 
declining stock biomass as temperatures increase. The value of this sort of tool for managing and 
assessing fishery goals is apparent.  
 Perhaps most useful of the tools derived is equation (14) which allows fishery managers to 
determine requisite effort levels based upon catch targets and temperature forecasts. Catch targets 
can be set with aims based in maximum economic yield fishery management (MEY) or maximum 
sustainable yield fishery management strategies (MSY). Whatever target levels are set, this equation 
will allow fishery managers to determine the requisite effort level needed to meet that target in the 
face of climate predictions. Those seeking to minimize total effort while reaching a particular 
fishery goal for the entirety of an exclusive economic zone (EEZ) can set up a simple optimization 
problem to solve for the most efficient allocation of effort across their EEZ, using the form:  
 

𝑚𝑖𝑛 𝑇𝐸 ௧ = ∑௡
௝ୀ1 𝐸 ௧௝(𝐶 ௧௝ , 𝑡 ௧௝)subject to ∑௡

௝ୀ1 𝐶 ௧௝ = 𝑇𝐶 ௧    (15) 

Where: 
TE= total effort, the summation of effort in each coordinate square of the EEZ 
TC= a preset desired total catch target level across the EEZ 
𝐶 ௧௝= the catch in each coordinate square 
j=an individual coordinate square in the EEZ 
n= the total number of coordinate squares in the EEZ 
 
 While the math for deriving this solution will undoubtedly grow quite complex, the 
relatively simple set up provides a useful framework for managing fisheries in the face of 
increasing ocean temperatures. This model can be readily adapted for the allocation of effort across 
time with little modification:  

𝑚𝑖𝑛 𝑇𝐸 = ∑௡
௧ୀ0 ∑௡

௝ୀ0 𝐸 ௧௝(𝐶 ௧௝ , 𝑡 ௧௝)subject to ∑௡
௝ୀ1 𝐶 ௧௝ = 𝑇𝐶 ௧  

 (16) 
 Returning to the simple case of equation (14), where we are simply looking at the necessary 
effort for a single coordinate square, an example will help elucidate the usefulness. Suppose those 
who manage the fishery immediately surrounding Fiji’s capital Suva (found in the 15°S by 175° E 
coordinate square) desire to increase their monthly Yellowfin catch from 28,000 to 30,000 kg in the 
face of an expected quarter degree rise in ocean temperatures, to 29.6°.In this situation, the fishery 
should seek to deploy around 260,000 hooks to reach this goal. It also bears stating that this model 
can readily be adapted for management in the multi-species fishery case.  To reach a particular 
target level for all species, all that needs to be done is to calculate the effort required for each species 
in the same time period and coordinate square. The maximum of these values will be the best 
estimate for the effort needed to reach all of the species target goals, as longline effort is largely 
indiscriminate.Such a strategy will likely result in excess catches of the lesser required effort 
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species. As such, conservation minded fishery managers would do well to employ the opposite 
strategy, utilizing the minimum effort value obtained and keeping all catch levels below targets.  

5. Discussion 

The above section has visited the applied value of the equations derived in the model 
specification and theory section of this paper. Ocean temperature is shown to have a significant 
effect on fishery yield, at least in the specific context examined: tuna fisheries of the Western and 
Central Pacific Ocean. The equations derived in this paper are of clear value to fishery managers, 
and point to the role that consideration of temperature must play in fishery management moving 
forward as the planet is faced with rising ocean temperatures.  
 All of the applications above have been focused towards the future, centered on the value 
that these tools have in planning for future fishery yield. However, they also have a diagnostic 
value in identifying strategies that are not best suited for our era of climate change. As with the 
derived models’ value in planning for the future, much of the diagnostic value could be improved 
upon with the logical progression of the models beyond the scope of this paper, stemming from the 
point of equations (15) and (16). These models provide a basis for evaluating past allocative 
efficiency of effort resources and for identification of EEZs in which resources could have been 
better utilized to achieve the same or better results. While this avenue of discussion is beyond the 
scope of the study at hand, and perhaps provides a good starting point for future research, it is 
evident, at least logically, that the models herein described have the potential to improve upon the 
capabilities of current fishery management methodologies. The addition of sea surface temperature 
into existing bioeconomic modeling methodologies is essential to better mirror the realities of the 
marine ecosystem. 
 Equation (13), which allows us to examine necessary changes in effort level to maintain a 
constant catch level as temperature changes, demonstrates the direction in which stock biomass is 
trending with temperature change. It is able to demonstrate the simple fact that in many locales 
increasing temperatures are resulting in decreasing catch per unit effort.  
 With the model as derived and limited herein we are able to identify locales that are being 
less than efficient in their deployment of fishery effort, relative to their sea surface temperature. 
However, all of these equations for deriving particular optimal effort levels given temperature 
solely provide for immediate term catch maximizing levels of effort. This, for obvious reasons, is 
not the best tool for sustainable fishery management. In order to sustainably manage these fisheries 
in the face of climate change, target catch levels need to be set that are aimed at maintaining long 
term stock viability in a dynamic environment. Only with these targets appropriately and 
accurately set, are the tools derived in equations (14), (15), and (16) able to contribute to fishery 
sustainability.  
 Setting appropriate target catch levels that take into consideration stock viability, climate 
change, and shifting demand due to changing human population dynamics will allow the models 
developed herein to be their most useful. Climate change must factor into both ends of the 
equation, temperature needs to be considered both in determining the ideal supply and in 
determining how best to achieve that supply level. The models derived have demonstrated, for all 
three tuna species examined, a high level of statistical significance for the interaction between 
temperature and fishery effort. It seems intuitive that the environment affects the production 
function of this natural resource. However, quantification of this relationship is necessary to 
effectively address the problems that climate change is causing for stock depletion, food security, 
and small island developing state economic viability. 
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6. Conclusion 

This study has established the significant relationship that ocean temperatures play in the 
production function for three subspecies of highly migratory pelagic fish. The models derived 
provide a theoretical framework for extending the analysis to a broader range of species. From this 
model, various equations have been derived that are able to provide fishery managers with useful 
metrics and tools for planning and evaluation of fishery management strategies. It is crucial that as 
the effects of climate change become more pronounced fishery managers do not neglect the role that 
ocean temperatures play in the fishery production function.  

 The study at hand faced some data limitations, and would have benefited from higher 
resolution data. This would have allowed us to utilize smaller geographic coordinate squares and to 
more precisely estimate effects. Future study with higher resolution data would do well to also look 
at the spatial trends as well.  

 Several clear routes for future research have been made apparent by this study. Foremost, 
equations (15) and (16) have the potential to provide an extremely useful fishery management 
framework if properly explored. This is especially true if they are able to be paired with catch targets 
that accurately account for the changes to species’ ecosystems and human population growth. 
Further, other environmental factors would do well to be incorporated into the general model of 
equation (5) and all of the other functions derived from it. Factors such as changing levels of ocean 
acidity, plankton distribution, and oceanic pollution would add immensely to the value of this model.  

 Despite the data limitations and the narrow scope of the model’s derivations, it has 
contributed significantly in providing a base formula to aid fishery managers in determining what 
level of effort need be employed to reach management goals. Climate change is a factor that needs to 
be considered in all aspects of natural resource management for the sake of food security and 
economic development. This examination of the Western and Central Pacific’s tuna fisheries has 
established the role that temperature plays in the marine resource production function.  
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Appendix A 

 
Table 9. Results from testing equation (5) 
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