Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2020 d0i:10.20944/preprints202011.0014.v1

Article
Incorporating Sea Surface Temperature into Bioeconomic Fishery Models: An
Examination of Western and Central Pacific Tuna Fisheries
Zachary Porreca !

1 West Virginia University, Division of Natural Resource Economics and Management;
zjp00003@mix.wvu.edu

Abstract: Ocean temperatures are increasing. Little work has been done to examine the effects that
these changes will have on fishery production. The study at hand seeks to incorporate the influence
of climate change into established bioeconomic fishery models. Stock biomass is approximated to
be a function of sea surface temperature. Following a feasible generalized least squares regression
using data from the Western and Central Pacific, the interaction between fishery effort and
temperature is found to be statistically significant. From this model, various functional forms
relating effort, catch, and temperature are specified. In particular, a function that returns an effort
requirement given a target catch level and temperature forecast is generated.The importance of
these tools for fishery management is explored through application to Western and Central Pacific
tuna fisheries. Recommendations for extensions into future research are made and the foundation
for a model of efficient effort allocation across time and the entirety of a management area, given
changing temperatures, is specified.
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1. Introduction

It is beyond doubt that ocean temperatures are rising globally. The past thirty years have seen
mean January temperatures across the Pacific rise more than five percent!. These temperature
increases cause dramatic habitat changes and will likely affect the biological processes and ecology
of marine species. While there has already been a wealth of literature produced that examines the
changes to abundance and distribution of various marine species, examinations of the interplay
between these ecological changes and fishery processes and outcomes have only recently begun to
receive their due attention.

Bioeconomic modeling methods are an ideal tool for this sort of analysis. The basis of the
bioeconomic fishery model originated in the work of Schaefer (1954, 1957). Schaefer’s model looked
at fishery catch as a function of the interplay between effort, a species’ growth rate, and that species’
environment’s natural carrying capacity (Schaefer, 1954). This model was notably expanded upon by
Lynn et al. (1981). In this paper the model was expanded to include the influence of an environmental
factor on a particular fishery. In this case, the impact of the mangrove area on a Florida crab fishery
was examined. This model is notable in that the actual functional relationship between stock biomass
and the environmental variable (mangrove area) was not known. Rather, Lynn et al. posited several
potential functional forms, based on certain hypothesized marginal properties, and then utilized the
form which validated these assumptions and best fit their data. Other notable bioeconomic models
that seek to incorporate environmental influences include Barbier & Strand (1998) and Ellis & Fisher
(1986). For a survey of various bioeconomic fishery models which incorporate environmental
variables see Knowler (2002) and Foley et al. (2012).

There has been significantly less work done in incorporating temperature effects into fishery
models. Bell (1972) provided one of the first examinations of its kind, in which he sought to model
the relationship between lobster catch and sea surface temperature as a linear function. This work

1 Based on the years 1985-2015, data taken from:
NOAA, N. (2020, August 01). [NOAA Optimum Interpolation (OI) SST V2 (Top Dataset, noaa.oisst.v2, sst. mnmean), 1.0°,
1981-present]. Unpublished raw data.
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provides the foundational basis for much of the research that has followed. Following in this vein are
Sun et al. (2006), Garza-Gil et al. (2010), and Sanz et al. (2017); all studies in which the relationship
between sea surface temperature and fishery catch were examined. However, none of these studies
provide a replicable methodology that could be utilized for the purpose of the study at hand. Sun et
al. (2006) did not seek to generate a general model relating temperature and catch, but rather sought
to quantify the effect that the El Nifio has on catch. Garza-Gil et al. (2010) focused their study on
Sardines, which compared to various tuna species are not a highly migratory fish. As such, stock
biomass data was readily available for their study. This allowed for the determination of a specific
functional form relating temperature to the observed biomass. Sanz et al. (2017) examined a non-
migratory species and utilized a general Cobb-Douglas production function, rather than the Schaefer
(1954) model used in the study at hand.

Developing a generalized methodology for understanding the relationship between ocean
temperature and fishery catch is crucial given the reliance on fisheries in much of the developing
world. The focus of the study at hand is on the various tuna species fisheries of the Western Central
Pacific. Tunas are extremely responsive to changes in temperature (Brill, 1994). He established that
tunas regulate body temperature by swimming, and as such may be forced out of desirable habitat
due to overheating (Brill, 1994, p. 205). As such, warming ocean temperatures put the future of
locality specific tuna fisheries in jeopardy. Bell et al. (2013) elucidated the problem that this may pose
for many of the small island developing states of the Pacific Ocean. These tuna fisheries provide a
significant portion of government revenue and GDP to these small island states through domestic
fleets, domestic tuna processing, and licensing fees to foreign fleets (Bell et al., 2013). Further, most
inhabitants of these small island developing nations derive the majority of their dietary animal
protein from fish (Bell et al., 2009). In fact, for one nation, the Solomon Islands, 92% of inhabitants’
animal dietary protein is derived from fish (Bell et al., 2009, p. 66). Given the paramount role that
tuna plays both in the scope of economic development and for food security in these small island
states, and the manner in which tuna species are influenced by temperature changes in their
environment, serious examination of the relationships between catch, effort, and temperature is
warranted.

Lehodey et al. (2013) examined changes in spatial distribution of skipjack tuna catch in relation
to oceanic temperature changes. However, their work did not seek to model the relation between
catch and sea surface temperature, but rather to model spatial distribution changes. Monllor-Hurtado
et al. (2017) modeled changes in tuna catch as a function of temperature and a latitude time
interaction. Their model did not account for the impact of effort on catch or for the interplay between
effort and temperature. They did, however, hypothesize that effort trends were related to catch trends
as a result of fishery strategies changing with changes in stock abundance. Notably, Mediodia et al.
(2020) recently released findings from a current working paper in which results obtained and
methodology utilized in examining the relationship between sea surface temperature and tuna catch
were similar to those of the paper at hand. Testing several functional relationships, a quadratic model
was ultimately decided upon and utilized to quantify the effect of temperature on tuna, catch
(Mediodia et al., 2020, p. 10). However, while their methodology and results are similar, the model
in which those authors utilized was not derived directly from the established Schaefer (1954) model,
as extended via the Lynn et al. (1981) model. As such, the model derived and expanded upon in the
remainder of this paper differs in functional form and in the interpretation of its parameters.

The study at hand examines the relationship between catch, effort, and temperature for the tuna
species of the Western Central Pacific. This is accomplished through the vehicle of a bioeconomic
model, consistent with the theoretical foundations of Schaefer (1954, 1957). The incorporation of Sea
Surface Temperature into this model allows for an adaptable form that is readily able to be utilized
in the study of the fisheries of other migratory species. From this model optimal temperature and
effort functions are derived. Statistical software packages were utilized to generate parameter values,
which in turn were input into the optimal temperature and effort functions to provide optimal values
for the fishery under examination. These optimal values are used to identify where overfishing is
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occurring, relative to temperature levels, and where decreases in catch-per-unit-effort can be
expected based on temperature trends and predictions.

2. Theory and Model

The Shaefer (1954) model forms the basis for much of the work that has been done on bioeconomic
fishery modeling. His model take the form of:
c ,=kB (E t—kTZB E 2 (1)

Where:

C s the catch in period ¢,

k is a catchability coefficient,

B is the maximum potential biomass of the stock in period ¢,

E . is the fishery effort in period f,

ris the stock’s natural growth rate,

This model is often modified to include a lagged dependent variable, catch, term. This is

because stock adjustment may not be instantaneous. This model takes the form:

2
C (=kB (E —"—B E } +iC . )

Lynn et al. (1981) expanded upon this model with their inclusion of the influence of an
environmental variable upon maximum potential stock biomass. Based upon hypothesized
marginal properties of the functional form of the relation between this environmental variable and
maximum potential biomass, they utilized the following functional form:

B =m(nM ;) 3)
Where:

M ,_;is marshland acreage in the previous period

Incorporating (3) into (2) provided:
C =B o+ (M (DE )=B (M )E H+F 5(C D+e ¢ (4)
Where:
ois an intercept term,
,is km,
. k 2

ZIS m(T),
3is A,

(s an error term

m D ™ ™™

For the study at hand, the relationship between maximum potential stock biomass and sea
surface temperature, B, = f(temperature), was hypothesized to have the following marginal

properties:

Obiomass
——— > Ofor temperature <t *,
Stemperatur

Sbiomass
—— < Ofor temperature >t 7,
Stemperature

and 8 2biomass <0

Stemperature 2
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t “is some optimum temperature level

The functional form for the maximum potential biomass and temperature relationship was
posited to be2:

f(temperature) =B ,=—-a (t ) *+a (t J+ta ; (5)

Inputting (5) into (2) yields the following;:
C =B o+B (e H)(—a qt §j+a ot taz)—pF ple ) (—a gt §j+a ot g+

a;)+p C (t-nj TE€ ¢t (6)
Where:

ois an intercept term,

4is catchability coefficient k,
.k 2

pis (5

ds 4,

(is an error term,

M T ™™

jindicates the particular geographic position of the observation

Multiplying this out provides:
C =B o8B aa 1(e D $D+B qa 206 HE H+B ale Haz)+
B pax (e ) 2(t %j)_ﬁ @ 2(e ) (¢ )= B e ) (a3 )+ B C ¢-njtE ¢
(7)

This can be simplified to3:
C =B o0—B 1(e D D+B 20e HE H+B 306 ) +B (e ) 2t -
B ste ¢) Xt )=B sle ) 7 +B € @pte (8

Where:
B wa 1=8
B wa 2=8
,8 @ 3=PB ;3
B ra 1=8 4
B sa ;=8 ;
B va 3=8 ¢

B .=

=
~

In theory both temperature and effort can vary without bounds*. As such, the optimum
combination of effort and temperature can be easily determined. First obtained is the catch
maximizing optimal effort level for any given temperature. This conditional effort function is:

B 1t ) 2B 2t (H-B 3
E(t )= 9
@ ) 28 4t ) 2-2B s(t ¢)-28 ¢ ©)

2 This model and other functional forms were tested using catch per unit effort as a proxy for biomass. The model utilized
was best able to explain variation in CPUE.

3 It bears stating that the model will be input into statistical software with positive signs on all coefficients. As such, when
interpreting regression results the signs of several of the coefficient values will need to be inverted.

Ocean temperatures are of course actually limited by the freezing point of the ocean and by its boiling point. However, for
the purposes of this study these improbable extremes can be neglected.
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The optimal effort level and temperature combination obtained is:

«_ B 1B 2 *-B 3 «_ B 2*B 5
E *= andt *=-L 2B 5 1
26 F 5 5 oond 2B 148 2 (10) and
(11)

The marginal rate of technical substitution of effort for temperature can be found easily

enough:

/G

8t ¢ de

MRTS cfore = —(

(12)
MRTS  cfort =
28 1(e ¢t ¢D-B 2e ¢j=2B (e ) (@t B sle ¢p) 2 (13)
=B 1(t ) 2+B 2tej+B 3428 ale ) &) 2-2B s(e ¢ )-28 se ¢))

The necessary algebra is a bit more complicated in determining the functional form
conditional effort function if both temperature and catch level are held constant. Some
manipulation, and the quadratic formula yield:

E(g tj:E tj) =
(=B 1t FHB ot ¢+ 3)—j(—ﬁ 1t 3B 2t B 3) P—4B 4t §-B st =B OB € t-py+B 0-C t)) n

2B 4t =B st B 6
Since ocean temperature levels are beyond the control of fishery managers, the conditional
effort functions will be the primary vehicles utilized to evaluate the sustainability of the tuna
fisheries of the Western Central Pacific, and to make recommendations as to what changes should

be made to best protect these fisheries in the face of rising ocean temperatures.

3. Data

Data utilized came from a variety of sources. Catch data was taken from the Western &
Central Pacific Fisheries Commission’s (WCPFC) “Public Domain Aggregate Catch/Effort” dataset.
This data was provided in a monthly time series of 5° by 5° gridded coordinate squares. Longline
effort was used in this study’s analysis due to the random sampling effect inherent in longline
fishing methods. There is little targeting of effort beyond selection of a generalized geographic area
in which to set the longline, which can be in excess of 20 miles in length®. The variety and
abundance of species that are caught on the longline, in effect, will represent a more or less
randomly generated sample of the area’s biodiversity.

Temperature data was drawn from the NOAA Optimum Interpolation (OI) SST V2 dataset.
This dataset was provided in a monthly time series of 1° by 1° gridded coordinate squares, with sea
surface temperatures provided in monthly mean °C. Since both types of data were provided in
different coordinate systems, to coordinate this SST data with the catch and effort data the 1° by 1°
gridded coordinate square corresponding to the bottom left corner of each 5° by 5° square was used
as representative of the entire 5° by 5° square.

The timespan represented by the data ranged from January 1985 to December 2018. Data
was given in a monthly format. Due to the large size of the dataset, any observation (coordinate

square in a particular month) which lacked any fishing effort was dropped from the dataset. This is

> Source: NOAA fisheries
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logically consistent, as an observation absent any effort is unable to provide information on fishery
trends relevant to the study at hand. After dropping these observations 408 unique time periods
remained represented, along with 321 unique coordinate squares. Further observations were
dropped by the statistical software while computing regression estimates, due to incomplete
observational data.

Three unique species of tuna were examined separately: yellowfin, albacore, and big eye. It
bears stating that effort is not species specific. The same unit of effort is capable of catching any of
these tuna species, or any number of other marine species, with likelihoods varying solely based on
distribution and stock abundance. Also as a caveat to the data, the minimum effort level reported
was 100,000 hooks in a coordinate square in a particular month. Small scale fishing effort was not
recorded or not not reported by WCPFC. However, the average longline has some 3,000 hooks®. As
such, the minimum level of effort recorded is sufficient to capture the bulk of commercial fishing

activity in each roughly 87,000 square mile 5° by 5° coordinate square.

Table of vanables
Effort Provided in 100's of hooks, converted to number of hooks
mean= 541477.2 st dev. = 668728.3
min=100000 max=45455230
Yellowfin Catch Provided in metric tonnes, converted to kg
mean=57008.52 st dev.= 940420
min=0 max=1278519
Albacore Catch Provided in metric tonnes, converted to kg
mean=4703258.72 st dev.=107302.6
min=0 max=26410090
Bigeye Catch Provided in metric tonnes, converted to kg
mean= 48775.5 st dev.=75800.9
min=0 max=1600480
Sea Surface Temperature Provided in degrees celsius
mean=26.41 st dev.=3.866
min=7.7 max=30.87
Latitude min=-50 max=40
Longitude min=105 max=225
n= 47,292

Table 1. Table of variables and summary statistics

% Source: FAO fisheries
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Mean Species Catch Per Unit Effort by Latitude
Plus or minus degrees|Yellowfin Albacore Bigeye

0 0.177 0.003 0.165

5 0.153 0.007 0.162
10 0.137 0.039 0.158
15 0.108 0.153 0.066
20 0.066 0.176 0.038
25 0.054 0.167 0.041
30 0.040 0.206 0.066
35 0.034 0.174 0.073
40 0.029 0.207 0.022

Table 2. Mean catch per unit effort by species and latitudinal distance from equator

4. Empirical Methodology and Results

The model derived in equation (8) was fit to the data at hand using a feasible generalized
least squares (FGLS) panel data method. The FGLS method was selected due to the number of time
periods being examined exceeding the number of coordinate squares examined. Each gridded
coordinate square was taken as a separate panel with every month representing a separate time
interval. Tests were conducted for autocorrelation and for heteroskedasticity. Wooldridge tests for
autocorrelation in panel data were conducted for the specified model for each species. The models
were each tested with and without the presence of the lagged dependent variable. The Wooldridge
test takes there being autocorrelation as the null hypothesis. Its test statistic follows an F
distribution. This null hypothesis was rejected in each case and autocorrelation was found to be
present in each model.

To proceed in testing for heteroskedasticity, FGLS models were specified with
homoskedastic and with heteroskedastic panel variance. The two models were then compared with
a likelihood ratio test. This test’s statistic follows a chi-squared distribution. The test takes
homoskedasticity as the null hypothesis. The test for the model for each species failed to reject the

null hypothesis. The results of these specification tests are summarized in table 3.

Het test Liklihood Ratio Test Between Model correcting for Heteroskedasticty and and model without
Yellowfin Albacore Bigeye

Chi Square -11185.79 -113407.56 -25543.1

Heteroskedasticty? |No No No

Autocorrelation Test Wooldridge Test for Autocorrelation in Panel Data, without lagged term
Yellow/fin Albacore Bigeye

F statistic 161.094 203.442 92.84

Autocorrelation? Yes Yes Yes

Autocorrelation Test | Wooldridge Test for Autocorrelation in Panel Data, withlagged term
Yellowfin Albacore Bigeye

F statistic 389.824 225.252 384.211

Autocorrelation? Yes Yes Yes

Table 3. Autocorrelation and heteroskedasticity testing results
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Due to missing observations the data could not be tested with typical unit root
tests. Instead, by regressing the model’s two stochastic elements, effort and temperature, against
their own lag, a unit root test was able to be approximated. The coefficient generated was then
tested against a null hypothesis of unit equality. The same process was repeated for the various
species’ catch observations on their respective lags. In all cases, this null hypothesis was rejected
and the possibility of a unit root was ruled out. This indicates stationarity in the time trends that
can be addressed adequately by the one period autoregressive means employed. These test statistics

are reported in table 4.

Temperature Effort Yellowfin Albacore Bigeye
Chi Squared | 2761.78 5842.34 4511.23 6419.48 7918.41

Table 4. Unit root test results

Following the results of these tests, the models were fit with specifications for
homoskedastic variance and the presence of autocorrelation within panels. These regression results

are summarized in table 5.

Models fit with feasible generalized least square method, with correction for autocorrelation

Yellowfin Abacore Bigeye
Temperature Squared times Effort 0.000331""* -0.00119™* -0.000632"*
(10.89) (-27.15) (-18.92)
Temperature times Effort -0.00997""" 0.0418"* 0.0317"""
(-6.56) (19.15) (18.99)
Effort 0.0958""" -0.182""" -0.332"™"
(5.06) (-6.67) (-15.93)
Temperature Squared times Effort Squared -2.79e-11"* 1.07e-10"™" 6.82e-11"""
(-2.93) (8.14) (6.77)
Temperature times Effort Squared 1.50e-09"* -4.77e-09""* -3.27e-09™"
(2.92) (-6.71) (-6.02)
Effort Squared -2.20e-08""" 4.71e-08™" 3.59e-08"""
(-3.15) (4.86) (4.85)
Lag of Yellowfin Catch 0.429™"
(117.08)
Lag of Albacore Catch 0.382""
(93.79)
Lag of Bigeye Catch 0.378™"
(89.95)
Constant -5431.1"" -7826.6™" 1481.7"""
(-11.10) (-10.89) (2.59)
Observations 36506 36506 36506
Panels 297 297 297
Chi-Squared 64474.8 23698.5 20548.1
Chi-Squared Type Wald Wald Wald
Rho .1829986621591862 .2556269970113945 .2534115351404863
Rho Type regress regress regress

t statistics in parentheses
*p<0.10," p<0.05 " p<0.01

Table 5. Regression output results

It bears noting that FLGS methodologies do not produce a standard R 2goodness of fit
measure for the model. As such, the correlation coefficient between the model’s fitted and observed

values is used instead to assess model fit. These values are reported below.
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Correlation between observed and fitted values
Bigeye

Yellowfin Albacore
0.8479 0.7495 0.689

Table 6. Correlation coefficients between fitted and observed values

Correlation

The parameter values derived from these estimates can be input into equations (9) through
(14) to generate useful predictions regarding the management of the region’s fisheries. Equation’s
(10) and (11) will provide the optimum effort and temperature combinations for each species. These
combinations are a useful benchmark against which to measure a fishery’s current state. These
results are reported in table 7. It is of note that Yellowfin catch is maximized at such low
temperature levels, near the minimum point at which catch is observed. This is more a factor of the
mathematics of the model, in which the extremely high level of effort plays a larger part. This
illustrates that these hypothetical optimum effort and temperature combinations are not an ideal

standard for fishery management.

Yellowfin

Albacore
Temp 15.10 17.60
Effort 2180000.00 1463854.77

Table 7. Optimum effort and temperature and effort combinations

Bigeye

25.10
3630357.19

Equation (9) provides a much more useful measure for setting fishery goals with the
objective of maximizing catch. Approximating necessary effort levels to maximize fishery yields in
the face of changing ocean temperatures allows for fishery managers to plan accordingly against
the forecasts of oceanographers and climate scientists. The results, reported below, show that the
optimal effort level respective to temperature for each species is unique. Catch of Bigeye at low
temperatures was nearly negligible in the data, as was the catch of Albacore at high temperatures.
Optimal effort levels trend differently for each species group. Maximizing Albacore catch would
require higher effort levels at lower temperatures, while both Bigeye and Yellowfin catch are
maximized with higher effort levels at higher temperatures. These effort levels are observably quite
high, due to their representing the highest level of extraction possible without consideration for the
long term economic or biological sustainability of the yield. As such, they solely represent catch
maximizing effort levels at various temperatures in an open access environment. The primary value
of these estimates is in illustrating the optimal trends in effort respective of temperature; that each

species of tuna responds differently to different temperature levels.

Optimal Effort Level Given Temperature for Catch Maximization
Yellowfin Albacore Bigeye
15° 1.80E+06 2.36E+08|-
20° 4.56E+06 1.62E+07 1.11E+07
25° 1.38E+07 1.13E+07 1.02E+07
30° 2.24E+07 |- 3.06E+07

Table 8. Optimal effort levels at varying temperatures

Equation (13) is interesting in that it is able to provide us with tradeoffs inherent in

maintaining a consistent level of catch as temperatures change. It is apparent from the equation that
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its resulting value will change as the values of effort and temperature themselves change. Despite
this, it can still be a useful measure for assessing what changes would be necessary to maintain a
given level of input. For example, in an arbitrary recently observed period, January 2018, the fishery
located out of Honolulu, Hawaii (found in the 20°N by 155° W coordinate square) observed a catch
of roughly 18,000 kg of Yellowfin tuna with roughly 180,000 longline hooks set and a mean sea
surface temperature of 27.1°C. If this location’s fishery managers were to desire to maintain this
level of catch in the face of an expected 1° rise in ocean temperatures, they would need some 21,000
more hooks to be set. This result demonstrates a decreasing catch per unit effort, and implies a
declining stock biomass as temperatures increase. The value of this sort of tool for managing and
assessing fishery goals is apparent.

Perhaps most useful of the tools derived is equation (14) which allows fishery managers to
determine requisite effort levels based upon catch targets and temperature forecasts. Catch targets
can be set with aims based in maximum economic yield fishery management (MEY) or maximum
sustainable yield fishery management strategies (MSY). Whatever target levels are set, this equation
will allow fishery managers to determine the requisite effort level needed to meet that target in the
face of climate predictions. Those seeking to minimize total effort while reaching a particular
fishery goal for the entirety of an exclusive economic zone (EEZ) can set up a simple optimization

problem to solve for the most efficient allocation of effort across their EEZ, using the form:

minTE =%}, E 4(C ¢t tjsubjectto}, C ,;=TC . (15)
Where:
TE-= total effort, the summation of effort in each coordinate square of the EEZ
TC= a preset desired total catch target level across the EEZ
C ;= the catch in each coordinate square
j=an individual coordinate square in the EEZ

n= the total number of coordinate squares in the EEZ

While the math for deriving this solution will undoubtedly grow quite complex, the
relatively simple set up provides a useful framework for managing fisheries in the face of
increasing ocean temperatures. This model can be readily adapted for the allocation of effort across
time with little modification:

min TE =Yt 2j=0 E H(C ¢t ¢jsubjecttoyi; € 4=TC .

(16)

Returning to the simple case of equation (14), where we are simply looking at the necessary
effort for a single coordinate square, an example will help elucidate the usefulness. Suppose those
who manage the fishery immediately surrounding Fiji’s capital Suva (found in the 15°S by 175° E
coordinate square) desire to increase their monthly Yellowfin catch from 28,000 to 30,000 kg in the
face of an expected quarter degree rise in ocean temperatures, to 29.6°.In this situation, the fishery
should seek to deploy around 260,000 hooks to reach this goal. It also bears stating that this model
can readily be adapted for management in the multi-species fishery case. To reach a particular
target level for all species, all that needs to be done is to calculate the effort required for each species
in the same time period and coordinate square. The maximum of these values will be the best
estimate for the effort needed to reach all of the species target goals, as longline effort is largely

indiscriminate.Such a strategy will likely result in excess catches of the lesser required effort
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species. As such, conservation minded fishery managers would do well to employ the opposite

strategy, utilizing the minimum effort value obtained and keeping all catch levels below targets.

5. Discussion

The above section has visited the applied value of the equations derived in the model
specification and theory section of this paper. Ocean temperature is shown to have a significant
effect on fishery yield, at least in the specific context examined: tuna fisheries of the Western and
Central Pacific Ocean. The equations derived in this paper are of clear value to fishery managers,
and point to the role that consideration of temperature must play in fishery management moving
forward as the planet is faced with rising ocean temperatures.

All of the applications above have been focused towards the future, centered on the value
that these tools have in planning for future fishery yield. However, they also have a diagnostic
value in identifying strategies that are not best suited for our era of climate change. As with the
derived models’ value in planning for the future, much of the diagnostic value could be improved
upon with the logical progression of the models beyond the scope of this paper, stemming from the
point of equations (15) and (16). These models provide a basis for evaluating past allocative
efficiency of effort resources and for identification of EEZs in which resources could have been
better utilized to achieve the same or better results. While this avenue of discussion is beyond the
scope of the study at hand, and perhaps provides a good starting point for future research, it is
evident, at least logically, that the models herein described have the potential to improve upon the
capabilities of current fishery management methodologies. The addition of sea surface temperature
into existing bioeconomic modeling methodologies is essential to better mirror the realities of the
marine ecosystem.

Equation (13), which allows us to examine necessary changes in effort level to maintain a
constant catch level as temperature changes, demonstrates the direction in which stock biomass is
trending with temperature change. It is able to demonstrate the simple fact that in many locales
increasing temperatures are resulting in decreasing catch per unit effort.

With the model as derived and limited herein we are able to identify locales that are being
less than efficient in their deployment of fishery effort, relative to their sea surface temperature.
However, all of these equations for deriving particular optimal effort levels given temperature
solely provide for immediate term catch maximizing levels of effort. This, for obvious reasons, is
not the best tool for sustainable fishery management. In order to sustainably manage these fisheries
in the face of climate change, target catch levels need to be set that are aimed at maintaining long
term stock viability in a dynamic environment. Only with these targets appropriately and
accurately set, are the tools derived in equations (14), (15), and (16) able to contribute to fishery
sustainability.

Setting appropriate target catch levels that take into consideration stock viability, climate
change, and shifting demand due to changing human population dynamics will allow the models
developed herein to be their most useful. Climate change must factor into both ends of the
equation, temperature needs to be considered both in determining the ideal supply and in
determining how best to achieve that supply level. The models derived have demonstrated, for all
three tuna species examined, a high level of statistical significance for the interaction between
temperature and fishery effort. It seems intuitive that the environment affects the production
function of this natural resource. However, quantification of this relationship is necessary to
effectively address the problems that climate change is causing for stock depletion, food security,

and small island developing state economic viability.
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6. Conclusion

This study has established the significant relationship that ocean temperatures play in the
production function for three subspecies of highly migratory pelagic fish. The models derived
provide a theoretical framework for extending the analysis to a broader range of species. From this
model, various equations have been derived that are able to provide fishery managers with useful
metrics and tools for planning and evaluation of fishery management strategies. It is crucial that as
the effects of climate change become more pronounced fishery managers do not neglect the role that
ocean temperatures play in the fishery production function.

The study at hand faced some data limitations, and would have benefited from higher
resolution data. This would have allowed us to utilize smaller geographic coordinate squares and to
more precisely estimate effects. Future study with higher resolution data would do well to also look
at the spatial trends as well.

Several clear routes for future research have been made apparent by this study. Foremost,
equations (15) and (16) have the potential to provide an extremely useful fishery management
framework if properly explored. This is especially true if they are able to be paired with catch targets
that accurately account for the changes to species’ ecosystems and human population growth.
Further, other environmental factors would do well to be incorporated into the general model of
equation (5) and all of the other functions derived from it. Factors such as changing levels of ocean
acidity, plankton distribution, and oceanic pollution would add immensely to the value of this model.

Despite the data limitations and the narrow scope of the model’s derivations, it has
contributed significantly in providing a base formula to aid fishery managers in determining what
level of effort need be employed to reach management goals. Climate change is a factor that needs to
be considered in all aspects of natural resource management for the sake of food security and
economic development. This examination of the Western and Central Pacific’s tuna fisheries has
established the role that temperature plays in the marine resource production function.
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Appendix A
Using CPUE as a Proxy for Biomass, regressed against temperature

Equation (5)

Temperature 0.0904"*
(4.48)

Temperature Squared -0.00155™*
(-3.62)

Constant -0.842"""
(-3.63)

Observations 47292

R2 0.155

Chi-Squared 58.91

Chi-Squared Type Wald

t statistics in parentheses
*p<0.10," p<0.05" p<0.01

Table 9. Results from testing equation (5)
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