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Abstract

Electronic health records (EHRs) are becoming a vital source of data

for healthcare quality improvement, research, and operations. How-

ever, much of the most valuable information contained in EHRs remains

buried in unstructured text. The field of clinical text mining has ad-

vanced rapidly in recent years, transitioning from rule-based approaches

to machine learning and, more recently, deep learning. With new meth-

ods come new challenges, however, especially for those new to the field.

This review provides an overview of clinical text mining for those who

are encountering it for the first time (e.g. physician researchers, opera-

tional analytics teams, machine learning scientists from other domains).

While not a comprehensive survey, it describes the state of the art, with

a particular focus on new tasks and methods developed over the past

few years. It also identifies key barriers between these remarkable tech-

nical advances and the practical realities of implementation at health

systems and in industry.
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1. INTRODUCTION

Among the most significant barriers to large-scale deployment of electronic health records

(EHRs) in quality improvement, operations, and research is the amount of EHR data stored

as unstructured text (1). Structured, machine computable data, such as procedure and

diagnosis codes, are in the minority. The bulk of information relating clinical findings to

decisions, and communicating the logical and deductive processes of medicine, is buried

within progress notes, radiology and pathology reports, and other free text documents

(2, 3). Examples include:

• Treatment goals and outcomes (e.g. success or failure of treatments, criteria for

success, decisions about subsequent treatments)

• Interpretations of radiology and pathology images and laboratory test results

• Social determinants of health (e.g. social connection/isolation, housing issues, men-

tions of financial resource strain) (4)

• Symptoms, symptom changes, and their interpretation (5)

• Past medical history and family history

• Patient’s emotional disposition, mood, and interactions with health providers

• Detailed descriptions of procedures (e.g. labor and delivery, heart catheterization,

imaging studies, surgeries)

• Adherence to treatment plans (e.g. medications, physical therapy, procedures)

• Allergies, side effects, and other adverse events

• Results of physical examination (e.g. review of systems and interpretation of findings)

• Patient’s reasons for seeing a health provider; primary and secondary complaints

• Psychiatric evaluations and records of therapy sessions

• Discharge summaries and follow-up plans
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Some have speculated that modern machine learning algorithms, combined with EHR

and other patient data, will enable the convergence of human and machine intelligence

in healthcare (6, 7). From a practical standpoint, such a vision hinges on text mining.

Without the ability to reliably process and interpret vast quantities of clinical text, all

attempts to create high-performance predictive models, phenotyping algorithms, and data-

driven treatment strategies (i.e. “precision medicine”) will face substantial challenges.

For the past several decades, a community of researchers working at the intersection

of computer science and medicine has developed strategies for information extraction and

modeling of clinical text, using techniques somewhat distinct from those of the broader

natural language processing (NLP) research community (8, 9). Their efforts have led to the

development of new methods and the production of both commercial (10) and open-source

(11) software systems for clinical text mining. In recent years, technology giants like Ama-

zon and Google have also recognized the importance of clinical text mining and joined the

fray; Amazon Comprehend Medical (12) now comes packaged as a software add-on to Ama-

zon Web Services, incentivizing storage of EHR data on Amazon’s HIPAA-compliant cloud

platform by providing seamless clinical text processing. Dedicated clinical text process-

ing companies such as (as of this writing) Clinithink (www.clinithink.com), Linguamatics

(www.linguamatics.com), and Apixio (www.apixio.com) have built proprietary systems of

their own, promising to improve clinical trial recruitment, disease registry creation, govern-

ment reporting, and billing, all through improved mining of unstructured clinical text.

As a data scientist with a background in biomedical text mining, I am frequently ap-

proached by physician colleagues and academic and industry collaborators who, for various

reasons, have found themselves needing to process clinical text. Many perceive clinical text

mining as a “solved” problem, believing that one can simply apply a packaged clinical NLP

system to extract structured data for a variety of downstream applications. As a result, I

often find myself explaining the limits of current NLP technology and the fact that clinical

NLP encompasses many different goals, progress on some of which is further along than

others. The purpose of this review, therefore, is to provide a starting point for those who

are encountering clinical text mining for the first time. Far from a comprehensive survey,

it focuses on a subset of methods and ideas that are particularly clear and generalizable

and can serve as starting points for further explorations of the field. Importantly, nothing

I discuss here requires access to institution-specific or proprietary software, rule sets, or

training corpora. My goal is to provide “outsiders” with a realistic baseline for what it is

possible to accomplish with clinical text mining today.

2. A SHORT TAXONOMY OF TASKS AND APPROACHES

2.1. Information Extraction vs. Modeling

Information
Extraction: Often
considered a

subdomain of NLP,

a term referring to
any method that

extracts structured

information, such as
concepts, relations,

or events, from

unstructured text.
Examples of

information
extraction tasks

include named entity

recognition, concept
normalization, and

relation extraction.

Electronic
Phenotyping: Also

called cohort

identification, this is
the task of

identifying patients

with certain
characteristics of

interest (e.g.

exposures, diseases,
or outcomes),

usually from EHR,
claims, or other

administrative data.

Any clinical research project involving text must start with a clear definition of its

overall goal and the role text will play in achieving that goal. For example, an electronic

phenotyping algorithm (13, 14, 15, 16) may combine multiple sources of structured data,

such as diagnosis codes, medication orders, and procedures, with information from clinical

notes. In that case, it is useful to think of text as simply an additional source of features.

Conversely, if one’s goal is to build a classifier for radiology reports, e.g. to classify mam-

mography reports by BI-RADS class (17), the text is the only source of information. In

that case, methods that produce an answer directly from the raw text, such as end-to-end,

deep learning-based text classification models (18, 19), may be the right choice. Other
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considerations, of course, are the levels of speed and accuracy required (20).

The field of clinical NLP has its own structure, with publications and software built

around a set of tasks that help to define the field but do not necessarily correspond neatly

to the applied problem one wants to solve. To understand the NLP task(s) needed to

address one’s own research question, it is often useful to think in terms of two distinct

steps: information extraction, or feature engineering, and data modeling. In the information

extraction step, structured information, such as concepts and relations, is extracted from the

raw text (21). In the modeling step, the extracted information is modeled (using anything

from a basic statistical test to a machine learning algorithm) and interpreted to answer the

research question. Examples of modeling tasks are text classification (18) and document

clustering (22). The distinction between the two steps is imperfect, and in practice one

can skip either step. For example, information extraction alone is often sufficient for the

purposes of search indexing, knowledge base construction, or patient timeline building.

Similarly, deep learning models can obviate the need for a separate information extraction

step by learning structured representations of text automatically in the course of solving a

downstream task (23).

2.2. Rule-Based vs. Statistical Approaches

The earliest NLP systems were rule-based. Rule-based systems codify expert knowledge

into a set of structured rules, or templates, then apply those rules to unstructured text to

extract structured information. For example, an expert might specify patterns of words,

phrases, or parts of speech that signal the presence of a particular type of entity; e.g. “if

the word ‘received’ is followed by a noun followed by ‘for’ and then a disease name, assume

the noun is a drug name”. Many of the best-performing clinical NLP systems are rule-

based, even today: of 263 clinical text mining articles reviewed by Wang et al in 2018

(21), 171 (65%) used rule-based methods. However, rule-based systems have two important

disadvantages. First, they demand substantial time and effort from domain experts. Second,

because they are domain-specific, they typically do not generalize well to new problems;

a rule-based system for identifying drug names in text will not be good at anything other

than identifying drug names in text.

The alternative to a rule-based system is a system built by applying a statistical learning

(a.k.a. machine learning) algorithm to training data. One can provide a learning algorithm

with some text in which all of the drug names are labeled, for example, and the algorithm

will try to identify patterns that indicate a particular span of text is a drug name (9, Ch.

8). Techniques for training and optimizing learning algorithms are often task-independent.

This is one of these algorithms’ key advantages and what enables a single methodological

advance in machine learning, like convolutional neural networks (CNNs) or transfer learning,

to change the state of the art across multiple domains simultaneously (e.g. imaging, NLP,

speech). However, statistical learning algorithms require annotated training data, which

in the clinical domain is often limited or nonexistent (24). As a result, the clinical text

mining community favors rule-based approaches more than the NLP community at large

(8). Although this review will generally avoid pure rule-based approaches due to their

reduced generalizability, readers should be aware that rule-based methods often outperform

machine learning in cases where training data are limited.

Rule-Based NLP
System: Applies a

set of expert-defined
rules, or templates,
to perform an NLP

task. Downside is
need for expert time

and effort.

Statistical NLP
System: Learns how

to perform an NLP

task by applying
machine learning

algorithms to
training data.
Downside is need for

[often large amounts
of] training data.
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CLINICAL TEXT MINING SOFTWARE & RESOURCES

The following tools are popular choices for general and clinical text processing (e.g. word and sentence

tokenization, part-of-speech tagging, chunking, parsing, named entity recognition, word and phrase embed-

dings). The first section contains general-purpose libraries, while the second contains resources specific to

clinical text.

Resource Language URL Reference

NLTK Toolkit Python nltk.org (25)

Stanford CoreNLP Java stanfordnlp.github.io/CoreNLP (26)

Stanza Python stanfordnlp.github.io/stanza (27)

spaCy Python, Cython spacy.io

scispaCy Python allenai.github.io/scispacy (28)

Apache OpenNLP Java opennlp.apache.org

CRFSuite Python chokkan.org/software/crfsuite

Scikit-learn Python scikit-learn.org

(text preprocessing: sklearn.feature extraction.text)

Gensim Python radimrehurek.com/gensim/index.html (29)

BERT Python github.com/google-research/bert (30)

MetaMap Java metamap.nlm.nih.gov (31)

MetaMap Lite Java metamap.nlm.nih.gov/MetaMapLite.shtml (32)

cTAKES Java ctakes.apache.org (11)

Stanza clinical Python stanza.run/bio (33)

DNorm Java, REST API ncbi.nlm.nih.gov/research/bionlp/Tools/dnorm (34)

Clinical BERT Python github.com/EmilyAlsentzer/clinicalBERT (35)

Python github.com/kexinhuang12345/clinicalBERT (36)

UMLS N/A (extraction nlm.nih.gov/research/umls/index.html (37)

software in Java)

3. SOFTWARE FOR CLINICAL INFORMATION EXTRACTION

The three most common information extraction tasks – named entity recognition (38, 39,

40), concept normalization (41, 42), and relation extraction (Section 7) – are still active

areas of research. However, in many cases, software systems exist that will perform these

tasks automatically. Several such systems have been built specifically for clinical text,

although performance will vary depending on the system and the data on which it was

trained. This section reviews current state-of-the-art methods and systems and provides

examples of the type of output one can expect from each system.

3.1. Named Entity Recognition

Named Entity
Recognition: The
task of identifying

and locating
mentions of

conceptual

categories, such as
drug, symptom, or

disease names, in

text.

Named entity recognition is the task of identifying and locating mentions of conceptual

categories, such as drug, symptom, or disease names, in text. It is perhaps the most widely-

studied information extraction task, and researchers have built systems that identify a

variety of clinically-relevant entities, including problems, tests, and treatments (33, 38, 39),

medication and adverse event names (43, 44), and protected health information (PHI)
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Progress Note:

Ms. S. is a 43F h/o antiphospholipid syndrome, HTN, DM, here for 
routine follow-up appointment.

Her main concern today is a 3 month h/o worsening shortness of 
breath a/w lower extremity edema. Her exercise tolerance has 
decreased from 10 blocks to half a block over the past few years.

She denies chest pain, palpitations, orthopnea, calf tenderness, 
fevers, and substance use.

On exam, she is afebrile, BP 110/80, HR 80, RR 18, O2 Sat 98% on 
room air. She was AOx3, +JVD to her mid-neck, +HJ reflux. RRR, 
normal s1, prominent P2. Lungs CTAB, no wheezes, rales, or 
rhonchi. Abdomen soft, non-tender, non-distended, +bowel sounds. 
1+ lower extremity pitting edema bilaterally to the shins.

Labs notable for Hgb 12, platelet count of 350. Na 135, K 3.5, Cr 1.

Chest X ray was clear.

EKG with a HR 84, NSR, no axis deviation, no ischemic changes.

Assessment:

Ms. S. is a 43F h/o antiphospholipid syndrome, HTN, DM, with 
progressive dyspnea and lower extremity edema concerning for 
new-onset acute decompensated heart failure. Given that she is 
afebrile without any infectious symptoms, pneumonia is less likely. 
She does not smoke which makes COPD exacerbation less likely.

Plan:

-BNP
-Transthoracic echocardiogram

Stanza Clinical Pipeline 
Annotations

Test
Problem
Treatment (none found)

Figure 1

A sample clinical progress note (not a real patient) with named entity annotations provided by
the Stanza clinical text processing pipeline, trained using data from the 2010 i2b2/VA challenge.

The Stanza pipeline tags three types of named entities: treatment, problem, and test. For this
particular note, no treatment entities were found. Medical terms, abbreviations and acronyms:
HTN: hypertension; DM: diabetes mellitus; h/o: history of; a/w: along with; AOx3: alert and

oriented to person, time, and place; JVD: jugular vein distention; HJ reflux: hepatojugular reflux,

distention of jugular vein produced by applying manual pressure to the liver; RRR: regular rate
and rhythm (of pulse); S1: heart sound produced by closure of atrioventricular (mitral and

tricuspid) valves; P2: heart sound produced by closure of pulmonic valve; CTAB: “clear to
auscultation bilaterally”, an abbreviation used in lung examinations; pitting edema: if area of
swelling pressed, a pit remains; Hgb: hemoglobin, measured in units of g/dL; Cr: creatinine,

measured in units of mg/dL; NSR: normal sinus rhythm; BNP: brain natriuretic peptide test

(indicative of heart failure).

6 Percha

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2020                   doi:10.20944/preprints202010.0649.v1

https://doi.org/10.20944/preprints202010.0649.v1


(45, 46), in clinical text.

The simplest way to identify named entities is to compare found text strings to a list

of terms from a specific category, such as disease names. Indeed, such “dictionary-based”

approaches are common in clinical text mining and frequently yield acceptable performance

(47, 48). However, modern named entity recognition systems more commonly employ

machine learning models adapted for sequence data, including conditional random fields

(CRFs), recurrent neural networks (RNNs), and RNN variants such as long short-term

memory networks (LSTMs). Trained using corpora hand-annotated with entity type(s)

of interest, these algorithms learn to identify features of a text string and its surround-

ing context that predict whether it is one of the desired types. Traditionally, algorithms

have selected features from predefined sets, including morphological (e.g. capitalization

and punctuation patterns, presence/absence/location of numbers), syntactic (e.g. parts of

speech, grammatical dependencies with other words in the sentence), semantic (e.g. mem-

bership in a lexicon, position in an ontology), and other specialized or hand-coded features

(e.g. trigger words, templates) (49). More recently, neural network models have allevi-

ated some of the challenges of feature engineering by constructing semantically-meaningful

mathematical representations of words and characters (“embeddings”) automatically from

patterns in the text itself (50, 51). Embeddings have become a crucial component of modern

named entity recognition systems and are covered in greater detail in Section 4.

The same algorithm, trained on different annotated corpora, can learn to recognize en-

tities of different types. For example, the Stanza library (27), which provides tokenization,

lemmatization, part-of-speech (POS) tagging, dependency parsing, and named entity recog-

nition for biomedical and clinical text (33), includes two different named entity recognition

models for clinical text. Both are trained using the same learning algorithms: pretrained

character-level language models (52) fed into Bi-LSTM-CRF sequence taggers (33, 50, 53).

The only difference is the training set. One of the models was trained using “test”, “prob-

lem”, and “treatment” concept annotations from the 2010 i2b2/VA dataset (54). The second

was trained using “anatomy”, “anatomy modifier”, “observation”, “observation modifier”,

and “uncertainty” annotations from a corpus of 150 chest CT radiology reports (55). Demos

of both models can be found at http://stanza.run/bio, and the first model’s annotations

of a sample clinical progress note are shown in Figure 1.

Tokenization: A

token is a sequence
of characters that

together make up a

semantically
meaningful unit,

such as a word.

Tokenization is the
process of splitting

an input text string
into tokens and

potentially removing

non-meaningful
characters/tokens,

such as punctuation.

Lemmatization: The
process of grouping

together the

inflected forms of a
word (e.g. “helped”,

“helping”, “helps”,

etc.) for analysis as
a single item.

Part-of-Speech
Tagging: The process
of assigning lexical

categories (“singular

noun”, “past-tense
verb”, etc.) to a list

of tokens.

Of course, the reverse is also true: different machine learning algorithms can be trained

using the same training data. When looking for a state-of-the-art system to solve a partic-

ular clinical text mining task, in fact, a useful strategy is to identify an annotated corpus

for that task and look for papers that have cited the corpus. Like Stanza, the Clinical

Named Entity Recognition (CliNER) system (39) was trained using concept annotations

from the 2010 i2b2/VA NLP challenge (54). Other systems trained using the same dataset

are the Bi-LSTM-CRF systems by Chalapathy et al (56) and Unanue et al (57) and Tang

et al ’s system combining support vector machines (SVMs) with CRFs (58). By providing a

single publicly available dataset and benchmark, the creators of the 2010 i2b2/VA dataset

have facilitated over a decade of continued technology development in clinical named entity

recognition.

A wide variety of non-clinically-specific named entity recognition systems also exist and,

depending on the use case, may be appropriate for clinical text. General-purpose named

entity recognizers are included in both the Stanford CoreNLP library (26) and the spaCy

library (https://spacy.io). Because these are trained using general domain text (i.e.

telephone conversations, newswire, newsgroups, broadcast news, broadcast conversation,
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Table 1 Examples of cTAKES annotations associated with the note in Figure 2.

The annotations in the top section are correct mappings, and those in the bottom section

are incorrect mappings. There were 122 unique cTAKES annotations for this note.

Line Annotation Type Original String Normalized Term UMLS

Number Concept ID

2 DiseaseDisorderMention HTN Hypertensive disease C0020538

4-5 SignSymptomMention shortness of breath Dyspnea C0013404

7 SignSymptomMention chest pain (negated) Chest pain (negated) C0008031

10 SignSymptomMention JVD Jugular venous engorgement C0425687

16 ProcedureMention EKG Electrocardiography C1623258

24 ProcedureMention Transthoracic Transthoracic C0430462

echocardiogram echocardiography

10 DiseaseDisorderMention reflux Gastroesophageal reflux disease C0017168

11 MedicationMention CTAB Cetrimonium bromide C0951233

23 MedicationMention BNP Nesiritide C0054015

blogs), they tag somewhat generic entities like person, number, and place names. A sec-

ond class of systems are those that have been trained using biomedical text, usually from

PubMed research articles and abstracts. Recent examples are the scispaCy library (28)

and the transformer-based language model BioBERT fine-tuned for named entity recogni-

tion (59). These systems often tag entity types that are relevant to clinical text, such as

gene names; however, because they were trained using scientific writing, one should expect

reduced performance on clinical text.

Named entity recognition exemplifies many of the challenges of clinical text mining.

Although dozens of different systems have been developed, many are now obsolete, and not

all are released as “production-ready” code (i.e. easy to download and use). In addition, if

one is interested in an entity class for which no pre-annotated corpus or pre-trained model

is available, there is no alternative but to train one’s own system; this is a good time to

consider the merits of developing a custom annotated training set vs. building a rule-based

system (Section 2.2). Finally, named entity recognition only makes sense when the entities

involved are discrete and have defined locations in text. If one’s goal is to identify a more

diffuse concept, such as a patient’s socioeconomic status, named entity recognition may not

be the most useful place to start.

3.2. Concept Normalization

Concept
Normalization: The
task of assigning a

unique identity to an
entity name

recognized in the

text. In the
biomedical domain,

this typically

involves mapping
the name to a

known concept from
a structured
terminology or

ontology.

The output of a clinical named entity recognition system (see Figure 1) is a set of

named entities of one or more types. The obvious downside to such output is that it

tells one nothing about the entities except their type(s); for example, there is no way of

knowing that the strings “HTN” and “hypertension” – even if they are in the same note and

both labeled as problems – refer to the same concept. Likewise, although a named entity

recognition system may recognize multi-word phrases (e.g. “lower extremity pitting edema

bilaterally to the shins”, Line 13, Figure 1), it does not understand how the component

words contribute to the meaning of each phrase and it cannot easily connect a given phrase

to coreferent phrases, even from the same passage (e.g. “lower extremity edema”, Line 5,

Figure 1).
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Progress Note:

Ms. S. is a 43F h/o antiphospholipid syndrome, HTN, DM, here for 
routine follow-up appointment.

Her main concern today is a 3 month h/o worsening shortness of 
breath a/w lower extremity edema. Her exercise tolerance has 
decreased from 10 blocks to half a block over the past few years.

She denies chest pain, palpitations, orthopnea, calf tenderness, 
fevers, and substance use.

On exam, she is afebrile, BP 110/80, HR 80, RR 18, O2 Sat 98% on 
room air. She was AOx3, +JVD to her mid-neck, +HJ reflux. RRR, 
normal s1, prominent P2. Lungs CTAB, no wheezes, rales, or 
rhonchi. Abdomen soft, non-tender, non-distended, +bowel sounds. 
1+ lower extremity pitting edema bilaterally to the shins.

Labs notable for Hgb 12, platelet count of 350. Na 135, K 3.5, Cr 1.

Chest X ray was clear.

EKG with a HR 84, NSR, no axis deviation, no ischemic changes.

Assessment:

Ms. S. is a 43F h/o antiphospholipid syndrome, HTN, DM, with 
progressive dyspnea and lower extremity edema concerning for 
new-onset acute decompensated heart failure. Given that she is 
afebrile without any infectious symptoms, pneumonia is less likely. 
She does not smoke which makes COPD exacerbation less likely.

Plan:

-BNP
-Transthoracic echocardiogram

cTAKES Default Pipeline 
Annotations

MedicationMention
DiseaseDisorderMention
SignSymptomMention
ProcedureMention
AnatomicalSiteMention

Negated
Uncertainty Detected

Figure 2

The same clinical progress note as in Figure 1, with annotations provided by the cTAKES (version

4.0) default pipeline. The abbreviations are the same as in Figure 1. The cTAKES pipeline

detects negation and uncertainty and maps each entity to its corresponding concept in UMLS. A
selection of the UMLS concepts found in this note is in Table 1.

Concept normalization, a.k.a. “entity linking”, is the task of assigning a unique identity

to each entity name mentioned in text. In the clinical domain, this typically involves map-

ping each entity name to a known concept from a structured terminology or ontology. The

task is closely related to named entity recognition and indeed, systems often combine the

two processes (60). Coreference resolution, in which strings referring to the same entity (e.g.

a pronoun and its antecedent) are grouped, is a similar task; it is essentially normalization

without the ontology mapping step (61, Ch. 22).

Clinical text is incredibly diverse (62), and practitioners from different medical special-
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ties, or who have been trained at different institutions, will often choose different terms for

the same concept. The Unified Medical Language System (UMLS), a project begun in 1986

at the National Library of Medicine, was designed to address this issue (37). UMLS is a

compendium of biomedical ontologies and terminologies in which concepts occurring across

multiple resources are mapped to a single unique identifer (a “Concept Unique Identifer”, or

CUI). Today, the predominant strategy for clinical concept normalization is to map a given

text string to one of these CUIs. End-to-end clinical text mining systems like MedLEE (now

Health Fidelity; (10)), MetaMap (31), MetaMap Lite (32), and cTAKES (11), all have this

functionality. The CLAMP system (63) provides an easy-to-use graphical user interface for

building and deploying clinical NLP pipelines, including UMLS mapping.

The same note analyzed by Stanza in Figure 1 is shown in Figure 2, this time with

annotations produced by cTAKES, a popular system developed at the Mayo Clinic (11). A

selection of the 122 detailed UMLS mappings produced by cTAKES is in Table 1. In addition

to UMLS-based concept normalization, cTAKES detects negation (64), uncertainty, and

experiencer (whether the statement refers to the patient or, e.g. a family member). The

results shown in Figure 2 are from the default cTAKES pipeline, i.e. what one could expect

running cTAKES “out of the box”. Most of the annotations are correct; for example,

cTAKES correctly maps the string “HTN” to the normalized concept Hypertensive disease

(CUI C0020538) and understands that “shortness of breath” is a synonym for Dyspnea (CUI

C0013404). A key shortcoming, however, is cTAKES’ reliance on dictionary-based lookups

to identify and normalize named entities. This is apparent in Figure 2, where cTAKES

labels the strings “CTAB”, “BNP”, and “Hgb” as medications because of spurious UMLS

mappings (e.g. “CTAB” maps to “cetrimonium bromide” in UMLS). If the specificity of

extracted medication terms were crucial for one’s application, therefore, it might make

sense to include a dedicated named entity recognition system for medication names in the

cTAKES pipeline. In addition, depending on the application, full concept normalization

may not be necessary; in one recent study (20), using cTAKES annotations as features in

a 30-day readmission model yielded no better performance than N-grams.

N-Gram: A

contiguous sequence
of N items in text.

In NLP, the term

“N-Gram” most
often refers to a

sequence of N words,

but it can also refer
to sequences of

characters, syllables,

etc.

Negation Detection:
The task of

identifying whether
a term or concept is

negated in the text.
Simple

pattern-based

algorithms, such as
NegEx (64), often

suffice.

Coreference
Resolution: The task

of grouping strings

from a passage that
refer to the same

entity, such as a

pronoun and its
antecedent.

Like named entity recognition, clinical concept normalization is still an active area of

research. For those interested in this task, a good place to start are the disorder normaliza-

tion systems built for the SHARe/CLEF eHealth 2013 Evaluation Lab, a community NLP

challenge focusing on clinical named entity recognition and concept normalization (65, 42).

DNorm (34, 62) was the top-performing system on the concept normalization task, deploy-

ing a pairwise learning-to-rank approach that was the first of its kind in the clinical concept

normalization literature. More recent studies have applied deep learning models to the same

task and dataset (66, 67).

3.3. Numbers, Ranges, and Sections

There are a few information extraction tasks of particular importance to clinical text for

which dedicated systems have been developed. These systems are generally rule-based and

rely on regular expressions (68). For example, extraction of lab values and vital signs is a

distinct task from named entity recognition because it requires interpreting numeric values

and ranges. The Valx system (69) extracts and structures lab test comparison statements,

though so far it has only been applied to trial descriptions from ClinicalTrials.gov. The

CNN-based system developed by Xie et al (70) identifies blood pressure readings, deter-

mines the exactness of the readings, and classifies the readings into three classes: general,
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treatment, and suggestion. Their machine learning-based workflow could be adapted to

extract other types of numeric values.

Section identification is another task somewhat unique to the clinical text mining lit-

erature. It involves identifying the section labels associated with each span of text within

a note (e.g. Progress Note, Assessment, and Plan in Figure 1), which informs the inter-

pretation of whatever is found there. To date, the only section identification system used

outside the institution in which it was developed is the SecTag system by Denny et al (71).

A complete review of section identification methods and systems can be found in (72).

4. EMBEDDINGS AND PRETRAINING

The core idea behind concept normalization (Section 3.2) is semantic relatedness; two terms

can look different, yet refer to the same concept. However, semantic relatedness extends

beyond the dichotomy of same vs. different; terms can have degrees of similarity (e.g.

“dog” vs. “cat” as opposed to “dog” vs. “volcano”) and can be similar in different ways

(e.g. “queen” vs. “king” as opposed to “queen” vs. “president”). Modern NLP systems

represent this idea mathematically using a construct called an embedding.

Embedding: A

mathematical
representation of a

word or phrase,

typically a vector of
a fixed length,

designed in such a

way that words with
similar meaning

have similar vectors.

Transfer Learning:
The technique of

storing knowledge
gained while solving

one problem for

later use on a
different, but

related, problem. In

text mining, the
strategy of learning

embeddings of words

and phrases on
large, unlabeled

corpora and later

incorporating them
in task-specific

supervised models is
a form of transfer

learning.

4.1. Word, Phrase, and Character Embeddings

An embedding is a mathematical representation of a word or phrase, usually a vector,

designed in such a way that words with similar meaning have similar vectors. The true

meaning of a word is difficult to represent using numbers, so embedding methods replace

“meaning” with “context” and build vectors based on usage patterns in large, unlabeled

corpora. The NLP subfield of distributional semantics, which originated with Latent Se-

mantic Analysis in 1988 and continued through the development of word2vec (73) and

GloVe (74) in 2013–2014, is a collection of methods all built around the central goal of

creating vector-space embeddings of words and phrases that reflect how they are used in

context. To compare the meaning of two words, one simply calculates the cosine similarity

of their corresponding vectors.

From a clinical text mining standpoint, embeddings are useful in two ways. First,

because they do not require annotated corpora for training, it is easy to create embeddings

that are specific to clinical text, or that capture regularities of expression within a particular

clinical subfield or institution. These will often outperform general-domain embeddings

on clinical text mining tasks (51). Specialized clinical text embeddings have been used

to improve clinical named entity recognition (75), resolve abbreviations in clinical text

(76), expand a structured lexicon of radiology terms (77) and build a lexicon of dietary

supplements (78). Second, an embedding can incorporate structured information beyond

what is found in the text (79), and embeddings have been created to represent CUIs (80),

documents (81, 82), or entire patient records (83). Any task in which the notion of similarity

is important, particularly when that similarity is based on patterns in text, can probably

benefit from embeddings.

For more information about embeddings, readers are encouraged to consult Turney and

Pantel (84) for a review of early methods and Kalyan et al (85) for a review of embedding

methods currently in use in clinical text mining.
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4.2. Contextual Embeddings and Pretraining

Until the last few years, embeddings consisted of one vector per entity; that is, one vector per

word, phrase, or document. However, novel neural network architectures (23) have permit-

ted the creation of embeddings that vary depending on the context; this has expanded the

representational power of embedding methods and led to the creation of massive pretrained

language models like BERT (Bidirectional Encoder Representations from Transformers)

(30). These models are generally too resource-intensive to be trained from scratch. In-

stead, a transfer learning approach (86) is used in which models trained on general-domain

corpora are either further pre-trained or fine-tuned on clinical text for use in clinical text

mining tasks (85). For example, Alsentzer et al recently trained BERT models on 2 mil-

lion notes from the MIMIC-III (87) database. They produced two models, one for generic

clinical text and another for discharge summaries, which they released publicly (35). They

and others have demonstrated that BERT models fine-tuned on clinical corpora improve

the state of the art on clinical concept recognition, de-identification, inference, and concept

normalization tasks (88, 89), though in at least one case, UMLS features still contributed

valuable additional information (90).

The downside of these models is that they require some technical sophistication to adapt

and apply. Whereas the original word2vec could be run on a plain text corpus using a single

script and output vectors to a text file, to use BERT requires knowledge of how to “wire

up” a pre-trained model to task-specific output layers for fine-tuning. However, it is likely

that end-to-end clinical text processing systems, like cTAKES, will begin to incorporate

BERT and related methods into different annotation modules as the technology develops.

5. TEXT CLASSIFICATION

Text classification is perhaps the most sought-after application of clinical text mining. A

recent survey (23) found that of 212 clinical text mining papers employing deep learning

methods, 88 (41.5%) focused on text classification; text classification and named entity

recognition together encompassed 75.5% of articles. The goal of text classification is to

classify documents (or sentences, phrases, etc.) into two or more discrete categories. Ex-

amples from the clinical domain include classifying primary care descriptions of back pain

into acute vs. lower back pain (91), distinguishing normal vs. abnormal knee MRI reports

(92), and assessing whether a patient is a current or former smoker vs. a non-smoker based

on clinical notes (93). Text classification is a modeling task – typically, it is its own goal.

Often it will incorporate features identified through information extraction (Section 3), like

named entities or CUIs, or embeddings (Section 4).

Text Classification:
The task of assigning
a label, or category,

to text based on its

content. Examples
include document

classification (e.g. of
radiology, pathology,

or autopsy reports)

and sentence
classification.

A recent systematic review of clinical text classification describes standard text classi-

fication algorithms, as well as popular approaches to preprocessing, feature selection, and

training set construction (18). An older but still relevant review surveys text classification

methods for automated clinical coding (94). In general, text classification methods for clin-

ical text are similar to those for other domains, with the exception that specialized medical

resources, such as UMLS, often serve as additional sources of features.

5.1. Feature Construction and Selection

Clinical text, as shown in Figure 1, is complex, often incorporating specialized medical

terms, numerical measures and scores, abbreviations, misspelled words and poor grammar
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(18). The use of individual words or N-grams as features, while common in text classi-

fication more broadly (95, Ch. 13), often results in undesirable levels of feature sparsity

when applied to clinical text. As a result, feature selection and dimensionality reduction

methods are of particular importance in clinical text classification. Feature selection based

on TFIDF weighting (95, Ch. 6) is common, as are embeddings (Section 4), which turn

a potentially unmanageable number of word and text features into dense representations

of fixed dimensionality (96). Concept normalization (Section 3.2) also plays a particularly

important role in clinical text classification; it is common to preprocess clinical text with

a system like cTAKES or MetaMap to merge different term and phrase variants into the

same structured concept, then use those concepts in a classification model (97, 98). It is

also possible to exploit parent-child relationships from the UMLS hierarchy to create addi-

tional features, e.g. by including all parent terms for a given concept. Such ontology-guided

feature engineering has been shown to improve performance on downstream clinical text

classification tasks (99). Finally, one can choose a classification algorithm that provides

implicit feature selection. In one study, elastic net (100) was used to classify ICU patients

into risk strata based on the text of nursing notes. It reduced the number of text features

by over a thousandfold while maintaining near-optimal performance (101).

5.2. Deep Learning for Clinical Text Classification

Aside from those that have employed task-specific rules (Section 2.2), the majority of clin-

ical text classification studies to date have used standard supervised machine learning al-

gorithms, including support vector machines, naive Bayes, random forests, and boosting

(92, 102, 103). However, over the past five years, deep learning algorithms have begun to

displace other classifiers. One of their key advantages is a reduced need for feature engi-

neering; representations of words, phrases, and higher-order text structures can be learned

as part of the overall training process or incorporated via transfer learning from other

pre-trained models. Several studies have deployed convolutional neural networks (CNNs)

with high success on a variety of clinical text classification tasks: assigning diagnosis codes

(104, 105), classifying radiology reports (19, 106), subtyping diseases (91), and determining

the presence or absence of comorbidities (107). Alternative neural network architectures,

such as LSTMs and attention networks, are commonly used in text classification tasks in

the general NLP domain, although as of this writing, CNNs have been the dominant archi-

tecture in clinical text classification (23, 108). One recent paper exemplifies the end-to-end

deep learning approach to clinical text classification, tying rule-based features together with

word and UMLS-based concept embeddings in a single CNN-based classifier (107).

6. WEAK AND DISTANT SUPERVISION

Weak Supervision:
Supervised learning

using “weak”, or
noisy, labels. For

example, simple

heuristic rules, or
“labeling functions”,

may be used to

create large,
weakly-annotated

training sets.

Distant Supervision:
Supervised learning

using training

signals that do not
directly label the

training examples.
For example, the use

of structured clinical

data to train a
supervised text

mining algorithm is

a form of distant
supervision, since

the structured data

are generally
associated with

patients or

encounters, not
individual text

records (i.e.
sentences or

documents).

Clinical text mining has increasingly shifted away from rules-based approaches and

toward machine learning. However, progress in this direction has been slowed by a general

lack of training data (see Section 2.2) (24). A related issue is that clinical information

extraction models are generally trained using the same few annotated datasets (54, 109,

110, 65, 111), which limits the kinds of annotations they can produce. Most applied clinical

text mining projects will therefore confront, at some point, the problem of insufficient or

inappropriate training data. Two practical solutions to this problem are weak and distant

supervision. Weak supervision is the act of creating “silver standard” training data by
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applying a weak, or noisy, labeling function to large amounts of unlabeled data. Distant

supervision is a related practice in which external data sources, such as knowledge bases,

are used as training signals. One can, in fact, view distant supervision as a form of weak

supervision, and in practice the terms are often used interchangeably.

The paradigm clinical text mining example of distant supervision is using structured

information from the EHR, such as ICD codes, as a labeling mechanism for unstructured

text documents. For example, outcomes such as in-hospital mortality (16), hospital read-

mission (112, 113), and reportable adverse events (114) are routinely captured in the course

of health system operations. Although this information is typically attached to patients

or encounters, not individual text documents, one can use it as a source of noisy training

labels for discharge summaries or other narrative documents attached to the encounters.

These noisy labels then serve as a source of supervision for text classification algorithms.

Similar results have been achieved using structured ICD9/10 diagnosis (115, 116, 117) and

procedure codes (118) as class labels. However, this technique is somewhat limited to the

task of document classification; to obtain labels for specific words or text spans (i.e. for

named entity recognition or relation extraction), one needs a labeling mechanism that works

directly on the text.

An alternative is to apply simple heuristic rules to create noisy labels. For example,

Wang et al used keyword-based weak labels for two separate tasks: smoking status classifica-

tion and hip fracture classification (93). Importantly, they noted that their best-performing

deep learning classifier, a CNN, was robust to the massive label noise created by the weak

labeling. Their paper was, to my knowledge, the first to apply a combination of weak su-

pervision and deep learning to clinical text classification; most earlier applications of weak

supervision in the biomedical domain focused on images or text from biomedical research

articles. Two earlier studies of note in the biomedical domain are Sabbir et al ’s study of

distant supervision for biomedical word sense disambiguation (119) and Fries et al ’s de-

scription of the SwellShark system (120), a generative model for biomedical named entity

recognition that uses lexicons and ontologies for weak labeling. The Snorkel system, on

which SwellShark is based, was recently used to weakly label clinical notes for the purposes

of extracting implant details and reports of complications and pain after hip replacement;

the weakly labeled notes were then used to train deep learning models to recognize (pain,

anatomy) and (complication, implant) relations (121). These methods improved classifi-

cation performance by 12.8-53.9% over rule-based methods and detected over six times as

many complication events compared to structured data alone.

Alternative approaches to the efficient annotation of training sets for clinical text mining

include crowdsourcing and active learning. Crowdsourcing is not usually a viable option in

the clinical domain because of privacy concerns. Active learning is a strategy for minimizing

annotation effort by iteratively sampling subsets of data for human annotation based on

the current performance of a supervised learning algorithm (122, 123). However, it still

requires recruiting one or more experts to create the annotations.

7. RELATION EXTRACTION AND INFERENCE

Dependency Parsing:
Representing the

syntactic structure

of a sentence as a set
of directed, binary

grammatical

relations between
pairs of words (or

lemmas). For
example, a sentence

containing the

phrase “green car”
would contain a

dependency of the

form “amod(car,
green)”, where

“amod” represents

the relationship
“adjectival

modifier”.

Dependency Path:
Treating a

dependency parse as

a directed acyclic
graph (DAG), a

dependency path is

a list of all the edges
traversed when

moving from one
entity to another. It

tends to capture

only those parts of
the sentence that are

relevant to the

relationship between
the two entities.

Relation Extraction:
The task of assigning
a structured form to

a relationship

between or among
entities. Typically

this form includes

the identities of the
involved entities and
a label denoting the
nature of their
relationship, such as

“drug treats disease”
or “event 1 precedes

event 2”. Relation extraction is the task of assigning a structured form to a relationship between

or among entities based on how it is described in text. Typically this form includes the

categories of the involved entities and a label denoting the nature of their relationship, such

as “symptom sign of disease” or “test reveals problem”. For example, the phrase “progres-
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sive dyspnea and lower extremity edema concerning for new-onset acute decompensated

heart failure” from the last paragraph in Figure 1 contains two different “symptom sign of

disease” relations. Relation extraction is usually framed as a text classification problem in

which sentences or dependency paths (see sidebar) are classified into groups corresponding

to relational labels. It is related to the task of knowledge base creation, which represents

text as a network of structured relations over which inference can be performed to generate

new knowledge (124).

Although ordinarily discussed alongside other information extraction tasks, such as

named entity recognition, relation extraction is arguably one step closer to true language

understanding. Named entity recognition and text classification simply label text; they do

not address compositionality, the combining of individual facts to generate composite ideas.

Compositionality presents a particularly important challenge for clinical text mining because

clinical writing reflects a high level of assumed knowledge, as well as unstated implications

about the temporal and causal ordering of events. Current clinical text mining systems

possess no ability to reason, as a human would, about the relationships between laboratory

and clinical findings and specific diagnoses or treatments (in Figure 1, the meaning of a

clear chest x-ray or the implication of pitting edema for a diagnosis of heart failure). Such

reasoning will require incorporation of external knowledge derived from, e.g., textbooks or

research articles. Relation extraction is a first step in this direction.

7.1. Methods for Clinical Relation Extraction

Modern clinical relation extraction systems are generally based on deep learning models,

such as CNNs with pre-trained word2vec embeddings (125), segment CNNs (Seg-CNNs)

(126), and coupled Bi-LSTMs with CNNs incorporating dependency path features (127),

or other machine learning methods like SVMs (128, 129). They are typically built and

evaluated using annotated corpora, such as the relation extraction corpus from the 2010

i2b2/VA dataset (54), which we have seen earlier; indeed, the five studies just mentioned all

used this dataset. The recent 2018 n2c2 shared task on adverse drug event relations (130)

provides a recent snapshot of the field; of the top 10 systems, five used deep learning, three

used SVMs, one used a random forest and one used a rule-based algorithm.

One particular relational class that has been the focus of considerable research in re-

cent years are temporal relations, reviewed in detail in (131). A standard language has

been developed for annotating temporal relations in text, including events (EVENTs), time

expressions (TIMEXs), and relations between EVENTs and TIMEXs (TLINKs). This for-

malism has led to the creation of two major annotated corpora for clinical temporal relation

extraction: the THYME corpus (132), and the 2012 i2b2 temporal relations corpus (110).

Methods for temporal relation extraction have followed those developed for other clinical

relation extraction tasks; earlier papers used models such as CRFs and SVMs (133), while

later papers apply deep learning approaches such as CNNs (134), Bi-LSTMs (135), and

BERT (136).

7.2. Inference and Entailment

Compositionality: A

principle from
philosophy and

mathematical logic,

usually attributed to
George Boole,

stating that the

meaning of a
complex expression

is determined by the

meanings of its
constituent

expressions and the

rules used to
combine them.

Entailment: A

particular type of
relation between two

segments of text in
which one implies

the other; that is,

the truth of the
second statement

follows from the

first.

Natural Language
Inference: Formerly

called “entailment
recognition”, the

task of determining

whether a given
hypothesis
(statement two) can

be inferred from a
given premise

(statement one).

Natural language inference (NLI) is a variant of relation extraction with a longstanding

presence in NLP, the goal of which is to determine whether one statement (the hypothesis)

can be inferred from another (the premise). As of 2018, the clinical NLP community lacked

any annotated corpora for NLI, owing in part to the difficulty and expense of getting
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A REVIEW OF REVIEWS

The field of clinical text mining has been extensively reviewed in prior articles. The reviews selected below

are those I found to be particularly useful surveys of specific research areas or the field in general.

Year Author(s) Title Reference

2011 Chapman et al Overcoming Barriers to NLP for Clinical Text: The Role of (141)

Shared Tasks and the Need for Additional Creative Solutions

2016 Ford et al Extracting Information from the Text of Electronic Medical (142)

Records to Improve Case Detection: A Systematic Review

2016 Koleck et al Natural Language Processing of Symptoms Documented in (5)

Free-Text Narratives of Electronic Health Records: A Sys-

tematic Review

2017 Kreimeyer et al Natural Language Processing Systems for Capturing and (8)

Standardizing Unstructured Clinical Information: A System-

atic Review

2019 Khattak et al A Survey of Word Embeddings for Clinical Text (143)

2019 Mujtaba et al Clinical Text Classification Research Trends: Systematic (18)

Literature Review and Open Issues

2020 Spasic et al Clinical Text Data in Machine Learning: Systematic Review (24)

2010 Stanfill et al A Systematic Literature Review of Automated Clinical (94)

Coding and Classification Systems

2018 Velupillai et al Using Clinical Natural Language Processing for Health (144)

Outcomes Research: Overview and Actionable Suggestions

for Future Advances

2018 Wang et al Clinical Information Extraction Applications: A Literature (21)

Review

2020 Wu et al Deep Learning in Clinical Natural Language Processing: A (23)

Methodical Review

medical experts to produce annotations and the inability to share patient data with non-

expert (e.g. crowd-worker) annotators. However, Romanov and Shivade (137) recently

produced the MedNLI dataset to facilitate NLI research in the clinical domain. Starting

with premises from the MIMIC-III (87) dataset, physicians were asked to write sentences

that (1) were definitely implied by the premise, (2) were neither contradicted nor implied

by the premise, and (3) were definitely contradicted by the premise. Although the task is

still in its infancy, shared tasks built around the MedNLI dataset have led to multiple new

approaches for NLI in this domain, including BERT-BiLSTM-Attention architectures (138),

and state-of-the-art ESIM (Enhanced Sequential Inference Model) architectures coupled

with knowledge-enhanced word representations based on UMLS (139, 140).

8. CONCLUSION

Electronic health record (EHR) use in the United States has expanded dramatically in

recent years. In 2017, 86% of office-based physicians reported access to some form of EHR,

compared to only 42% in 2008 (145). A favorable policy environment, created by the
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HITECH Act of 2009 and fueled by the 21st Century Cures Act of 2016, has promoted the

meaningful use of electronic health records to inform patient care, improve health system

operations, facilitate research, and provide “real world evidence” for FDA approval. Most

of the criticisms of EHRs in recent years have focused on their role in physician burnout

(146, 147). The technology perspective on EHR data, fueled by methodological advances

like deep learning (23) and the near-continuous development of high-performing predictive

and diagnostic algorithms (6, Table 3), has primarily been one of excitement.

In this environment, it would be easy to overlook the fact that the most widely publicized

and highly cited studies based on EHR data have focused on outcomes that are captured in

structured data fields: mortality, readmissions, length of stay, and diagnosis codes (148, 83).

In addition, while excitement around the use of EHR data has led to an exponential increase

in the number of EHR-related publications over the past decade, publications describing

the application of text mining to EHR data have not kept pace (21). To date, the vast

quantities of text contained within EHRs have primarily been treated as a source of features

for downstream learning algorithms, improving predictive performance over structured data

alone (149, 150, 142), but not creating fundamental changes in the types of questions asked.

Assessing whether a treatment failed or succeeded for a given patient, for example, is still a

nearly impossible task to accomplish using EHR data without manual chart review. Even

the most cutting-edge healthcare data science companies still employ human curators to

extract this type of information from text.

Modern clinical text mining systems have accomplished a great deal. They can now reli-

ably tag a wide variety of clinically-relevant entities in text, map them to standard concepts

from lexicons and ontologies, detect negation and uncertainty, and understand the person

or people to whom they refer. Given sufficient training data, there are now established

system architectures for performing tasks like text classification and relation extraction in

the clinical domain. Clinical text mining systems are in routine use in both industry and

academia, pursuing a wide variety of applications in health outcomes research (144), case

detection and phenotyping (142), and automated coding and classification (94). What they

cannot currently do is what no NLP system can: reason about text and incorporate prior

knowledge the way a human would. However, the field is also at an exciting turning point,

as it is beginning to pursue questions of inference and logic that cut to the heart of what it

means to build intelligent machines.
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