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Abstract: Bioprinting is a relatively new yet evolving technique predominantly used in 

regenerative medicine and tissue engineering. 3D bioprinting techniques combine the advantages 

of creating Extracellular Matrix (ECM) like environments for cells and computer-aided tailoring 

of predetermined tissue shapes and structures. The essential application of bioprinting is for the 

regeneration or restoration of damaged and injured tissues by producing implantable tissues and 

organs. The capability of bioprinting is yet to be fully scrutinized in sectors like the patient-specific 

spatial distribution of cells, bio-robotics, etc. In this review, currently developed experimental 

systems and strategies for the bioprinting of different types of tissues as well as for drug delivery 

and cancer research are explored for potential applications. This review also digs into the most 

recent opportunities and future possibilities for the efficient implementation of bioprinting to 

restructure medical and technological practices. 
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1. Introduction: 

1.1 Bioprinting 

In the present age of technology and automation, tissue engineering has blurred the lines between 

reality and science fiction through the advancement of bioprinting technologies [1]. Bioprinting is 

an adaptation of additive (3D) printing, incorporating layer-by-layer deposition of biomaterials 

and bioactive molecules e.g. cells, growth factors, etc. This technology enables the designing and 

manufacturing of 3D constructs of tissues and organs mimicking the structure of their human 

counterparts [2]. The architecture is achieved precisely by the formulation of predefined locations 

and structures in computer-aided design software (CAD) [1]. The success of utilizing the 

bioprinting method depends on the functionality of the resulting structures. Design considerations 

have to be made based on three fundamental variables- bioactive components, cellular interactions, 

and the bioprinting device [3].  The core biomaterial for 3D printing called bioink comprises cells 

to be deposited, often enveloped in a carrier matrix that aims to imitate the physical and 

biochemical environment of native tissues and support adhesion, cell proliferation, differentiation 

[4]. Can bioprinting revolutionize biomedicine and biomedical engineering with the proper 

utilization of bioinks and different techniques, or is it limited to experimental use? This thorough 

review primarily centers around the potential implementation of 3D bioprinting in regenerative 

medicine and other medical sciences while also encompassing current tactics and future 

prospectives in bioprinting. 

 

1.2 Bioinks for Tissue Engineering 

Bioinks used in bioprinters consists of an extensive range of materials that is continuously 

expanding. [5]. Bioinks can be cell-laden, cell-only (scaffold-free), or even cell-free (cell-adhesive 
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channel) depending on tissue requirements [6]. Water-soluble polymers known as hydrogels are 

one of the predominant biomaterial components of 3D bioprinters [7]. Permeability to nutrients, 

oxygen, and other water-soluble molecules makes cell-laden hydrogels convenient [8]. Hydrogels 

can be natural, synthetic, or a blend of both. Naturally derived polymers vastly used for tissue 

engineering include collagen, fibrin, gelatin, alginate, hyaluronic acid, decellularized extracellular 

matrix, chitosan, etc. [9]. The purpose of the carrier material of bioink is to provide structural and 

biochemical support similar to the native Extracellular Matrix (ECM). Collagen is favorable for 

being a major component of native ECM. However, compensations have to be made as it has low 

mechanical properties [10]. Both collagen and gelatin are naturally cell-adherent [5]. Fibrin and 

hyaluronic acid have excellent biodegradability. Fibrin aids in angiogenesis and promotes cell 

growth whereas hyaluronic acid has flexible usage [11]. Alginate is a biocompatible, low-cost 

natural polysaccharide commonly used in a blend with gelatin or fibrinogen [8]. Synthetic and 

biosynthetic bioinks serve additional benefits such as improved mechanical stability, photo cross-

linking ability, controlled biodegradability, etc. Examples of synthetic bioinks include PEG-based 

bioinks, polyester-based bioinks, pluronic-based bioinks, polyurethane-based bioinks [12]. More 

advanced bioinks developed or developing include multi-material bioinks [13], 

functionalization/dual cross-linking, supramolecular hydrogels, interpenetrating network, 

nanocomposites, thermoplastic reinforcement [14], self-assembling bioinks, stimuli-responsive 

bioinks [8], etc. 

Bioink design is pre-eminent for an efficient bioprinting process. Thus, it involves considerations 

like mechanical properties such as permeability, viscosity, and tensile strength [15], biochemical 

properties, cytotoxicity of components, printability, degradability, and biocompatibility [11]. To 

maintain high cell viability after printing the materials used must not be susceptible to shear stress. 
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In addition, the bioinks used must be biocompatible and biodegradable to successfully generate 

bioprinted tissue [16]. The choice of cells and hydrogel in a cell-laden bioink principally depends 

on the target tissue to be reconstructed. 

 

1.3 Fundamental Steps in Bioprinting 

Generally, the bioprinting process consists of three major steps [17]. For the pre-bioprinting 

stage, medical images are used as a guide to design the blueprint of the tissue using computer-

aided design software (CAD) [18]. The physical bioprinting step comprises bioink composition, 

compact and good resolution bioprinter selection, and lastly, repeatable and biocompatible 

bioprinting [17]. This step is crucial for achieving affordable and functional bioprinting. Finally, 

the post-bioprinting stage refers to the mechanical and chemical conditioning of the constructs, 

usually performed in a bioreactor. To ensure the functionality of the bioprinted construct optical 

image analysis, mechanical stability assessment, swelling and degradation analysis, etc. are 

performed [19]. 

 

 

2. Techniques for 3D Bioprinting 

 

Bioprinting of desired tissues may utilize different techniques according to their individual 

principles, material demands, and considering their advantages, disadvantages. Based on the 

principle of operation, 3D bioprinting can be categorized into three types: droplet-based, extrusion-

based, and photocuring-based [20]. 
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2.1 Droplet-based Bioprinting 

Droplet-based bioprinting uses droplets of controlled volumes of bioink to deposit at 

predetermined locations. Due to its precise control of deposition, simplicity, and versatility, it has 

a large area of application including regenerative medicine, transplantation, high-throughput 

screening, oncology, etc. [21]. 

 

Inkjet Bioprinting 

Inkjet bioprinting is a non-contact technique of bioprinting in which droplets of bioinks are ejected 

under pressure [6]. Inkjet techniques make use of the physical properties of bioinks, such as 

viscosity, surface tension, density, etc. [20]. Inkjet bioprinting can be continuous or drop on 

demand (DOD). Whereas continuous inkjet bioprinters continuously release bioinks, DOD inkjet 

bioprinters make use of pressure pulses to eject droplets when required. The pressure pulses are 

usually generated by thermal, piezoelectric, or electrostatic actuators [22]. The thermal actuator in 

a thermal inkjet bioprinter is an electric heating unit that vaporizes the bioink solution to form a 

vapor bubble. Eventually, the vapor bubble expands due to pressure and rapidly explodes, 

generating a pulse pressure that ejects a bioink droplet. [3]. Such temperature changes do not 

significantly affect cell viability as the processes only take a few microseconds. The bioprinted 

cells have been assessed to maintain their proliferation capacity, genotype, phenotype, and 

function [23]. On the other hand, in a piezoelectric inkjet bioprinter, a voltage pulse causes the 

piezoelectric actuator to change its shape. Sudden change in the volume of the fluid chamber 

containing bioink subsequently causes the release of a droplet [24]. Electrostatic actuators work 

quite similarly. When a voltage pulse is applied between a pressure plate and an electrode, the 
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pressure plate deflects. Removal of the voltage pulse brings the pressure plate back to its original 

shape ejecting a bioink droplet [21]. 

Inkjet bioprinting techniques show promise as they provide high-resolution printing due to its fine 

control over the ejection of droplets and pico-liter sized ink droplets [25].  

 

Electrohydrodynamic jet (EHDJ) Bioprinting 

EHDJ bioprinting technique uses an electrical field to drive the bioink droplets. The bioink solution 

is pumped through a needle connected to a high voltage generator [26]. High-resolution printed 

tissue can be achieved, firstly because the nozzles are much smaller in diameter than inkjet printers. 

This allows the droplets to be much more focused and precise. Secondly, electrohydrodynamics 

generates droplets that can be significantly smaller than this diameter. The size of the droplet is 

also influenced by the voltage applied- high voltage bringing smaller droplets. Lastly, lateral 

variations are minimal in droplet placement due to the focused distribution of electric field lines 

[27]. EHDJ printing is a comparatively complex process. Careful selection, control, and 

optimization of bioink are essential for this technique as it is not only dependent on the viscosity, 

surface tension, and density, but also the electrical conductivity and evaporation rate of the bioink 

[28]. Cell viability depends on the applied voltage, bioink flow rate, and bioink properties. 

 

Acoustic Bioprinting 

The acoustic bioprinting technique keeps the biomaterials free from detrimental stress like heat, 

high voltage, high pressure, and any form of shear stress. Droplets are ejected using a gentle 

acoustic field through a nozzle [29]. However, gentle acoustic fields are not capable of ejecting 
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droplets of bioinks that are viscous or have high cell concentration. Studies on this technique are 

quite limited. 

 

Micro-valve Bioprinting 

Micro-valve bioprinting employs an electromechanical valve to control the ejection of droplets. 

The nozzle opening of the device is gated by the valve which is unlatched by a magnetic field 

created by a voltage pulse. The pressure in the fluid chamber containing bioinks overcomes the 

surface tension resulting in the generation of a droplet [30]. Cells are less prone to damage through 

this process than piezoelectric bioprinting due to the low range of pneumatic pressure used. 

 

Droplet-based bioprinting offers excellent spatial resolution which makes it desirable for 

application in tissue engineering and regenerative medicine. These techniques also provide a good 

resolution and relatively high cell viability at a lower expense [22]. However, droplet-based 

methods also have their drawbacks. The most prominent problem is the clogging of the nozzle 

when the bioink is too viscous [31].  

 

Laser-assisted Bioprinting 

With similar mechanisms as inkjet printers, laser-assisted bioprinting uses laser pulses to induce 

microbubbles. Support comprising bioink in the form of a thin sheet or film Is attached to laser-

absorbing metal or metal oxides, commonly gold or titanium [32]. A laser beam is pulsed at the 

interface of the target substrate and the absorptive layer, causing thermal volatilization and 

subsequently formation of a microbubble [33]. Bioink droplet is ejected through the expansion of 

the microbubble. 
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Overcoming the limitations of other droplet-based methods, laser-assisted bioprinting supports 

bioinks with higher viscosities [8]. The clogging problem is absent in the case of laser-assisted 

technique as it is nozzle-free. The non-contact, nozzle-free process also protects cellular 

components from shear stress resulting in higher cell viability [34]. It also provides high-resolution 

printing. Yet, it is highly expensive and complex, leading to several operational issues [4]. Even 

though the process is fast, droplet size limits the overall volume deposition over time. 

 

2.2 Extrusion-based Bioprinting 

In extrusion-based bioprinting, ongoing filaments are produced through continuous extrusion force 

instead of single droplets [35]. This technology is suitable for printing highly concentrated cells 

which means high viscosity bioinks. The ink used in extrusion bioprinting is distributed by 

mechanical force like screw or piston, or via a gas or pressurized air [36]. 

 

Pneumatic-driven Extrusion 

The extrusion technique involving pneumatic force utilizes compressed air with valve-free or 

valve-based configuration [9]. The air pump with sterilized air is connected to a bioink-filled 

syringe [37]. Pneumatical extrusion of the bioink causes shear stress, which means only the type 

of bioinks that have shear-thinning properties can maintain filamentous shape after extrusion. 

Valve-free extrusion is relatively simple. For high-precision performance, however, valve-based 

extrusion is preferred [38]. This is one of the most convenient techniques for printing cell-laden 

bioink [39]. 
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Mechanical Micro-extrusion 

Micro-extrusion refers to when the nozzle orifice has a diameter of less than 1 mm [40]. 

Mechanical driven extrusion is suitable for highly viscous bioinks, such as synthetic and natural 

polymers. One commonly used mechanical micro-extrusion technique is the piston-based 

extrusion, which employs a piston connected to an electric motor. Rotation in the motor through 

an electrical pulse drives the piston forward thereby pushing bioink through the nozzle [37]. 

The screw-driven extrusion technique provides more volumetric control and is useful for higher 

viscosity biomaterials [41]. In this technique, a screw connected to the motor instead of a piston 

drives the release of the bioink. This process can accommodate larger pressure drops through the 

nozzle. Mechanical methods provide higher resolution and better printability for a larger range of 

biomaterials, though it requires a tighter tolerance selection of the ram and nozzle [9]. 

 

Extrusion-based bioprinting is preferable for high cell densities and is relatively fast-paced [42]. 

As native tissues contain densely packed cells, printing cells at high density is significant for use 

in regenerative medicine [22]. A variety of bioinks can be used in this technique, which is an 

advantage. One of the most commonly used bioinks for extrusion is alginate [43]. Bioinks used 

for extrusion-based bioprinting has to be fairly viscous in order to enhance resolution and remain 

stable in the mechanically stressful process. However, the resulting high shear forces lead to low 

cell viability [44]. The resolution is relatively low [4]. 
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2.3 Photocuring-based Bioprinting 

Stereolithography (SLA) 

Stereolithography utilizes a photocuring-based technique solidifying photosensitive polymers to 

form tissue constructs under precisely controlled lighting [20]. The ultraviolet ray is directed at a 

reservoir of photosensitive polymers. For each layer deposition, laser scans a 2D pattern by passing 

through its path point-by-point and the controlled light interacts with the bioink material to 

polymerize it according to a specific design [45]. After one layer is cured, the printing platform 

moves upwards or downwards, away from the laser source, so that new unpolymerized ink material 

can flow into position for the next layer [46]. 

 

Digital Light Processing (DLP) 

The technique is quite similar to SLA, except for the different light scanning mode. Instead of 

point-by-point, in DLP the light is projected onto the surface of the layer at once [18]. This has a 

significant advantage in processing time. 

 

Photocuring-based bioprinting approaches have a rapid fabrication time [47]. Less dependency on 

mechanical forces generates higher cell viability. In addition, complex architectures of tissues can 

be constructed using these techniques with high resolution [48]. However, the processes require a 

very careful selection of biomaterials, and photoinitiators are often introduced to the bioink to 

improve photosensitivity which can affect cell viability [49]. Also, the cumulative UV exposure is 

a drawback [42].  
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3. Applications of 3D Bioprinting in Tissue Engineering and Biomedicine 

 

3.1 Bioprinting for Tissue and Organ Regeneration 

 

Severe damage in human tissues caused by trauma or diseases requires medical attention for 

regeneration or transplantation. Previously existing tissue engineering techniques alone are not 

sufficient to produce tissues and organs for medical use except drug testing. The success of organ 

transplantation is also limited due to donor shortage and immune reactions [50].  The 

heterogeneous structures of natural tissue, ECM organization, and gradients play a significant role 

in cell migration, proliferation, and differentiation [51]. The aim of using bioprinting in tissue 

engineering is to achieve well-vascularized, functional, and reproducible complex tissue structures 

of heterogeneous compositions, suitable for future clinical use. The architecture of the target tissue 

to be printed is constructed by computer-aided design/computer-aided manufacturing tools based 

on medical images obtained from patients [52]. As discussed before, printed tissues have the 

potential to provide the necessary behavioral cues to cells as well as facilitate vascular network 

generation [6]. The choice of bioinks and the techniques of printing are influenced by the structure 

of the target tissue. Recent advances in regenerative medicine using bioprinting examine 

restoration, replacement, and regeneration of damaged or injured skin, bone, cartilage, neural 

tissue, heart, blood vessels, and so on. Bioprinted tissues can be achieved using tissue-specific 

bioinks or from stem cells [53]. This section emphasizes the established studies and applications 

of 3D bioprinting for the regeneration of hard and soft tissues. 

 

3.1.1 Hard Tissue 
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Bone and Cartilage 

Bone is a complex composite of minerals and organic matrix with a distinct structural organization 

[54]. Bone is a self-healing tissue, yet, the self-regeneration is typically limited. Cartilage is a 

connective tissue primarily comprising collagen and proteoglycans [55]. Hyaline cartilage that is 

found between joints is an important factor when reconstructing bone tissue [56]. Avascular 

cartilage does not regenerate spontaneously. Thermoplastics such as polycaprolactone (PCL) and 

PLA have been utilized for 3D bioprinting of cartilage tissue. Bioprinting can precisely mimic the 

complex architecture of bone tissue and provide fast and often inexpensive mandibular, skull bolt, 

and maxillar bone reconstruction and regeneration. 

Endothelial progenitor cells and multipotent stromal cells encapsulated in Matrigel or Matrigel 

and alginate have been studied [57] for the development of bone-like tissue by implantation into 

subcutaneous dorsal pockets of mice. A fibrin-collagen hydrogel with rabbit articular chondrocytes 

has been printed using an inkjet-based technique onto an electrospun PCL matrix [58]. The 

inclusion of the PCL enhanced the mechanical properties of the construct. The cartilage tissue 

formed within the bioprinted scaffolds over a period of 8 weeks was similar to natural elastic 

cartilage. Human chondrocytes have also been utilized, suspended in poly(ethylene glycol) 

dimethacrylate (PEGDMA) solution [59]. The scaffolds were supplemented with either fibroblast 

growth factor-2 (FGF-2) or transforming growth factor-β1 (TGF-β1) to benefit cartilage 

development. An in situ printing approach by Cui et al. utilized the same printing method wherein 

the scaffolds were printed either separately or directly into osteochondral plugs that had been 

harvested from bovine femoral condyles [60]. Even though the cell viability was promising, low 

compressive modulus compared to the human articular cartilage of the lower limbs indicates the 
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need for further structural development of the scaffold before human implantation. Decellularized 

bone matrix loaded with human adipose-derived stem cells (hASCs) in a PCL matrix was studied 

for craniofacial regeneration in mice [61]. Due to the tissue’s complex structure, chondral and 

osteochondral injuries are difficult to heal. An approach called “in-situ biopen” was developed by 

O’Connell et al. to reconstruct chondral, maxilla, and mandible defects. A human infrapatellar fat 

pad (IPFP) adipose stem cell-laden GelMA or hyaluronic acid-methacrylate hydrogel construct 

was fabricated utilizing the biopen [62]. Dhariwala et al. used poly(ethylene oxide) (PEO) and 

CHO cells to achieve a high resolution bioprinted construct using the SLA technique, however, 

lacking structural strength [63]. Lu et al. also used the SLA technique with stem cells derived from 

mouse bone marrow stromal cells in PEDGA hydrogel [64]. Cartilage is avascular and has low 

cell densities, which makes regeneration of cartilage tissue difficult. To address this issue, trophic 

factors have been added into cell-laden cartilage scaffolds [65]. For the rapid development of 

adequate vasculature, a pre-vascularization approach was developed through laser-assisted 

positioning of human umbilical vein endothelial cells (HUVECs) [66]. More recently, Sun et al. 

[67] developed a dual-factor (BMP4 and TGFβ3) releasing gradient structured human and rabbit 

cartilage construct using mesenchymal stem cells (MSC) and poly(lactic-co-glycolic acid) (PLGA) 

resulting in good interconnectivity. Overall, bioprinting of bone and cartilage tissue can provide a 

potential alternative to xenogeneic or allogeneic bone grafts. 

 

Dental Applications 

Bioprinting offers a wide array of applications in dentistry, including dental aligners, dental and 

orthodontic models, direct crowns and bridges, surgical drill guides, flexible gingiva masks, night 

guards, and denture bases [68]. 3D bioprinting enables the use of digital models to fabricate 
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orthodontic models with accuracy and reproducibility. In orthodontics, high-resolution printing in 

resin is already utilized practically and commercially. Resins named E-Model and E-Denstone 

which can be photopolymerised for use in DLP printers have been developed by EnvisionTEC 

[69]. Similarly, VisiJet M3 Dentcast and Visijet M3 Pearlstone- two UV curable plastic polymers 

have been produced by 3D Systems [69].  Restorative dentistry is also utilizing similar processes. 

In maxillofacial and implant surgery, the use of anatomical models produced by bioprinting is on 

the rise. Bioprinting technology has been applied to develop periodontal regeneration by 

constructing hierarchical scaffolds, mimicking the physiological properties and architecture of the 

periodontium, consisting of both soft (gingiva, periodontal ligament) and hard (bone, cementum) 

tissues [70]. Different biomaterials used for dental applications include ceramics, composite 

materials, cell aggregates and spheroids, etc. Three-dimensional dentin–pulp complex with 

patient-specific shapes was developed by Han et al. inducing localized differentiation of human 

dental pulp stem cells in a fibrin-based hydrogel [71]. The future of implants and teeth will be 

heavily influenced by bioprinting. Periodontal ligament stem cells (PDLSCs) in GelMA and 

poly(ethylene glycol) (PEG) dimethacrylate have been shown to have the potential for periodontal 

tissue regeneration [72]. Reconstruction of maxillary bone in a canine using a printed PCL/βTCP 

scaffold was achieved by Kim et al. [73].  

 

3.1.2 Soft Tissue 

 

Skin 

Human skin serves as a barrier to protect against potential physical damage, radiation, water loss, 

pathogens, toxic chemicals, etc [74]. The skin is composed of three layers, epidermis, dermis, and 
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hypodermis. Epidermis primarily consists of keratinocytes and melanocytes, the dermis is rich in 

collagen and other ECM proteins excreted by fibroblasts, and hypodermis is predominantly 

composed of fat tissues [75]. The dermis is the layer containing additional functional structures 

such as sweat glands and hair shafts [76]. Treatment techniques like split-thickness skin grafts for 

skin injuries fail to provide complete restoration of sensory and motors neurons as well as 

structures like hair shafts and sweat glands [77]. Bioprinting also gets an additional advantage for 

its precision in cell deposition, automation, and standardization [78]. 

Skin bioprinting can be in situ, where the pre-cultured cells are directly printed at the wound site, 

allowing maturation in the natural environment [79]. The research on in situ skin bioprinting in 

limited. On the other hand, in vitro skin bioprinting has been vastly experimented, which achieves 

maturation of the tissue construct in a bioreactor before transplantation into the wound site [80]. 

Several bioinks and cell types have been tested by researchers to generate viable, biocompatible, 

and functional skin substitutes using bioprinting technology. 

Lee et al. produced a skin graft utilizing microvalve droplet-based techniques, printing a layered 

structure using adult human dermal fibroblasts and adult human epidermal keratinocytes in 

between layers of collagen [81]. The number of cells per droplet was 68±13 for keratinocytes and 

93±13 for fibroblasts. the technique was tested on a polydimethylsiloxane (PDMS) mold with 3D 

surface contours as a target substrate to demonstrate the ability to print and culture multi-layered 

cell–hydrogel composites on a non-planar surface. The epidermis was dense and formed tight 

junctions with neighboring cells composing an effective barrier. Further studies confirmed the 

advantages of bioprinting such as retention of tissue shape, flexibility, and reproducibility [82]. 

Quílez et al. produced skin tissue using human plasma-derived fibrin matrix populated with human 

fibroblasts and human keratinocytes [83]. The structure and function were analyzed in 
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immunodeficient athymic mice. Another study by Rimann et al. involved a PEG-based approach 

using the microvalve droplet system [84]. Alternating layers of PEG-based bioink and fibroblasts 

were deposited to print a scaffold at 20°C. Each layer of the bioink was immediately polymerized 

upon exposure to ultraviolet light. DNA damaged due to UV exposure was quantified by the 

formation of Cyclobutane Pyrimidine Dimer. However, cell viability before and after printing was 

similar, indicating insignificant damage to DNA. Over a period of 3 weeks, the cells were fully 

capable of proliferation and production of ECM. The absence of keratinocytes in the scaffold 

affected cell distribution and positioning. A comparative study in mice by Yanez et al. showed 

bioprinted skin tissue to successfully adhere to the wounded site in 14 days whereas a commercial 

graft dried out and detached from the site [85]. Other bioinks such as alginate, gelatin, fibrinogen, 

decellularized ECM, or mixtures of multiple biomaterials have also been studied for viability in 

skin tissue printing [4]. A stem cell-based in situ approach has been tested [86] using amniotic 

fluid-derived stem cells and bone marrow-derived mesenchymal stem cells suspended in 

fibrinogen-collagen solutions, separately. Even though the procedures showed great promise in 

coverage and secretion of trophic factors, the printed cells did not integrate with the tissue. Another 

study demonstrated a 3D bioprinting strategy using an extrusion-based, integrated composite 

tissue/organ building system (ICBS) [87]. Bioprinting was achieved using fibroblasts and 

keratinocytes in PCL and collagen-based bioink. Laser-assisted bioprinting techniques have also 

been successfully tested using alginate bioink, keratinocytes, fibroblasts, and human mesenchymal 

stem cells [88] and a simple structure using collagen bioink, keratinocytes, and fibroblasts [89]. 
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Cardiovascular and Cardiac Tissue 

To promote heart function as well as facilitate cardiac tissue regeneration, the bioprinted cardiac 

tissue constructs should be mechanically robust yet flexible, contractile, electrophysiologically 

stable, and most importantly, vascularized [90]. Large tissues and organs incorporate complex 

vascular networks for optimal oxygen and nutrition supplies, removal of metabolic waste, and 

therefore sustaining functionality [91]. Researchers have combined general tissue engineering 

approaches with 3D bioprinting techniques to demonstrate in vitro vasculature constructs. The 

methods include- cell self-assembly to generate vascular constructs, inkjet-based bioprinting of 

endothelial cells, angiogenic growth factor delivery in bioprinted constructs, coaxial nozzle-

assisted extrusion bioprinting of vasculature, and generation of channel-based vascular tissue [92]. 

The distinct layers of vascular tissue are tunica intima formed with endothelial cells, sub-

endothelial fibro-elastic connective tissue, and internal elastic lamina; tunica media primarily 

consisting of smooth muscle cells and elastin fibers; tunica externa predominantly made of fibro-

elastic connective tissue [93]. A scaffold-free, cell self-assembly approach was developed by 

Norotte et al. using human umbilical vein smooth muscle cells (HUVSMCs), human skin 

fibroblasts (HSFs), and porcine aortic smooth muscle cells (PASMCs) for small diameter vascular 

reconstruction. The study was limited by spatial resolution and the thickness of the vascular wall 

[94]. Another method [95] involved the printing of CaCl2 as a cross-linking agent into a solution 

of alginate/gelatin to produce different structures like tubes, branched tubes, hollow cones, and 

capillaries. Inkjet-based techniques utilizing encapsulation of human microvascular endothelial 

cells (hMVEC) in fibrin hydrogel [96], Sodium alginate ink with and without the inclusion of NIH-

3T3 mouse fibroblasts printed into CaCl2 solution [97], and other bioinks and methods have been 

tested. In 2014, Kolesky et al. developed a multi-head extrusion-based bioprinting technique to 
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print 4 different inks with good cell viability [98]. Several other approaches have been utilized to 

produce printed vascular tissue [99] [100] [101] [102] [103] [104]. Bioprinting of vasculature still 

remains the most critical part of developing organs for transplantation- ensuring cell alignment, 

maturation, delivery of oxygen and nutrients, and diffusion of growth factors [105]. 

The innermost layer of the heart chamber and heart valves is the endocardium, primarily consisting 

of endothelial cells. The outer sac protecting the heart is the double-layered pericardium. 

Myocardium or cardiac muscle tissue has cardiomyocytes as a major cellular component [106]. 

These three major cardiac tissues along with the ECM control the functionality of the heart. 

Human-induced pluripotent stem cell (hiPSC) technology has popularly been utilized for 

personalized heart tissue engineering [107] [108]. Cells deriving from mesenchymal stem cells 

[109] and decellularized structures [110] have also been tested for the production of implantable 

cardiac patches. Gaetani et al. demonstrated high cell viability using human fetal cardiomyocyte 

progenitor cells (hCMPC) in EBB, bioprinted alginate, and RGD-modified alginate scaffolds 

[111]. Another study [112] involved a laser-assisted bioprinting technique to pattern human 

umbilical vein endothelial cell (HUVEC) and human mesenchymal stem cell (hiMSC) to fabricate 

a cardiac patch made from polyester urethane urea (PEUU). Xu et al. printed a half heart shape 

using cardiomyocytes encapsulated in alginate hydrogel bioink preserving cell viability and 

contraction in relatively thick constructs [113]. In 2016, Zhang et al. developed an endothelialized-

myocardium-on-a-chip method for improved vascularization [114]. Various models for heart 

valves have also been developed and tested [92]. Even though the current studies are only proof-

of-concept, the success indicates an encouraging future for heart transplantation and disease 

modeling. 
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Neural Tissue 

Small injuries in the neural tissue of the peripheral nervous system (PNS) may heal and regenerate 

naturally, whereas larger injuries require surgical care. However, the central nervous system (CNS) 

is much more complex and barely subject to natural recovery [115]. Due to the substantial chemical 

and physical inhibitors, autologous grafting for tissue regeneration in the CNS has been 

particularly hard [116]. Inclusion of supportive ECM components, neurotrophic factors, and 

bioinks for cell adhesion can make 3D bioprinting a suitable technique for neural tissue 

regeneration [117]. 

In 2005, Xu et al. utilized thermal inkjet printing for depositing rat embryonic motoneuron cells 

suspended in phosphate-buffered saline (PBS) achieving moderately high cell viability [118]. The 

following year further studies were published, conducted with rat primary embryonic hippocampal 

and cortical neurons as well as an alternate inkjet printing approach of NT2 cells and fibrin gel 

[119]. The results were mostly positive as the cells maintained their basic function, phenotype, and 

electrophysiological properties. Cells of the adult rat central nervous system were the first mature 

neural tissue to be bioprinted with success, using a piezoelectric inkjet printer [120]. A study in an 

adult zebrafish traumatic brain injury model, Hsieh et al. achieved successful repair of CNS 

damage using neural stem cells (NSCs) embedded with polyurethane (PU) nanoparticles [121]. A 

scaffold self-assembly approach with mouse bone marrow stem cells and Schwann cells was 

developed using an extrusion-based technique by Owens et al. The cells had produced a substantial 

amount of ECM and over a period of 40 weeks from surgery, the rats recovered both motor and 

sensory functions [122]. A study of the differentiation potential of human neural stem cells 

(hNSCs) into neurons was conducted by Zhu et al. after printing the cells using a stereolithography 

technique with 10% gelatin methacrylamide hydrogel combined with bioactive graphene 
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nanoplatelets [123]. Cell viability, cell distribution, neurites elongation, and neuron differentiation 

results from this study have indicated an outstanding potential in neural tissue regeneration for 

clinical purposes. 

 

Liver 

The liver is involved in essential metabolic functions such as drug metabolism and detoxification 

[124]. The liver is primarily composed of hepatic lobules and vascular networks. As the function 

of the liver largely relies on the vascularization, it becomes a major consideration for building 

transplantable constructs. The liver is predominantly composed of parenchymal hepatocytes. Other 

cells in the liver include portal fibroblasts, sinusoidal endothelial cells, biliary epithelial cells, 

hepatic stellate cells, stromal cells, and Kupffer cells [125]. The ECM largely consists of collagen 

and glycosaminoglycan [126]. In general, the liver has extensive capacity for self-regeneration. 

However, severe damage caused by specific diseases or injuries requires liver transplantation. 

In 2009, Li et al. demonstrated a study of liver tissue regeneration using hepatocytes encapsulated 

in gelatin, alginate, and chitosan [127]. The same study used adipose-derived stromal tissue in 

gelatin, alginate, and fibrinogen hydrogel for vasculature construct. Human liver tissue that 

remained fully functional for up to 28 days was developed using a syringe-based extrusion printer 

by Robbins et al. [128]. The study had shown great potential for transplantation of bioprinted liver 

as functions like albumin production, cholesterol biosynthesis, fibrinogen & transferrin 

production, and inducible cytochrome (CYP) 1A2 and CYP 3A4 activities, were preserved.  In 

2013, A complete liver model along with complex networks of vascular and biliary structures was 

successfully bioprinted [129]. Another study employing a laser-assisted LIFT technique for precise 

deposition of hepatocytes onto a porous collagen-glycosaminoglycan scaffold showed significant 
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potential for clinical use [130]. A comparative study between single-cell dispersion of iPS-derived 

parenchymal cells and using iPS-derived hepatocyte-like cells spheroids, both in combination with 

non-parenchymal cells [131]. The study demonstrated the advantages of spheroid-based 

bioprinting for liver tissue construction. Ahn et al. had utilized preosteoblast cells, human adipose-

derived stem cells, and alginate, cultured using a hepatogenic medium for successful expression 

of liver-specific genes ALB and TDO2 over a period of 27 days. Ma et al. have produced a 

hexagonal 3D liver model using a mixture of GelMA and hyaluronic acid with human-induced 

pluripotent stem cell-derived hepatic progenitor cells (hiPSC-HPCs). Human umbilical vein 

endothelial cells and adipose-derived stem cells were used as support at spaces in-between 

hexagons [132]. Several other efforts have been taken to regenerate liver tissues using bioprinting 

techniques [133]. 

 

Endocrine Glands 

Whereas the nervous system deals with quick, short term responses to control physiological 

activities, the endocrine system regulates long-term metabolic activities. Endocrine cells of the 

endocrine glands release hormones to transfer information between cells and control metabolic 

activity [134]. 

The thyroid gland secretes thyroid hormone which controls the basal metabolic rate, controls the 

growth and development of tissues, and regulates blood pressure [135]. Bulanova et al. bioprinted 

a functional vascularized mouse thyroid gland construct from embryonic thyroid spheroids and 

allantoic spheroids in collagen hydrogel using a self-assembly approach [136]. Right behind the 

thyroid gland, four small glands collectively called parathyroid glands monitor and regulate blood 

calcium levels [137]. Tonsil-derived mesenchymal stem cells (TMSC) were demonstrated by Park 
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et al. to have the capability of differentiating into functional cells and tissues of the parathyroid 

glands [138]. Further work has been carried out for the development of parathyroid tissue [139] 

[140]. 

The endocrine component of the pancreas consists of islet cells. Two major types of cells, alpha 

& beta, produce the hormones glucagon and insulin, respectively [141]. Both of these regulate 

blood glucose levels. Hormones secreted by other hormone-producing cells of the pancreas include 

somatostatin, vasoactive intestinal peptide, substance P, gastrin, pancreatic polypeptide, ghrelin, 

etc. [135]. The use of 3D bioprinting for the encapsulation of pancreatic islets has the potential for 

therapeutic use in a transplantable level [142]. 

Other endocrine glands have also been tested for regeneration using bioprinting techniques. For 

example, Leydig cells of gonad or the reproductive organ have been studied for encapsulation and 

transplantation using biocompatible polylactic acid and polyvinylpyrrolidone-based plasma for 

increased vascularization [143]. More studies for the bioprinting of gonad have utilized theca and 

granulosa cells in micro-molded agarose gel [144], ovarian follicles [145], etc. Among others, 

adrenal glands have also studied for tissue engineering using bioprinting [146] [147]. 

 

Other Tissues and Organs 

Bioprinting technology has been evaluated for implementation in the regeneration of many other 

types of soft tissues and organs. One such example is skeletal muscles and tendons which provide 

structural support and contribute in motion. Skeletal muscles are essentially made of myoblasts 

whereas tendons mainly consist of collagen ECM and a few embedded tenocytes [148]. Various 

biomaterials have been utilized by different research groups for the development of such tissue 

[93] [149]. Renal tubular tissue of the kidney has also been studied for construction using 
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bioprinting  [4] [150]. Studies for the development of ear, nose, and throat tissues have also been 

carried out [69]. Currently available procedures for the transplantation of human corneal tissue are 

limited by the quality of visual recovery. Several studies have been conducted for the development 

of corneal tissue [151]. Other types of tissues under research for bioprinting include airway [152] 

[153] [154], lungs [155], adipose tissue [156] [53], etc.  

 

3.2 Drug Delivery and Screening 

In regenerative medicine, bioprinting technology has been employed to develop tissues and organs 

as well as to deliver growth factors and other essentials for vasculature formation. A similar 

technique can be utilized for the delivery of drugs as an alternative to the oral delivery of 

conventional medication. The bioinks or hydrogels used for bioprinting have the potential to hold 

great amounts of drugs and growth factors while releasing them at a relatively slow rate at the 

target site. It also holds the ability to produce personalized drugs. Crosslinking of the biomaterials 

plays a significant role in drug release [157]. Tappa et al. applied an extrusion bioprinting 

technology to print patient-specific intrauterine devices loaded with estrogen and progesterone in 

different sizes and designs [158]. For this study, PCL pellets were loaded with the hormones 

enveloped in silicone oil. Martinez et al. fabricated ibuprofen-loaded hydrogel- polyethylene 

glycol diacrylate (PEGDA) and polyethylene glycol (PEG300) [159].  A printing process was 

developed by Genina et al. for the combination therapy of two drugs- rifampicin and isoniazid. 

The results have shown improved treatment efficacy [160]. In addition to drugs and growth factor 

delivery, bioprinting can potentially provide an efficient and viable medium for gene therapy 

[161]. 
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3D bioprinting allows the construction of reliable models of human tissues that can mimic natural 

conditions, which makes it ideal for the development of drugs through drug screening and 

toxicology analysis in bioprinted tissue models. In order to obtain an accurate architecture and 

environment in the tissue model, cell types & origin, biomaterials & hydrogel, and printing 

techniques have to be carefully selected according to the original site of drug delivery [162]. To 

test drug efficacy and toxicity, several experimental tissue models with different cells, ECMs, and 

architectures have been developed. Some of these have also been commercially implemented. The 

influence of differentiation factors on chondrogenicity in cartilage tissue development has been 

studied using inkjet printing with primary human articular chondrocytes poly(ethylene glycol) 

dimethacrylate (PEGDMA) hydrogel [163]. In another study, cell-laden hyaluronic acid-PEG 

microfibers were printed onto a Matrigel matrix for the analysis of cellular behavior and 

interactions in different cell types upon treatment with a Rho-associated protein kinase  (ROCK)  

inhibitor  Y27632  and cadherin antibody [164]. Angiogenic-specific gene CD105 activity was 

found to be downregulated when exposed to Y27632. Additionally, hMSCs showed higher 

expression of angiogenic markers such as CD31 or CD105. Further studies have been conducted 

by the same research group on ROCK inhibition [165]. A scaffold-free liver tissue model was 

constructed using primary hepatocytes, stellate cells, and endothelial cells for experimental 

assessment of the toxicity of two drugs- levofloxacin and trovafloxacin [166]. The printed tissue 

maintained cell viability for up to 42 days while developing microcapillaries, liver proteins like 

albumin, fibrinogen. 

 

3.3 Tumor Modeling 
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Creating a tumor microenvironment through 3D bioprinting in which tumor cells interact with 

adjacent stromal cells such as endothelial cells and fibroblasts and an extracellular matrix, serves 

as a precise model for studying tumor progression, monitoring, and drug response. The 

conventional approach for tumor or cancer modeling is through either monolayer cell cultures or 

in animals. However, monolayer cultures lack the complex interactions occurring in natural tissue. 

Animal models on the other hand may differ from the behavior and response of human tissue. 

Intracellular molecular interactions, intercellular interactions, enzyme kinetics, changes in protein 

expression, metastatic progression, etc. [167] can be interpreted using a bioprinted tumor models 

for specific tissues. Zhou et al. studied the metastasis of breast cancer in bone tissue by developing 

biomimetic bone constructs through a table-top commercial stereolithographic printer. The study 

aimed to produce a cell-laden 3D structure of bone tissue and observe the interactions after breast 

cancer cells (BrCas) were seeded, in vitro [168]. Another study bioprinted a mini-brain to 

demonstrate the interactions between Glioblastoma-associated macrophages and glioblastoma 

cells during the progression of glioblastoma multiforme [169]. The results of this study indicated 

that therapeutics can be developed to inhibit the interactions between these cells in order to reduce 

tumor growth.  

 

Table 1: Summary of Other Applications of Bioprinting in Cancer Tissue Engineering 

 

Cancer 

Type 

 

Bioink Composition 

 

Bioprinting 

Method 

 

Observations 

 

Ref 

Ovarian 

cancer 

Ovarian cancer cells + 

Matrigel 

Pneumatic cell 

droplet 

Micropatterning ovarian cancer cells 

(OVCAR-5) and fibroblasts (MRC-5) 

[170] 
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with spatial control, characterization of 

acini growth kinetics 

Liver cancer Hepatic carcinoma cells 

+ Matrigel 

Pneumatic 

Extrusion 

Radiation shielding 

capabilities of the 

prodrug amifostine, benefits in dual-cell 

model 

[171] 

Brain cancer Endothelial cells + 

Glioma stem cells + 

Collagen/Laminin 

Extrusion Tumor microenvironment of 

glioma/vascular system with dynamic 

flow to model cell-cell interaction of 

neoplastic glioma cells and ECs 

[172] 

Brain cancer U118 glioma + 

Pluripotent Stem Cell-

Derived Neural 

Organoid 

Extrusion Invasion of human tumour cells using 

different neural progenitor cell lines, cell-

tracking dyes and 3D laser scanning 

confocal microscopy 

[173] 

Cervical 

cancer 

HeLa/ 10T1/2 + 

Poly(ethylene glycol) 

diacrylate 

Projection 

stereolithography 

Comparison between cancerous and non-

cancerous cell lines (HeLa vs 10T1/2) 

[174] 

Oral cancer β-Tricalciumphosphate Extrusion Incorporating oral squamous cell 

carcinoma (OSCC) cell line spheroids to a 

3D bioprinted model to depict the stages 

of oral cancer 

[175] 

Cervical 

cancer 

HeLa + Gelatin/ 

Alginate/ Fibrinogen 

Extrusion Viability, proliferation, Matrix 

Metalloproteinase (MMP) expression, and 

chemoresistance 

[176] 

Breast 

cancer 

Breast Adenocarcinoma 

+ Mouse Macrophage+ 

Sodium alginate 

Coaxial extrusion Tumor microenvironment to explore 

migration of segregrated tumor cells and 

macrophages (>90% viability) 

[177] 

Breast 

cancer 

Breast cancer cells + 

(Fetal osteroblasts/ 

Stereolithography Observation of interactions between BrCa 

and MSC/osteoblasts, and VEGF 

[168] 
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Mesenchymal stem 

cells) + Gelatin 

methacrylate 

secretion in artificial bone 

microenvironment 

Breast 

cancer 

Breast cancer cells + 

Poly(ethylene glycol) 

Continuous 3D 

projection 

Breast cancer spheroids showed hypoxic 

cores and signs of necrosis, key features 

of tumor environment 

[178] 

Breast 

cancer 

MCF-7 + Poly(ethylene 

glycol) 

Inkjet In situ cell seeding for the formation of 

breast cancer cellular spheroids and 

analysis as potential microenvironment 

(>90% viability) 

[179] 

Brain cancer Human glioma stem 

cells + Gelatin/ 

Alginate/ Fibrinogen  

Extrusion Tumor microenvironment with over 87% 

cell viability; potential for vascularization, 

tumor angiogenesis, and VEGF secretion 

[180] 

Brain cancer Glioblastoma-

associated macrophages 

+ glioblastoma 

multiforme + Gelatin 

methacryloyl/Gelatin 

Extrusion In the printed mini-brains, glioblastoma 

cells actively recruited macrophages and 

polarized them into a GAM-specific 

phenotype. Also, macrophages induced 

glioblastoma cell progression and 

invasiveness 

[169] 

Brain cancer GSC23 + U118 + 

Sodium alginate 

Coaxial extrusion Glioma microenvironment evaluation for 

invasion and drug screening 

[181] 

Brain cancer GSC23 + HMSCs + 

Sodium alginate/ 

Gelatin 

Coaxial extrusion Tumor-stroma cells interaction, 

transcription of RFP 

[182] 

Breast 

cancer 

Breast cancer cells + 

Gelatin 

Laser-assisted Laser direct-writing on rat mesentery 

tissues, quantitative study of cancer cell 

activity, angiogenesis, lymphangiogenesis 

[183] 
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Cervical 

cancer 

HeLa + Collagen 

(printed on a 

nanofibrous membrane 

in co-culture with 

fibroblasts) 

Inkjet Matrix Metalloproteinase 2 (MMP2) and 

Matrix Metalloproteinase 9 (MMP9), drug 

screening 

[184] 

 

 

 

One of the major complexities associated with cancer modeling is recreating the angiogenesis of 

tumor cells due to the lack of vascular networks. Angiogenesis is a key step in cancer progression 

as the transportation of nutrients and oxygen to the cells is essential [185]. As discussed before, 

vasculature can be developed using bioprinting techniques with the right bioinks & growth factors 

can be introduced for further maturation. Potentially,  To understand cell-cell interactions and the 

influence microenvironment factors in glioblastoma multiforme, Lee et al. printed a physiological 

glioma-vascular niche model using human endothelial cells and patient-derived GBM cells in a 

collagen matrix [172]. They developed fluidic vascular channels with collagen and gelatin. A 

recent work by Suarez-Martinez et al. observed cancer cell migration, proliferation, and function 

during microvascular network growth in a bioprinted tumor microenvironment model of mouse 

breast cancer cells [186]. Another recent work by Hynes et al. [187] provided a new approach to 

comprehend cancer metastasis through the development of a bioprinted hydrogel-based vascular 

flow device. 

 

Commonly used drugs for the treatment of cancer often come with side effects such as bone 

marrow suppression, gastrointestinal reaction, digestive system toxicity, liver toxicity, urinary 
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system toxicity, renal toxicity, cardiotoxicity, and neurotoxicity [162]. Bioprinted breast cancer 

cells encapsulated in the peptide-conjugated alginate fibers and macrophages within the channels 

were subject to heterotypic interactions drugs to evaluate drug efficacy and toxicity [177]. Another 

bioprinted model, HER2-positive breast cancer cells encapsulated in adipose-derived 

mesenchymal stem cells (ADMSCs) were used to assess doxorubicin and study drug resistance 

[188]. A biomimetic ECM consisting of MSC-derived mammary fibroblasts, endothelial cells, and 

adipose cells was used to evaluate the chemotherapeutic effects of tamoxifen in breast cancer 

[189]. The drug response was assessed by adenosine triphosphate (ATP) luciferase assay. Anti-

cancer drug temozolomide (TMZ) and angiogenic inhibitor sunitinib were assessed in a tumor 

microenvironment printed by Han et al. The printed tissue contained multicellular tumor spheroids 

of glioblastoma cells on a blood vessel layer consisting of fibroblasts and endothelial cells [190]. 

In another recent study, a Hepatocellular Carcinoma Cell model was constructed by Sun et al. 

using HepG2 cells with the aim of drug pharmacodynamics research [191]. 

As the bioprinting techniques develop further, producing more complex biological systems and 

studying disease interactions not only on a cellular level but also on the surrounding tissue will 

soon be possible [192]. 

 

4. Bioprinting: Present and Future 

 

4.1 Recent Advances and Challenges 

One of the most promising advances in 3D bioprinting has to be the several approaches for the 

development of microvascular networks in printed tissues and organs. Human tissue and organs 

are part of a complex system that requires the flow of blood and lymph, nutrients and oxygen, and 
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the removal of metabolic waste. The experimental small scale studies can only be useful in 

practical human transplantation through the maturation of proper vascular networks. The 

established and ongoing studies on vasculature development pave the way for surgical 

transplantation of bioprinted tissues and organs. Important factors in cancer progression such as 

angiogenesis are also being analyzed using tissue models with microvasculature. Printing in high 

resolution is being focused to achieve improved vascularization [193]. In addition, Bioink 

compositions, cross-linking, bioprinting processes, and design specifications are being 

investigated by researchers for better control of shape and retention of function [194]. In a recent 

study, to improve cell survival for transplantation, researchers have developed a GelMA bioink 

utilizing calcium peroxide for controlled oxygen release [195]. This shows great promise in 

enhancing cell viabilities and aiding in vascularization. Bioprinting is taking another step forward 

as studies progress towards the popularization of in situ/in vivo bioprinting. In vivo printing is the 

minimally invasive direct bioprinting at injured or affected sites in living tissues and organs [196]. 

In vivo bioprinting is still in an emerging state, however, studies have been conducted for the 

regeneration of skin, bone, and cartilage in vivo. Chen et al. developed a non-invasive technique 

for in vivo bioprinting of skin tissue [197]. An in situ in vivo bioprinting concept was proposed by 

a research team, using the microbots approach [198]. In the study, a subminiature bioprinter was 

developed by constructing a Delta robot, which can be endoscopically installed to repair gastric 

wounds. This innovative and futuristic study truly paves the way for future research in the field.  

Organ-on-a-chip systems utilizing 3D bioprinting are gaining popularity for the construction of 

physiological models [199] [200]. These are small-scale models mimicking tissue and 

microvascular networks. Bioprinting-based organ-on-a-chip can be a viable means for drug testing. 

More recently, techniques for 4D bioprinting is freshly gaining attention. 4D bioprinting method 
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utilizes 3D printing techniques but expands the biomedical applications as the constructs can 

change with time through external stimuli [201]. Another emerging field in the applications of 

bioprinting is soft robotics [51].  

 

However, advances in technology often come with more challenges. One of the major challenges 

remains the development of appropriate bioinks to coordinate cell-material interactions. Balancing 

the printability of bioink with cell viability and function for precise and accurate model 

construction is crucial. Mechanical, structural, and geometrical properties of the tissue as well as 

biological activities of the tissue need to be preserved in the bioink [37]. For that purpose, a 

combination of natural and synthetic polymers is often tested whereby synthetic polymers can 

provide structural integrity and natural components mimic the biochemical environment. Shear 

stress can affect the stability of the bioink thus the selection of techniques requires sensitive 

protocols. Alongside all of these considerations, bioinks must be biocompatible and biodegradable 

to avoid long term reactions to residual components in tissue engineering applications [19]. 

Processes like SLA and laser-assisted bioprinting provide high resolution, however, the 

biomaterial options are limited. The development of next-generation bioinks addresses some of 

the common concerns associated with biomaterial selection [202] [203]. Another challenge is cell 

sourcing for the construction of bioprinted tissue. To achieve the heterogeneous tissue construct 

through bioprinting, primary cells are often pre-harvested in vitro [204]. Applications concerning 

transplantation seek the primary cells from the patient to prevent an immune response. For the 

practical implementation of in vivo tissue bioprinting, integration between native and engineered 

tissue is imperative [205]. That can be achieved by the introduction of growth factors and 

vascular network development. Replicating the complex hierarchical structure of vascular 
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networks is still under development. Following the current progress, it may be possible to generate 

capillary beds or large vessels for integration during tissue implantation. Processing time, scaling 

up, automation, and cost-effectiveness (e.g. laser-assisted bioprinting), etc. still need 

improvement [206] [207]. Apart from these technical challenges, 3D bioprinting also faces several 

ethical concerns relating to its possible impacts on humans [208].  

 

4.2 Future Opportunities 

The future of regenerative medicine and healthcare will be heavily influenced by 3D and possibly 

4D bioprinting. In the near future, human-scale & stable tissue and organ transplantation may be 

clinically applied with the incorporation of proper vascular networks, tissue environment, cell 

viability, biocompatibility, and functionality. Moreover, through the implementation of 3D 

bioprinting, there can be a paradigm shift in conventional pre-clinical and clinical drug trial 

procedures. Furthermore, based on the organ-on-chip models, human-on-a-chip models may be 

developed to evaluate drug reactions in more than one organ at a time [209]. This could also 

provide a better understanding of interconnected vascular networks and system functions. For 

stronger interpretations of the tests using bioprinting, advanced 3D microscopy, genetic and 

protein assays, culture systems such as bioreactors, and noninvasive monitoring systems need to 

be improved. In the future bioprinting may also aid diabetic patients through printing pancreas 

islet tissues overcoming the barriers of immune responses [210]. Besides, pharmacodynamics and 

drug toxicology studies may set the scene for personalized medicines and therapies. By means of 

the construction of human-on-a-chip, a superior understanding of the motor functions of the 

nervous system could be possible in time. Neurodegenerative diseases like Alzheimer’s disease, 

Amyotrophic Lateral Sclerosis, and Parkinson’s disease could be studied more thoroughly to 
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develop treatment options in the fullness of time. Further advancement of electrical signal 

transformation in hydrogels may aid in composing a more comprehensive study of the diseases of 

electrically active organs. Overall, the possibilities are endless with using bioprinting for 

developing human tissue and organs, understanding disease mechanisms, evaluating drugs and 

treatments, etc. Non-clinical applications of bioprinting may also be significantly rising, for 

example, in the development of soft robotics. 

 

5. Conclusion 

 

Bioprinting is a rapidly expanding area of tissue engineering and regenerative medicine that targets 

to mimic the intricacies of natural tissues and networks. Significant development of groundwork 

has laid the foundation for the employment of 3D bioprinting in healthcare and therapeutic use. 

Starting from the regeneration of skin and bone to the successful experimental reconstruction of 

organized contractile tissues like skeletal muscle tissue, cardiac tissue, complex organs like liver, 

kidney, etc. establishes the potential of bioprinting. More research is under progression to 

overcome challenges such as biomaterial selection, bioink design, printing method optimization, 

enhanced vascularization, and scaling up. With further improvement of the controlled spatial 

distribution of cells, mechanical properties, and stability, this technology will create greater 

opportunities for understanding organ systems, producing transplantable tissues and organs, drug 

development & screening, and cancer research. Subsequently, biomedical science as we know it 

may be restructured. 
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