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Abstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a
crucial signal processing problem in epilepsy applications. It is particularly important for overcoming
time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper
presents a new method to detect SWD, with a low computational complexity making it easily trained
with data from standard medical protocols. Precisely, EEG signals are divided into time segments for
which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian
distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated.
Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the
scale parameter of the GGD in addition to the variance and the median. Experiments were conducted
using EEG signals from 6 human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave
signals were used for training, and 96 other segments for testing. The proposed SWD classification
method achieved 95 % sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92%
accuracy. These promising results set the path for new research to study the causes underlying the
so-called absence epilepsy in long-term EEG recordings.

Keywords: Spike-and-wave; Generalized Gaussian distribution; EEG; Morlet wavelet; k-nearest
neighbors classifier; Epilepsy

1. Introduction

Epilepsy is a chronic neurological disorder that affects patients, causing recurrent seizures.
Seizures are characterized by excessive electrical discharges in neurons. Their waveform known
as the spike is characterized by brief bursts of high amplitude , synchronized and multiphasic activity
with several polarity changes [1]. These are exhibited close to the epileptic focus and stand out from
the background EEG activity. Electroencephalography (EEG) is currently the main technique to record
electrical activity in the brain. Neurologists, trained in EEG, are able to properly determine an epilepsy
diagnosis by analyzing the different types of spikes in the so-called rhythmic activity of the brain.

Existing, automatic methods for detecting epileptic events in EEG signals have performance that
greatly exceed visual inspection. These methods focus mostly on interictal spikes [2,3], seizure onset
detection [4], or waveform epileptic patterns [5,6]. There exists a wide variety of methods to accurately
detect seizures and their patterns in EEG. Most of these methods are based on supervised machine
learning techniques, such as Support Vector Machine [7], logistic regression [8], decision trees [9],
k-Nearest Neighbor, Random Forest [10], or discriminant analysis [11]. They mainly differ according
to their feature extraction and classification approaches. A large variety of features are used including
spatio-temporal analysis [12], spectral-temporal analysis [13], wavelet decomposition [2], spectrogram
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[14,15], Hilbert transform [16], neural networks [17], Hurst exponent [18], quadratic linear-parabolic
model [19], and statistical descriptors such as statistical modeling [20], signal fuzzy entropy [21], and
fractal dimension [22]. The reader is referred to [23] for a recent state-of-the-art on methods for seizure
detection in EEG.

Spike-and-wave discharge (SWD) is a generalized EEG discharge pattern, where the waveform
has a regular and symmetric morphology. This morphology can be mathematically described by a
Morlet wavelet transform, generating a time-frequency representation of the EEG signal [24–27]. The
spike component of an SWD is associated with neuronal firing and the wave component is associated
with neuronal inhibition or hyperpolarization of neurons [28]. SWD is widely used in mice studies [2,
14,29,30]; inversely, the literature reports very limited human applications. Mice have a predisposition
for generalized SWD at 7-12 Hz [15] and typically have spontaneous absence-seizure-like events.
Rodent models are usually used to study the neurobiological mechanisms underlying SWD in humans.
However, studies in humans and rodents differ in the way SWD is assessed and, more importantly,
rodents and humans show substantial biological differences. Thus more human studies are necessary
to fully understand this phenomena. This paper fits in this general aim by studying SWD in human.

Some recent works have been proposed to estimate SWD patterns in human using machine
learning techniques. They rely on different models and features, including 1-NN with t-location-scale
distribution [20], decision-trees with cross-correlation coupled with decision trees [9], and Bayesian
classifiers with the Walsh transformation [33]. Table 1 lists some more methods. Other existing methods
implement signal analysis techniques, such as Hilbert-Huang transform to analyse time-frequency
energy distribution [34], complex network of neuronal oscillators to model SWD [35], analysing
statistical features such as variance, sum of wave amplitudes, slope of wave [36], or topographic cluster
analysis based on connectivity, entropy, frequency, power, and spike amplitude [37]. For a biological
dynamic explanation of features and mechanisms generating SWD in the brain see [38].

Table 1. Some state-of-the-art methods for the SWD estimation in EEG signals in humans, compared in
terms of classification techniques, features, and reported performance.Abbreviations are as follows:
high Specificity, rule in (SpPIn), According to the frequency and magnitude weighted average (WA),
According to an estimated threshold (AET)

Method Features Classifier Accuracy
in %

Ref.

Generalized Gaussian
distribution (GGD)

GGD parameters, variance and median
from time-frequency Morlet decomposition

10-NN 92 our

Kendall’s Tau-b Coefficient Kendall’s Tau-b coefficient significance SpPIn 94 [39]
Ramanujan Filter Bank (RFB) Spectrum from RFB Empirical > 80 [40]
t-location-scale distribution
(TLS)

TLS parameters 1-NN 100 [20]

Cross-correlation Correlation coefficient Decision
trees

97 [9]

Walsh transformation (WT) First and second orden from WT Bayesian > 70 [33]
Hilbert-Huang transform Intrinsic mode functions energy WA - [34]
Cross-correlation Wavelet spectrum correlation AET 100 [41]

This paper presents a new SWD patient-specific detection method based on the statistical modeling
of the continuous Morlet wavelet coefficients. Precisely, we fit the generalized Gaussian distribution to
these coefficients and estimate the corresponding parameters. These parameters are used as features in
a 10-NN classifier. Training and testing of the learning model use different EEG datasets.

The remainder of the paper is structured as follows. Section 2 presents the EEG database, and
the proposed methodology, where we explain the continuous Morlet wavelet transformation, the
generalized Gaussian distribution (GGD) statistical model, and the k-NN classifier. Experimental
results using the scale parameter from the GGD and the variance and median from the continuous
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wavelet coefficients are reported in section 3, flowed by discussion in section 4. Conclusions, remarks,
and perspectives are presented in Section 5.

2. Materials and Methods

This section presents our statistical model-based method to detect spike-and-wave discharges
(SWD) in EEG signals. It is computationally very efficient, suitable for real-time implementation,
allowing on-line spike-and-wave detection. First, we describe the dataset used for experimentation,
then we present the different processing steps.

2.1. Database

A standard 10/20 EEG systems was used at the Foundation for the Fight against Pediatric
Neurological Disease (FLENI) to acquire long term 256Hz EEG signal, from 12 human patients. The
following 22-channels were used: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
O2, Oz, FT10 and FT9. See [39] for more details. The acquired signals had different waveform and
duration.

All EEG signals were labeled by a neurologist from FLENI to indicate the onset and duration
of the epilepticform. Based on these annotations, we extracted 212 short epochs (1-minute average
duration) focusing on the spike-and-wave waveform. As such, a database with the 212 monopolar
signal epochs was created, with 106 SWD signals and 106 non-SWD signals. Each SWD signal has
been restricted to a narrow frequency band between 1-3 Hz. Figure 1 shows an example of a typical
SWD signal. Visually, one can observe that SWD patterns exhibit characteristic morphology; whereas
non-SWD signals have normal waveform.

Six patients with twenty (20) signals each were used for training our predictive model (Section
2.2). This multiplicity of signals from the same patient has been decided to enforce learning-patient
specific patterns. A set of 96 signals from the other 6 patients were used for testing.

2.2. Methodology

The proposed method composes of four stages. The first stage divides every EEG signal epoch,
X ∈ RN×M with M channels and N time instants, into 2-second segments per channel, with 1-second
overlap across a rectangular sliding window. Please note that M is fixed to 22, whereas N varies
for different epochs (with an average duration of 60 seconds giving about N = 256 ∗ 60 = 15360
samples). This will give [N/60] segments per channel. The second stage consists in applying Morlet
decomposition to create separate time-frequency representation for each segment X t ∈ RN×1. The
purpose of this decomposition is to evaluate the energy distribution throughout the SWD frequency
band (1-3 Hz). In the third stage, the statistical distribution of the wavelet coefficients from each
segment is represented using a zero-mean generalized Gaussian distribution (GGD). A maximum
likelihood method is used to estimate the GGD parameters, scale (ς) and shape (τ) [4,42–44]. This
statistical modeling stage gives M× [N/60] pairs of scale (ς) and shape (τ) parameters, achieving a
very strong dimension reduction. As we demonstrate it in the experimentation section, the scale
parameter ς was found statistically characteristic of SWD waveform, and it is proposed as a feature to
detect such patterns [4,44]. Using a single parameter to classify patterns is too strict and misses the
natural variability in the data. For this reason, we compute two other statistical parameters, namely
the variance (σ2) and the median (x̃) from the wavelet coefficients of each segment. The data from one
EEG epoch reduces therefore to three parameters, {ς, σ2, x̃}, giving a high dimension reduction while
offering a flexible representation space to discriminate patterns while accounting for natural variability.
Please note, in total we will have M × [N/60] ∗ 3 parameters for any EEG signal epoch. Finally, a
classification model has been trained to detect SWD patterns, using the three features parameters. The
proposed methodology is summarized in Figure 2. The following sections describe each stage.
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Figure 1. (a)A sample SWD signal and the Morlet wavelet. Note that the scales are different. (b)
Example of 6 channels of one monopolar raw EEG, with SWD patterns in all channels.

We now introduce the Morlet wavelet, the Generalized Gaussian distribution, and the k-nearest
neighbors classifier used in this paper.

2.2.1. Morlet Wavelet

The continuous wavelet transform is given by

W f (t, a, b) =
∫ ∞

−∞
X t ψ∗a,b(t)dt (1)

ψ∗a,b(t) =
1√
a

ψ

(
t− b

a

)
(2)

ψ(t) = exp−
t2
2 cos(5t) (3)

where a is the scaling parameter and b the shift parameter. Equation (2) is the mother wavelet function,
where (∗) denotes the complex conjugate operation. Equation (3) is the analytic expression of the
Morlet wavelet [45]. In order to use the Morlet wavelet with frequency fc, we use the relationship

fa =
fc

α∆
(4)

where α is the scale, ∆ is the sampling period, fc is the center frequency of Morlet wavelet (in Hz)
and fa is the pseudo-frequency corresponding to the scale a (in Hz). As such, the wavelet dominant
frequency can be characterized using the center frequency, as it detects the main wavelet oscillations
(the reader is referred to [46] for details). Note that the wavelet scale is estimated according to the
narrow frequency 1-3 Hz from (Section 2.1). In our case, ∆ = 256, and 1 < f requency < 3, we have a
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Figure 2. Diagram of the proposed method

scale α ∈ f c ∗ ∆, f c ∗ ∆/3. Figure 3 show an example of time-scale variation for a value of fc = 1.2308
for SWD and fc = 0.8125 for non-SWD. These data are from signal 1 from patient 1.

2.2.2. Generalized Gaussian distribution

The generalized Gaussian distribution (GGD) is a flexible statistical model often used in science
and engineering to represent data. We propose to represent the distribution of the Morlet wavelet
coefficients (Ct) using the GGD [47]. The probability density function (PDF) of the GGD is given by
the expression

fGGD(x; ς, τ) =
τ

2ςΓ(τ−1)
exp

(
−
∣∣∣∣ xς
∣∣∣∣τ) (5)

where ς ∈ R+ is a scale parameter, τ ∈ R+ is a shape parameter, and Γ (·) is the Gamma function.
Fitting equation (5) to the data Ct is performed using the maximum likelihood estimators Θ1

Ct
:

Θ1
Ct

= [ςt, τt]
T = arg max

[ς,τ]T
fGGD(Ct; ς, τ) (6)

For more details about the estimation of the GGD parameters, we refer the reader to our previous
work [4,42–44,48].

2.2.3. Feature parameters

Through the previously described stages, data from every signal epoch, M × N samples, is
reduced to the matrix of parameters (or features) ΘCt , composed of M × [N/60] rows, with three
columns consisting of our data is reduced to the matrix of parameters (or features) ΘCt , composed of
the scale parameter from the GGD, the variance and the median of the Morlet wavelet coefficients.

ΘCt = [ςt, σ2
t , x̃t] (7)
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Using this representation, the next stage consists in training a k-nearest neighbors classifier to detect
SWD patterns. Please, recall that we have 212 signal epochs in our database. All went through the
preceding dimension reduction process. A set of 120 of those (from 6 patients) will serve for training
and the remaining 96 (from 6 other patients) are used for testing.
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Figure 3. Illustration of the variation of time-scale for Morlet continuous wavelet (a) for SWD with
fc = 1.2308 Hz, and(b) for non-SWD with fc = 0.8125. Note that, the energy distribution pattern is
different when comparing SWD and non-SWD.

2.2.4. K−nearest neighbors classification

Using the feature vector ΘCt , consider a classification into two possible classes c = 0 (non-SWD)
and c = 1 (SWD). The probability of classifying a sample in one of the two classes is given by

ρ (ΘCt |c = 0) =
1

N0
∑

n∈class 0
N
(

ΘCt |Θ
n
Ct

, σ2 I
)

=
1

N0 (2πσ2)
D/2 ∑

n∈class 0
exp−

(
ΘCt

−Θn
Ct

)2

2σ2 (8)

ρ (ΘCt |c = 1) =
1

N1
∑

n∈class 1
N
(

ΘCt |Θ
n
Ct

, σ2 I
)

=
1

N1 (2πσ2)
D/2 ∑

n∈class 1
exp−

(
ΘCt

−Θn
Ct

)2

2σ2 (9)
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where D is the dimension of the sammple ΘCt , N0 and N1 are the numbers of training samples
from class 0 and class 1, respectively; and σ2 is the variance. Using the Bayes rule to classify a new
observation Θ∗Ct

, we obtain the following equation

ρ
(
c = 0|Θ∗Ct

)
=

ρ
(
Θ∗Ct
|c = 0

)
ρ (c = 0)

ρ
(
Θ∗Ct
|c = 0

)
ρ (c = 0) + ρ

(
Θ∗Ct
|c = 1

)
ρ (c = 1)

(10)

The maximum likelihood gives ρ(c = 0) = N0/(N0 + N1), and ρ(c = 1) = N1/(N0 + N1). Substituting
in equation (10), we obtain the probability ρ

(
c = 0|Θ∗Ct

)
. The expression for ρ

(
c = 1|Θ∗Ct

)
can be

derived in a similar manner. To determine which class is most likely, the ratio between the two
expressions is evaluated

ρ
(
c = 0|Θ∗Ct

)
ρ
(
c = 1|Θ∗Ct

) =
ρ
(
Θ∗Ct
|c = 0

)
ρ (c = 0)

ρ
(
Θ∗Ct
|c = 1

)
ρ (c = 1)

(11)

If the ratio is greater than one, Θ∗Ct
is classified as c = 0, otherwise it is classified as c = 1. It is important

to note that in the case where σ2 is very small in (11), then both the numerator and denominator will
be dominated by the term for which the sample Θ

n0
Ct

in class-0 or Θ
n1
Ct

in class-1 are closest to the point
Θ∗Ct

, such that

ρ
(
c = 0|Θ∗Ct

)
ρ
(
c = 1|Θ∗Ct

) =
exp−

(
Θ∗Ct

−Θ
n0
Ct

)2

2σ2 ρ (c = 0) /N0

exp−

(
Θ∗Ct

−Θ
n1
Ct

)2

2σ2 ρ (c = 1) /N1

=
exp−

(
Θ∗Ct

−Θ
n0
Ct

)2

2σ2

exp−

(
Θ∗Ct

−Θ
n1
Ct

)2

2σ2

(12)

On the limit σ2 → 0, Θ∗Ct
is classified as class 0 if Θ∗Ct

has a point in the class 0 data which is closer
than the closest point in the class 1 data. The nearest neighbor method is therefore recovered as the
limiting case of a probabilistic generative model. The parameter k is chosen based on

√
N, where N

is the number of samples in the training dataset. We refer the reader to [49,50] for a comprehensive
treatment of the mathematical properties of k-nearest neighbors classifier.

3. Results

The annotated database introduced in Section 2.1 was used to compute the feature vector
[ςt, σ2

t , x̃t] ∈ R3, based on the statistical model of the coefficients of the continuous Morlet wavelet.
The resulting features were used for off-line training the k-nearest neighbor classifier. With the 212
samples, k was set to 10 giving a 10−nearest neighbour.

Tables 2 to 4 show the statistical mean, standard deviation, variance and bounds values from the
feature vector. One can note that, sigma (ςt), variance (σ2

t ), and median (x̃t) are larger for SWD that
for non-SWD. Therefore, despite the overlapping statistical bounds, a threshold can be determined to
detect SWD patterns.

Table 2. Mean, standard deviation, variance and bound values for sigma parameter (ς) for class 0
(non-spike-and-wave) and class 1 (spike-and-wave).

Mean std Variance Bounds

Class 0 293 267.8017 71718 [12,1275]
Class 1 542 406.2597 165047 [31, 1811]
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Table 3. Mean, standard deviation, variance and bound values for the variance
(
σ2

t
)

for class 0
(non-spike-and-wave) and class 1 (spike-and-wave).

Mean std Variance Bounds

Class 0 1.446e+06 4.235e+06 1.794e+13 [9.46e+02, 3.162+e07]
Class 1 4.32e+06 7.892e+06 6.228e+13 [2.715e+03, 4.321e+07]

Table 4. Mean, standard deviation, variance and bound values for median (x̃t) for class 0
(non-spike-and-wave) and class 1 (spike-and-wave).

Mean std Variance Bounds

Class 0 1.089e+03 1.002e+04 1.004e+08 [-2.769e+04, 2.179e+04]
Class 1 -6.125e+03 2.672e+04 7.140e+08 [-7.325e+04, 7.406e+04]

To illustrate the above point, figure 4 shows a 3D scatter plot of the feature vector for
spike-and-wave events (SWD, class 1, red dots) and non-spike-and-wave events (non-SWD, class 0,
blue dots). One observes that the SWD events tend to be more dispersed compared to non-SWD events.
This is corroborated by Figure 5 that shows the parameters in pairs, with the following combinations

1. Scale parameter (ςt) vs variance
(
σ2

t
)
: for class 1 (SWD), one observes a direct relationship

between the variance and sigma, where both parameters grow proportionally. For class 0
(non-SWD), both sigma and variance remain in a limited range of values.

2. Scale parameter (ςt) vs median (x̃t): as sigma grows, median increases then decreases for both
SWD and non-SWD, but is larger for SWD. A cone-shaped pattern can be observed.

3. Variance
(
σ2

t
)

vs median (x̃t): as the variance grows, the median increases then decreases for
SWD, while it remains in a small range (cluster) for non-SWD.

The performance of our 10-nearest neighbors classifier was evaluated using a dataset consisting
of 96 samples, separate from the training set. These samples were extracted from six EEG signals from
subjects different from those used for training. We assessed the total accuracy of the classification. The
proposed method achieved a 95 % sensitivity (True positive rate), 87% specificity (True Negative Rate),
and 92% accuracy.
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Figure 4. 3D scatter plot of the feature vector [ς, σ2
t , x̃t] for class 0 (non-spike-and-waves events, blue

dots), and class 1 (spike-and-waves events, red dots). The SWD events tend to be more dispersed than
non-SWD events.
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Figure 5. Scatter plots of the signals used for training, with ςt, σ2
t , and x̃t parameters class 0

(non-spike-and-waves events, blue dots), and class 1 (spike-and-waves events, red dots), showing
the data dispersion of the proposed approach. In (a) Scale parameter (ςt) vs variance (σ2

t ). For class 1
(SWD), we can see the direct relationship between the variance and sigma, both grow proportionally,
while for class 0 (non-SWD) both sigma and variance remain in a range of values. (b) Scale parameter
(ςt) vs median (x̃t). As sigma grows, the median increases then decreases for both SWD and non-SWD,
but is larger for SWD. (c) variance (σ2

t ) vs median (x̃t). As variance grows, the median increases then
decreases for SWD, while it remains in a small range for non-SWD.

4. Discussion

The proposed model-based classification method to detect patient-specific spike-and-wave events
in long-term EEG signals is based on three feature parameters (or predictors). These are the scale
parameter from the generalized Gaussian distribution, see eq. (6), the variance and the median, all
estimated from the continuous Morlet coefficients. These features are used with a 10-nearest neighbors
classifier to discriminates spike-and-wave from non-spike-and-wave events. Experimental results with
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real data from a hospital achieved 95 % sensitivity (True positive rate), 87% specificity (True Negative
Rate), and 92% accuracy. Based on our rule to choose k, the value was

√
212 ≈ 14, but we found a

better performance by choosing empirically k = 10 . Techniques used in this study are widely known
in the scientific community, but they have never before been put together to detect patient-specific
epileptiform patterns in EEG. Our main contribution lies in the type of features proposed to detect
spike-and-wave patterns and its application to human data. From a technical point of view, the GGD
scale parameter depends on the shape parameter, see eq. (5) and Tables 2 to 4. They can therefore
not be used together as features. Using only the scale parameter would restrict the representation
space leading to pour representation of natural variability in the data. We therefore augmented the
representation space by considering the variance and the median of wavelet coefficients. This choice
has proven pertinent to discriminating SWD patterns from non-SWD.

The data collection protocol consisted of a neurologist selecting ten SWD patterns for each
patient to be part of the training database. Our hypothesis was that using multiple signal patterns
from individual patients improves the classification. This enhances learning patient-specific patterns,
leading to precise detection of epileptiform pattern compared to previous work [39].

The collected dataset was previously used with other methods (see Table 5). We can see that the
proposed method doesn’t provide significantly more precise results . However, it has the advantage
of analyzing the EEG signal in the time-frequency domain, where previous methods were based
on temporal waveform characterization. On the other hand, the assumption that the data has a
generalized Gaussian distribution allows a strong dimension reduction, leading to low computational
solution relying on rigorous statistical properties.

Table 5. Results form other methods applied to the same dataset in percent (%), in terms of TPR =
True Positives Rate or Sensitivity; TNR = True Negative Rate or Specificity; FPR = False positive Rate;
ACC = Accuracy: and high Specificity, rule in (SpPIn). Training and testing have different numbers of
patients due to different research settings.

Method Features Classifier TPR TNR ACC Training Testing Ref.

GGD GGD parameters, variance
and median from
time-frequency Morlet
wavelet decomposition

10-NN 95 87 92 212 96 Actual

Kendall’s Tau-b
Coefficient

Kendall’s Tau-b coefficient
significance in time domain

SpPIn - 94 94 300 300 [39]

TLS TLS parameters in time
domain

1-NN 100 100 100 192 46 [20]

Cross-correlation Correlation coefficient in
time domain

Decision
trees

86 98 97 96 46 [9]

5. Conclusions

This paper presented a new model-based classification method to detect spike-and-wave events
in long-term EEG signals in humans. The proposed method is based on the scale parameter of the
generalized Gaussian distribution augmented with the variance and the median of the continuous
Morlet wavelet coefficients from EEG data and a k-nearest neighbors classification technique.

The performance of the method was evaluated by training the model with an annotated real
dataset containing 212 signal recordings consisting of spike-and-wave and non-spike-and-wave events.
The classification performance was assessed utilizing 96 segments and achieved 95 % sensitivity (True
positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These results set the path to
potentially new research to study the causes underlying the so-called absence epilepsy in long-term EEG
recordings.

In addition to its performance, the proposed method can be implemented in online epilepsy care
applications. However, due to the high dynamics of the EEG epileptic signals, some waveform might
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be incomplete (with part of the signal missing due to artefacts). Our method is not able to detect such
situations, as confirmed by physicians using visual inspection [39]. Future work will focus on other
epileptic waveform patterns as well as on the extensive evaluation of the proposed approach and its
comparison with other methods from the literature both in humans and rodents. Other techniques,
such as visual data analysis with t-distributed stochastic neighbor embedding [51] and deep learning
variational autoencoders [52] will be considered. For future clinical research, an on-line user interface
will be implemented with different functionalities such as automatic SWD detection and SWD pattern
counts for each brain region.
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