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   In this note we introduce the notion of polynions and discuss their mathematical relevance. We 

note that the well-known mathematical structures like quaternions, octonions and sedenions etc. 

are special cases of polynions. 
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1. Introduction 

 

The well known quaternions [1-3] were discovered by William Rowan Hamilton. These are very 

useful in mathematics as well as in physics. Octonions [3-4] were discovered later on the basis of 

the theory of quaternions.  Similarly sedenions [5] are an extention of octonions.  

   

 We introduce the notion of polynions, plus and minus polynions. It is noted that the well-known 

mathematical structures like quaternions, octonions, sedenions are special cases of minus 

polynions.  

 

 The mathematical structures given by minus polynions and plus polynions are quite distinct and 

have different algebraic properties. It is well-known that Quaternions form a four dimensional 

non-commutative but associative algebra however the algebra of octonions is neither associative 

nor commutative.   But in the case of the mathematical structures given by plus polynions we 

retain the both commutativity as well as associativity for multiplication.   

 

 

In general the notion of plus polynions leads to construct a unital commutative as well as 

associative algebra of dimension 1+n  for each n where  0;12 Ntn t −= . Here N denotes 

the set of natural numbers.  
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 In the next section we introduce the notion of polynions. In section 3 we discuss the 

mathematical relevance of polynions. In the last section we provide conclusions.  

 

   

2. Polynions 

 

Definition 2.1: Polynion: Let p  be an expression of the form
nneaeaeaap ++++= ...22110
 . If 

1... 22

2

2

1 −==== neee  or 1... 22

2

2

1 ==== neee  then p is called a polynion. Here 

naaaa ,...,,, 210 are real numbers and  0;12 Ntn t −= . Here N denotes the set of natural 

numbers.  

Definition 2.2: Minus Polynion:   If 1... 22

2

2

1 −==== neee  and 0=+ ijji eeee  for each ji ee ,  

such that ji ee  , njni  1,1  then nneaeaeaap ++++= ...22110  is called the minus 

polynion. Let  nn eeeU =− ,...,,,1 21 . Then the set −

nU of all unit minus polynions forms a 

group under the multiplication of unit minus polynions for each 3n . If 7n then 
−

nU satisfies 

each condition to be a group except associativity.  

  Definition 2.2: Plus Polynion:    If 1... 22

2

2

1 ==== neee  and jiijji eeeeee 2=+  for each ji ee ,  

such that ji ee  ; ,1 ni   nj 1   then nneaeaeaap ++++= ...22110  is called the plus 

polynion. Let  nn eeeU ,...,,,1 21=+
 . Then the set 

+

nU of all unit plus polynions forms a 

commutative group of order t2  under the multiplication of unit plus polynions.  In this group 

each element is self inverse.  

  It shuld be emphasized that  multiplication of unit plus polynions is carried out in the same way 

as it is done in the case of unit minus polynions but we  replace minus sign by plus sign in the 

case of unit plus polynions. By this we retain commutativity and associtaivity of multiplication 

for unit plus polynions.  We illustrate this by means of the following example. 

 

  Let 3=n then in the case of unit minus polynions we have (for ji ee  ) 31221 eeeee =−= , 

12332 eeeee =−= and 3113 eeee −=  2e= . However in the case of unit plus polynions this becomes 

31221 eeeee == , 12332 eeeee ==  and 3113 eeee = 2e= . 

 In the next section we discuss about the sets of all minus polynions and plus polynions  and 

provide multiplication rule for ie  and je in the case of plus polynions  for 3,1=n  and 7 . 
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3. Mathematical Relevance of  Polynoins 

 

We consider the case of minus polynions and plus polynions separately. 

 

Case I: Minus Polynions: Let −

nP  denotes the set of all minus polynion. Let us take 0=n  then 

it is easy to see that the set −

nP of all minus polynions reduces to the set of real numbers.  If we 

take 1=n  then −

nP  reduces to the set of complex numbers. Similarly one may see that −

nP  

reduces to the set of all  quaternions and octonions for 3=n and 7 respectively.  Further if we 

take 15=n then −

nP gives the set of all sedenions. 

 

 It may be noted that real numbers, complex numbers, quaternions, octonions and sedenions are 

well-known mathematical structures and so the multiplication rule for them can be found in 

mathematical literatures. Therefore we do not discuss the multiplication rule for ie  and je  in 

these cases. For further details on quaternions, octonions and sedenions one may refer [3-5].  

 

 

 We now come to the set of plus polynions, say +

nP , and describe the multiplication rule for ie  

and je in this case. 

 

Case II: Plus Polynions: We see that the set −

nP of all minus polynions contains the set R of real 

numbers as well as the set C of complex numbers. However the set +

nP of all plus polynions 

contains the set R of real numbers but not the set C of complex numbers.  Below we discuss 

about the set +

nP  of  plus polynions for 3,1=n and 7 ( for 0=n , +

nP  reduces to the set of real 

numbers itself). 

 

  If we take 1=n  then we can write  RbabeaP +=+ ,:11
. Clearly 

+

1P  gives a special class of 

numbers which is neither real nor complex but it looks like complex numbers.  

 

One may easily verify that +

1P is a commutative ring with identity under addition and 

multiplication of polynions defined below. 

 

Let 111 Rbeap += and 112 Rdecp +=  then the sum of 1p  and 2p  is defined by =+ 21 pp   

( ) ( )=+++ decbea 11 ( ) ( )dbeca +++ 1  and the product of 1p  and 2p  is defined by 

( )( ) ( ) ( )adbcebdacdecbeapp +++=++= 11121 . 

 

Moreover one may see that
+

1P is a unital commutative and associative real algebra of dimension 

two but unlike the algebra of complex numbers this algebra has zero divisors.  
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   If we take 3=n  then the set of all plus polynions reduces to 

 RdcbadecebeaP +++=+ ,,,:3213 . Clearly +

3P  gives a set which looks like the set of all 

quaternions. As already explained in this case we have 12

3

2

2

2

1 === eee .  Also, 31221 eeeee == , 

12332 eeeee == and 3113 eeee =  
2e= .  It may be noted that unlike usual Hamilton quaternions 

+

3P forms a unital commutative algebra of dimension four. We have retained commutativity as it 

is clear from the defining relations of 
ie  and je . It may be verified that this algebra has zero 

divisors. 

 

One may easily verify that  in this case the set  3213 ,,,1 eeeU =+  of unit plus polynions forms the 

Klein’s group under multiplication. 

 

 If we take 7=n  then the set of all plus polynions reduces to 

 RaeaeaeaeaeaeaeaaP i +++++++=+ :7766554433221107 . Clearly +

7P  gives a set which 

looks like the set of all octonions. As already explained in this case we 

have 1... 2

7

2

3

2

2

2

1 ===== eeee .  The multiplication of ie  and je such that ji ee  ; 71  i , 

71  j  can be given in several ways. For example we may define that  

41221 eeeee == , 61331 eeeee == ; 
21441 eeeee == , 71551 eeeee == , 31661 eeeee == , 

51771 eeeee == ; 52332 eeeee == , 12442 eeeee == , 32552 eeeee == , 72662 eeeee == , 

62772 eeeee == ; 73443 eeeee == , 23553 eeeee == , 13663 eeeee == , =73ee  437 eee = ;  

64554 eeeee == , 54664 eeeee == , 34774 eeeee == ; 45665 eeeee == , 5775 eeee =  
1e= ;  

26776 eeeee == . 

 

  It may be noted that unlike usual octonions +

7P forms a unital commutative as well as 

associative algebra of dimension eight. We have retained commutativity and associativity as it is 

clear from the defining relations of unit plus octonions. It may be verified that this algebra has 

zero divisors. 

 

  One may easily verify that in this case the set  76543217 ,,,,,,,1 eeeeeeeU =+
 of unit plus 

polynions forms a multiplicative group of order eight in which each element is self inverse.  

 

   Similarly it may be seen that for 15=n ,  the set 
+

nP  of all plus polynions  gives a 

mathematical structure  corresponding to the sedenions.  

 

 

Conclusions.  
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It is seen that quaternions [1-3], octonions [3-4] and sedenions [5]  are special cases of minus 

polynions. The notion of plus polynions leads to define new mathematical structures 

corresponding to each structure given by the minus polynions. Moreover in the case of plus 

polynions we retain commutativity and associativity under multiplication and  thus the algebra of 

plus polynions +

nP is commutative as well as associative for each  0;12 Ntn t −= and these 

algebras have zero divisors whenever 0n . One may consider these notions for further possible 

research. 
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