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Abstract

An extension of the Stoney formula for the case of a back side metallized 8” silicon taiko wafer has been
developed, in the elastic regime, within the frame of the theory of elasticity. A good correlation between
the calculated warpage, determined by the stress released by a given back side metallization (BSM), and
the corresponding experimental warpages of the same thick metal layers deposited on an 8” silicon taiko
wafer provides evidences of the correctness of the developed theory. This development suggests the
possibility to extend this approach to the case of 8” taiko wafers based on a wide band gap semiconductor
such as silicon carbide (SiC).
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Introduction

Developments in vertical power MOSFETS devices based on silicon [1] and silicon carbide [2] require,
specifically in the automotive sector, a significant cutdown of the switching losses as the technology
evolves from one generation to another [3] [4]. A strategy to achieve this goal consists in modifying some
key parameters which affect the operations of the device. For example, an improvement of the heat
dissipation, along with a lowering of the drain-source on resistance (Rdson) of the device, allows to improve
their performances. A large contribution to Rdson and the thermal resistance results from the thickness of
the substrate, since the electrical current goes through it. To reduce this quantity a method consists in
thinning the semiconductor wafer. Moreover, to improve the thermal coupling as well as the electrical and
mechanical properties, an appropriate back side metallization (BSM) is usually required in high power
devices [5]. A BSM consists of a multiplicity of metal layers with thicknesses ranging from hundreds of
nanometers to microns However, the combination of thinned semiconductor wafer with a metalized
multilayer determines that the whole wafer undergoes mechanical stress conditions which results in the
warpage of the structure hindering, sometimes severely, the performances and the following manufacturing
processes of the devices.

In general, gaining a control on the warpage determined by the BSM residual stress can benefit the whole
semiconductor industry and disclose future developments. And indeed, the trend of the increase of the wafer
size, which is also occurring in the field of SiC [6] [7], requires a more fundamental control on the warpage
effects in the whole wafer as well as an understanding of the resulting warpage in the singled die.
Moreover, it is known that with the increase of the size, the handling of a thinned wafer becomes more and
more critical. For this reason, in 2008 DISCO proposed the patented taiko process [8] [9] [10], which
consists in a back-grinding method that leaves an annular region around the whole wafer (see figure 1) .
This solution, which is now a standard, allows an easier handling of the wafer itself and a reduction of the
warpage.

Indeed, because of the intrinsic structure of the taiko wafer, for a given metal stress and metal film
thickness, the resulting warpage of a BSM thinned wafer is mitigated with respect to the case of a canonical
(flat) BSM thinned one (see figure 1b).

According to the literature, extended reviews on the use and applications of ultrathin chips (UTC) have
been reported , with a focus ranging from UTC for flexible electronics [11] to conventional ones [12] which
included also power electronics [13] [14] [15] [16].

Moreover, an attempt to extend the Stoney formula for a non-uniform wafer thickness has been considered
in [17] for the case of a wafers having a slight step change in the peripheral region. However, the considered
step is treated as a small perturbation with respect to the thickness of the wafer. Therefore, this work does
not provide a general solution for the case of a taiko wafer.

Approaches based on the Finite Elements Analysis (FEA) have been also pursued, but for the case of flat
canonical substrates by employing standard tools for structural analysis such as ANSYS [18] [19] and
ABAQUS [20]. From these works it emerges that it is difficult to predict the final shape of the warped flat
substrate. Indeed, the numerical and stable solution usually is not the physical one, unless a small
perturbative displacement which will lead to the curl shape [18] is applied. Moreover, simulations have
been also reported for the case of a flat and patterned substrate [21]

However, and at the best of our knowledge, no extensive essays have been reported for the case of the
taiko wafer, in the general case. It is hence unknown how the change of the warpage occurs for these kinds
of wafers. In this work a rational and analytical description, developed according to the theory of the
elasticity of the resulting warpage, induced by a stressing metal thin film, in the elastic or linear regime, in
a taiko wafer, is provided. The calculated warpage for a BSM thinned taiko wafer is benchmarked and
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assessed according to experimental results gained investigating thick BSM 8” Si taiko wafers. Finally, the
utility of a modified Stoney formula is proved and extended for the case of an 8” SiC taiko wafer.

Taiko Wafer Taiko Wafer+BSM

External Ring External Ring

Grinding ™,
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Figure 1a. Schematic of the taiko back grinding | Figure 1b. Schematic of the taiko wafer with a back
process. side metal (BSM) layer.

TAIKO Process Conventional Process

Figure 1c. Taiko process vs conventional process | Figure 1d. Typical curl-shape observed, in a thick
[9] (12” wafers) BSM stressed 8” taiko wafer, by means of warpage
measurements.

1) Background: the Stoney formula

Internal stresses in a thin BSM film deposited onto the back side of a semiconducting substrate cause the
whole set of film and substrate pair to warp until the thermo-mechanical equilibrium is reached. This
condition is reached when both the net forces and the resulting bending moments acting on the system reach
a null value, at the given operating temperature T. A disk-shaped wafer substrate allows a simplification of
the theory. Indeed, if the substrate thickness h is constant and negligible with respect to the diameter D of
the wafer, whenever the thickness of the film, ¢, is uniform and small compared to that of the substrate,
the average film stress, or can be determined from the curvature of the elastically deformed coated
substrate. In 1909 Stoney published a simple formula [22] which provides a straightforward and rational
relationship between the measured average curvature k and the average film stress oy:

Eh?
O'f = —th(l—O') K, (11)
where E, and o are the Young’s modulus and Poisson’s ratio of the substrate. Equation (1.1) constitutes the
standard formula which is exploited daily in manufacturing sites, labs and plentifully reported in the
literature to infer how film stresses relates with the experimental measurement of the system’s curvature
(2). After more than a hundred years [23] the Stoney’s formula is still the benchmark or reference for the
thin film induced stress investigation.
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However, eg. 1.1 is not valid for the case of a taiko wafer, because it does not consider the presence of the
ring. In this work steps to rationally modify eq. 1.1 for the case of a taiko wafer have been considered. The
premises of these developments are the following. Though the abrasive removal of silicon or SiC during
the back-grinding process leads to a layer of damaged silicon crystal structure which has high compressive
stress [24], we will treat the taiko wafer as an idealized, symmetry driven structure, whose influence on the
warpage is determined by the presence of the ring. As in the case of the flat wafer, after thinning we
consider that the wafer has approximately a constant curvature. Another important aspect is the influence
of the gravitational force. In fact, as the final thickness decreases, the wafer becomes progressively less
able to support its weight. However, corrections to the warpage can be applied in order to discriminate the
influence of the stress

From an instructive point of view the Stoney formula is usually recovered in textbooks in the context of the
classical Euler-Bernoulli beam theory [25]. If we consider the cross section of an ultrathin wafer as a beam,
its curvature « is determined by the ratio between the bending moment M applied to the substrate, which
is generated by the stressing metal film acting on the wafer, and the flexural rigidity E 1

k=% (1.2

Elg
where E is the modulus of elasticity of the substrate and I is the moment of inertia of the section of the beam
with respect to the neutral axis, which results from the intersection between the neutral plane of the wafer and
the plane containing the examined cross section. The bending moment My is determined by the product of
the force applied to the substrate F;, at the interface between the film and the substrate, times the

distance g between the surface of the substrate and the neutral axis, that in this case matches the
gravity center axis. Because of the mechanical equilibrium, the resulting forces, acting on the film Fr
and on the substrate F;, as well as the bending moments, on the film My and in the substrate M, are
null: thatis Fy + F; = 0, My + Mg = 0. This means that Mg = —oyt; % Finally, the moment of inertia
of a section of the beam whose height is h and an infinitesimal width dw, perpendicular to the height,
with respect to the neutral axis, located at % from the interface, is equal to ;L—: By combining these
quantities, it is easy to recover eq. 1.1.

In the case of a taiko wafer the neutral plane is shifted upward, because of the annular region. This
has two outcomes. The first occurs on the bending moments, which changes because of the new
position of the neutral axis. The second is that the moment of inertia of the section with respect to
the neutral axis will increase. The modified Stoney formula, can be hence written as:

Mtaiko
Kigiko = ——— (1.3
taiko Eltairo )

In order to determine the quantities that appear in eqg. 1.3, a more rigorous point of view must be adopted
and the whole dissertation must be developed within the theory of elasticity [26], [27].

2) Taiko wafer According to the theory of elasticity

According to the theory of elasticity, (see Landau-Lifshitz, [26]) , if the taiko wafer is not subject to the
force of gravity, the vertical displacement ¢ with respect to the neutral surface satisfies the biharmonic
equation A% = 0, which holds both in the ring region as well as in the thinned wafer region.
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Inthe ring region, Ry < 17 < R,y , the simplest solution of the biharmonic equation, that does not consider
the dependence on the angle 8 is:

{oxt = ar? +b+cr2ln( 4 )+dln( d ) (2.2),

ext Rext

where a, b, ¢ and d are four coefficients that must be determined from the boundary conditions.
Whereas in the internal and thinned substrate region, 0 < r < R;;;, the solution of the biharmonic equation
is

Cint = asubr2 + bsyp (2.2),
with ag,, and bg,,;, two coefficients to be determined, such that to match with eq. 2.1.

In general, the biharmonic equation has the Michell’s solution [28], which takes into account also of the
dependence on the polar angle 8. In the case of a taiko wafer, in the experimental practice it results that
these wafers warp preferentially in one direction and less in the perpendicular one, for the case of a thick
BSM. In the hypothesis that the profile of warpage is parabolic, a simple mathematical solution that takes
into account of the dependence on the angle 9, in the internal region that can be considered is the following:

n 1
(int(r’ 9) = 72 (asub‘;asub + asubzasub COS(29)> + bsub (2.3).

where ag,;, and ag,;, are related with the curvature in the preferential warpage direction and in the
perpendicular direction, respectively.
On the other hand, in the ring region, a solution which considers the dependence on the angle 8, compatible
with eq. 2.3 is:
1 L
{oxt(1,0) = (a+a + 28 Cos(29)> r>+b+ crzln( . ) + dln( . ) (2.4),

2 2 ext Rext

where a and a* are related to the curvatures in the preferential warpage direction and in the perpendicular
direction of the ring region, respectively.

By considering the average value of equation (2.3) and (2.4) along the 9 angles, the resulting equations are
still solutions of the biharmonic equation, but of the simplest form:

n
((int (T' 9)) = (W) r? + bsub

(2.5)

(Coxe(r,0)) = (a+al) r2+b+ crzln( J ) + dln( i )

2 ext ext

Hereafter, it is considered that the average warpage of the real taiko wafer does not depend on the angle 9,
and that the behavior of the taiko wafer can be investigated by studying the behavior of the warpage on the
radial distance r, only, by means of the set of equations 2.5 .

In figure 2 a schematic of half of the vertical cross section of a Taiko wafer (supposed fully cylindrical
symmetric) having a thickness of the substrate h, a height of the rim H, an internal radius R;,,; , and external
radius R, , respectively, is reported. A reference frame is fixed at the center of the taiko wafer. The origin
is placed at the neutral plane, such that the front of the wafer is at z = zg with respect to the neutral plane,

5
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with zz; = —|zg|. Onto the thinned back side substrate surface a thin metal film having a modulus of
elasticity Er and thickness tr , indicated in yellow, is deposited. The neutral axis results from the
intersection of the neutral plane and the cross-section plane. Once the reference is fixed, h + zg is the
distance between the neutral axis (plane) and the back side substrate surface, h + zg + t5 is the distance
between the neutral axis and the BSM thin film surface, whereas H + zg is the distance of the ring region
surface of the taiko wafer with respect to the neutral axis.

At the interface between the BSM thin film and the wafer substrate, at a distance r from the center, the
taiko wafer is subject to a radial and a circumferential force, whose value per unit length is set equal to F.
and Fy, respectively.

The wafer is supported at the external ring R, , whereas N, and Ny are the reaction forces evaluated per

unit length.
z
O| ty A
Neutral Surface ----- X - e A 7771'_'_'_"_‘_2_5__4[\_],_‘
or Plane : l ZB+h ] ZB+h+tf NB
-
tf :: | Ef Fr i H
F |
h || B |% ’
A 4 I A ;
- ;
: Rint 3
|
| Rext
Fig.2. Vertical cross section of a Taiko wafer having internal radius R;,; , external radius R, ,
thickness of the substrate h and of the rim H, respectively. The taiko wafer is subject to a radial force at
the internal step edge of the ring, whose value per unit length is F.. The wafer is supported at the
external ring R, and N is the reaction force evaluated per unit length. The front of the wafer is at
z = zg With respect to the neutral plane, with z; = —|zz].

If this is the case, since the taiko wafer is in mechanical equilibrium, the resultant of the forces and the
moments must be equal to zero. In particular, the equilibrium of forces and moments holds locally for the
thin film deposited in the substrate region:

Fr,qub + Fr'efilm =0
(2.6)
M6y + Mro iy =0

And the reaction moments acting on the ring at R, are in equilibrium with those of the substrate.

=0 (2.7)

Mr,Q
Rext

ring

The moments per unit length in the substrate region and ring region are the following:
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_ Elsyp azzint 0 9int _
Mr,sub(r) = (1—02)( o972 + T or ) = Frsub(ZB +h)

Elgy azZin 1 a{in
MH,sub (T) = (1_0.2) (O- or2 - + ; or t) = Fesub (ZB + h)

M. .. (R ) — Elring 0% et 0 O0fext =0 (28)
rringtext (1-0?) ar? Rext Rexe Or Rext
_ EIring azZexl: 1 0fext —
Mo.ringRext) = G262\ 02 |, T Rome or Ine) = ©

\

Where Elg,;, and El,;,, are the flexural rigidity of the substrate and ring regions, respectively. Whereas
Igyp and I, are the moments of inertia of a section of the taiko wafer, considered as a beam of width

dw = rda, with respect to the neutral axis [29].
Being Fr6 the forces per unit length acting on the length dw = rda, the moment per unit length equals

Fr'esub (ZB + h)

H aZZt'nt int H o Eh3 azzint
Since o2z = Zasub, and “or = Zasubr, in the limit H - h, MT,Sub(T) = Me‘sub(‘r) = m?,
which implies that F._ , = Fy_, . Moreover, in the limit H - h  according to the Stoney formula

3 27,
%% = —0rimNritm % which implies that F._ | = Fg_,,, = —0rumhsim. In the event, the set of

four equations for the moments can be written as:

Elsup 0%
[ M) = ﬁﬁ = —0pumhrium(h + zp)

M ( _ Elsup azzint = —Gri1 Mg h
6,sub r)_(l—a) arz Ofilm lem( +ZB)

) M. .. (R ) — Elring (azfext 0 0{ext ) =0 (29)
rring \text (1-02) \ oarz Roxe Rext 07 IR,
Elyi 0% ext 1 0fext
My i (Royy) = 28 (gi 1 Olext -0
0,ring \Mtext (1-02) ar2 Roxe Rext 07 IR,

\

3
In general, I, and I,;,4 are functions of zg, such that in the limit H — h, I, = ling = '1’—2

The equation

Elgy ( )azqin
—p S 5t = —0fumhyum (h + 25) (2.10)

is the extension of the Stoney formula for the case of a taiko wafer. It can be solved once that I, (z5) and
zg are known.
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3) Determination of the moment of inertia

By following reference [30] along with the schematic of figure 2, it is possible to gain an expression of the
flexural rigidities El,p, (zp) and Elin4(25). Indeed, the total bending moment per unit length M7, acting
in the substrate region covered with the BSM film can be expressed as:

Su h+zg+t |h+zg| 3 E
b= f||h+ZB| 224z +E [} 22dz [(|h+ZB+tf|) — (Ih+ zg])*| + 2 [Ih + 251> —
](3.1)

Hence, the flexural rigidity of the substrate region, corrected by the Poisson coefficient o of the thin film
and of the substrate is (being —zz = |zg|) :

EIsubz Ef [|h+ZB+tf|3—|h+ZB|3]+

1-0 _ 3(1-0y) SR+ 251 +121°] (32)

3(1-0

— Elsub _ 3 .- . _ h_3
If tr =0, - 3(1 5 [lh + zg|® + |z5|3]. In the limit H - h, since h + zz = h/2, I, becomes '

which is what we expect.

Analogously, in the ring region it holds

E 0%8ext 0 00ext H+zp 72 E 0%8ext 0 0ext 3 _
(1—02)( 012 |,y Rext OT Rgﬂ) fZB dz 3(1 az)( 012 |R,,; Rext OT ext) [(H + zp)
zp°] (3.4)
and the flexural rigidity in this region becomes
E E[(H+zg)3+|zp|3
1— 02 rmg(ZB) - % (3-5)

4) Evaluation of zg
In order to gain the stress o, from measurement of warpage, the evaluation of zg, is required. This
guantity can be calculated from the equilibrium of the forces.

Substrate region. By following still [30] we can write the total force acting in the substrate region in the
radial direction as

Ef E hl_tf _
fh1 tf 1—af—h2 zdz =0 (4.1)

where hy = |h+zp + t¢| and h, = |zp|.
At a distance r we can write,

azzint [

ar?

Ef c|h+zp+ty] |h+2zp|
L et gz 4 25 [ gz dw (0.2

and the total force acting on the substrate region is
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dg Llint th In+zsrl g, +— f|h+ZBlzdz] f(fi"t rdr(4.3)

arz |h+ZB| Zp
being dw = rdrd6.

Ring region. In the ring region we need to evaluate the quantity:

E H+zp Rext 62€ex: 0 0ext
[P zdz | (—+r ) rdr (4.4)

(1-02)7zp Rint \ 0r2

Taiko wafer. Hence, the total force acting on the wafer, in the radial direction, equals zero, being in

equilibrium;
aZZint |h+ZB+tf| |h+zp| int H+zp Rext (azzext
ar? 1-of f|h+ZB| f zdz f rdr g2)7’z fRint or? +

0 08ext _
?7) rdr =0 (45)

Inthe limit H = h, R..: = Rint , €quation (4.5) reduces to the canonical case of a flat disk wafer:

2tz a5, ] e =00

|h+ZB|

where zg is equal to

Eftf(2h+tf) E h2

1—0’f 2 1-0 2
Zp = 4.7
1—0'f 1-0
which is the value of the limit lim zg if H - h. Moreover, if t; = 0, lim zg = _n
H-h H-h 2

To evaluate zg in the general case, it is necessary to combine, the modified Stoney formula for the taiko
wafer (eq 2.7) and calculate the value of the integral (see appendix C) according to the function ,,;(r)
evaluated in appendix A. By doing so a linear equation is obtained, whose solution provides the value of
the neutral axis zg.

2 2
Eftf(Zth)+ E ’lz\Rint+ E_H? Rext[9 5ext,Norm+0'a(ext,Norm
1-0f 2 1- 52} 2 ' (1-02) 2 ‘Rint ar2 r ar

K

Zp = —
B Eftf Eh \Rmt + E H Rext(azgext,Norm | O'a{ext,Norm)rdr
1-of T1- o‘] T(1-02) " JRint ar? r ar

Where {oxt norm IS the normalized function reported in eq. C1 of Appendix C.

If t; = 0, this expression is simplified as
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2 2
E h?Ripr,  E  H? Rext[9“CextNorm  08ext,Norm rdr
1-02 2 (1—a2) 2 JRint ar? T ar
Zp = 7 =
Eh RintL Rext a2(exl:,NormLtfagext,Norm
2 H [ > t rdr
1-6 2 ' (1-02) ‘Rint ar r or

ar2 T ar
- 827 ac (49) .
2 1 2 (Rext ext,Norm , 09Cext,Norm
h+H > t rdr
1+0RZ . “Ring ar r ar

hz H2 1 2 Rext a2 {ext,Norm,Ua{ext,Norm rdr
+
1+0R2 Rint

The normalized integral I;

2
— L 2 Rext (6 {ext,Norm + Eafext,Norm) rdr (410)

17 140 RZ,, JRint or? r or
has been evaluated and its value is also reported in Appendix C.

Besides the equilibrium of the forces in the radial direction, also the net forces along the circumferential 6
direction must be considered. The net forces in this direction must satisfy eq. 4.11:

azzint
ar?

+

4 Efts 4 En Eh Efty (2h+ty) _E_h? mt E H(H+2zg) fRext (aazzext
R; B\1- o  1-0 1-of 2 1-02]| 2 (1-02) 2 Rint ar?

100t _
2%et) gy = 0 (4.12)

which leads to an additional value of the z5

ar2 T or >T'd1"
I 4.12
B Efty ER \Riznu H [ ( )
1-of" 1—5/ 2 (1- 52) Rint

2
Eftf(2h+tf) _E hz\Rint . E H? Rext azfext,Norm ,198ext,Norm
1-op 2 102 ) 2 (1-0%)2 ‘Ring '

Rext 6 Sext,Norm , 19ext,Norm rdr
or? r ar

that can be simplified, if ¢ = 0, as

h2+ 22 2 (Rext O_azgext,Norm+1afext,Norm
1 (1+0') R2 ot Rint or2 T or
Zg = —=<
B 2 pyt g2 (Rext Uazzext,Norleafext,Norm
(1+0) Rizn Rlnt ar2 "r ar

)w (4.13)

rdr

Also in this case the normalized integral I,

2
12 2 fRext (O' 0 (ext,Norm + l a(ext,Norm) TdT' (414)

Rlznt Rint ar? r ar
has been evaluated and reported in appendix C.

In the event, it results that there are two values of zg, a value determined by eq. 4.8, hereafter indicated as
Zg r, Which determines a neutral axis along the radial direction, because of the radial net force, and a value
determined by eq. 4.11, hereafter indicated with zp o, which determines an additional neutral axis in the
radial direction determined by the equilibrium of the net circumferential forces.

Indeed, according to this description, eq. 2.7 splits into a pair of equations:
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Elsyp (ZB,T) azzint _
TG0) ot Iy, T —0fiumhrim (R + 2p )
(4.15)
Elgyp (ZB,O) 62(int _
T o g, _Ufilmhfilm(h +2zp4)
or also
« __ (1-0)ofiumhsium(h+zpr)
mZBr Elsyp (ZB,T)
(4.16).
« - _ (1-0)o fiumhrium(h+zp,0)
TT\ZB,0 EIsub(ZB,B)

5) Determination of warpages

For the case of a standard and flat wafer, the warpage can be evaluated from the variation A of the value
of the measured z-coordinate between the center and the peripheral region. If {(r) = grz, where k is the
curvature, the A between the value at r = R,,; and r = 0 is the warpage, which is equal to gRextz.

In the case of a taiko wafer, there are two radiuses that must be considered, R;,;; and R,,;. In the substrate
region, according to details reported in appendix A, the ;,,:(r) function (see eq. A.35) varies with respect

to the neutral axis and assumes the value (i, (Rint) = AsupRint’ + bsyp a7 = Ry and (i (0) = b, pat
r = 0. On the other hand, being {in¢(Rint) = {eoxt (Rine) it results that

ofitmhriim (Ze+M)Rext® [Rint? Rint? Rint
(lnt( lnt) (ext( lnt) Elgyp 1_Zln(Rint)_Rext2 Rextz Rextz Rext ( )
1-a) Rext/ Ript

_ 1 0frumhrum(zp+h)
2 Elgyp
(1-0)

and being agy,), = , the warpage {;,,: (0)with respect to the neutral plane is

Rint2 _1_(Rintz+1)ln(Rint)

_ _ 2 _ Rins? 2 Rext? R Rext
Cint (0) - bsub - zint(Rint) — AsypRint” = Krrsub | — uzlr + Reye < ;:;t Rext? = (5.2)
1—2[1’!(@)——&'”2

However, the warpage of the taiko wafer, is evaluated with respect to the surface of the ring region, which
lies at a distance of H + zz with respect to the neutral axis. Hence, by considering the case of a prevalent
warping direction, a%,, ~ 0, with respect to the surface of the external ring, the warpage of the taiko wafer

IS:
2 2 .
b, o mr (st ()
warpage_taiko = 2;,(0) + H 4+ zg = 2Kppqup | — ”2” + Ryt 22 z (;z::) o +H+2zz (5.3)
1-2in( S0t | -Zext_
Rext) Rjp.?

int

Since there are two values of zg, zp ,- and zj ¢, respectively, we have two warpages

2 2
2 Rintz_l_(Rintz+1>ln(Rint)
. . R; 2R R Rext
warpage_taiko_radial_from zg, = 2Ky syp 5, | = o+ Rexe” —25 ext 5
’ mEEEBT 2 1_2m(Rint)_Rext
Rext/ Ring

+H+ 2z, (5.4)
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R 2 :inti_1_(:intz+1>m(§ini)
. . i exi
warpage_taiko_radial from zg g = 2Kpy sup zn o0 | — —2 + Ry ~2 Xt 5
, ,sub,zp,g 2 1_2m(Rint)_Rext2
Rint

+H+ 254 (5.2)

In table 1 the whole set of quantities determined for the case of a taiko wafer are reported.

Direction Curvatures substrate Moments of Inertia Neutral axis Warpages
region, Krr sub,zg r Tsup (ZB,T)I Lsup (ZB,B) Zp,r» 2,0
Krr,sub,ng
H?I
3 3 2 1
—0fitmhgum(h + 2 ) |h+ zg,|” + |25, _lh t1xs
Radial Elgy (ZB,r) 3 2, n 1H11 2int,z,(0) + H + 2,
(1 — O') +o
3 3 2
—Ufizmhfizm(h + ZB,e) |h + ZB’gl + |ZB’9| 1 h2 + GHTIZG)
Circumferential Elgy (ZB 9) 3 B T 20int,z254(0) + H + zpg
—_— 7 2
-0 T

Table 1. Quantities determined for the case of a taiko wafer.

6) Results and discussion

In the standard practice, a taiko wafer typically has a constant step (H — h according to figure 2) of hundreds
of microns. In the case of an 8 taiko Si wafer it holds that step + h < 725 um, being 725 um the
thickness of an 8 Si wafer. The thickness of the substrate region typically ranges below 100 um for the
case of ultrathin chips (UTC).

In table 2, the values of the main parameters used in this work, have been reported. In order to test our
findings we have calculated the resulting curvatures in the substrate region and the warpages for the case
of an 8” Si wafer, having a ring width of 3.7 mm and a constant step of 450 um, as a function of the
thickness h of the substrate region, with h < 295 um . The properties of the BSM metallization have been
summarized in terms of a stress of, which is of the order of hundreds of MPa, and a thickness of the metal

film, which ranges between 100 nm and 2000 nm in the case of thick metal layers.

Ryt H (um) | Ring Rint Step = Poisson’s | E Young I I;
(mm) width (mm) H—-h coefficient | Modulus
(mm) (um) of Si
(GPa)
100 725 3.7 96.3 450 0.27 131 -1.58943 | 5.51814

Table 2. Values of the parameters for the external radius R, H, ring width, internal radius R;,,¢, step height, Poisson’s coefficient
and Young modulus E for an 8” Si taiko wafer. In the last two columns the values of the normalized integrals I, and I, is reported.

Experimental

The warpages of six thick BSM 8” Si taiko wafers 90 um thin, all having a step of 450 pm and a ring width
of 3.7 mm, have been measured with an MX-204 equipment (E+H Metrology), at room temperature, and
the measurement have been reported in Fig.3a-3d. The BSMs consist of a multilayer of several metals
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which result in a global metal stress o5 and film thickness that ranges from 230 MPa to 450 MPa and from
1300 nm to 2450 nm, whereas the warpage ranges from 500 pum to about 1300 um, respectively. The thick
BSMs have been deposited by one of our suppliers and the values of the metal stress has been determined
independently on thicker chip size substrates, by exploiting the canonical Stoney formula.

Color Map.

[Color Map

Figure 3a. Measured warpage, for the case of an
8” taiko Si wafer, 90 um thick, having a measured
stress of 230 MPa and metal film of 1500 nm,
respectively. The measu[ed warpage is 506.57 pm.

Figure 3b. Measured warpage of 874.07 um for an
8” taiko Si wafer, 90 pm thick, having a BSM of
450 MPa and a thickness of 1300 nm.

[Color Map

(Color Map |

Figure 3c. Measured warpage of 900.19 pum for an
8” taiko Si wafer, 90 um thick, having a BSM of
250 MPa and a thickness of 2000 nm.

Figure 3d. Measured warpage of 918.64 um for an
8” taiko Si wafer, 90 um thick, having a BSM of

[Color Map!

400 MPa and a thickness of 1500 nm.

d0i:10.20944/preprints202010.0594.v1

Figure 3e. Measured warpage of 1122.44 pum for
an 8” taiko Si wafer, 90 um thick, having a BSM
of 310 MPa and a thickness of 2450 nm.

Figure 3d. Measured warpage of 1286.18 um for
an 8” taiko Si wafer, 90 um thick, having a BSM
of 446 MPa and a thickness of 2000 nm.
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Itis evident that all the wafers show a preferential direction of warpage which determine a curl-shape. Table
3, summarizes and compares the measured warpages for the cases reported in figure 3 from a to d.

Step (um) Substrate or Metal stress | Film thickness | Measured
thickness (um) | (MPa) tr(nm) warpage (um)

450 90 230 1500 506.57

450 90 450 1300 874.07

450 90 250 2000 900.19

450 90 400 1500 918.64

450 90 310 2450 1122.44

450 90 446 2000 1286.18

Table 3. Measured warpages for the case of an 8” Si taiko wafers 90 pm thin, deposited with thick metal layers whose
thickness and stress values have been obtained by measurements on equivalent thicker non-taiko wafers. On the last
column it is reported the evaluation of the warpage according to the proposed model.

Calculations

The warpages {;,,;(0) determined by the neutral axis zz, and zz, respectively, have been calculated
according to eg. 5.2, by exploiting the values of the curvatures Krrzp, and Krr,z5 in the substrate region
gained from the modified Stoney’s equation 4.15, for the six cases of BSM investigated experimentally.
Fig. 4a reports the warpages determined by the neutral axis zp ,- as a function of the substrate thickness (in
pm), for the six cases of BSMs 8” Si taiko wafer, with thick metallization. The warpages depend on the
product orh; and decreases as the substrate thickness increases. The values of the warpages for a substrate
thickness of 90 um, have been extracted for a comparison with the measured values of the warpages.
Analogously, in Fig. 4b the warpages determined by the neutral axis z, have been reported as a function
of the substrate thickness, for the six cases of BSMs 8” Si taiko wafer, with thick metallization. Also in this
case the warpages increase as the product o hy increase and decreases as the substrate thickness increases.
Similarly, also in this case, the values of the warpages for a substrate thickness of 90 um, have been
extracted for a comparison with the measured values of the warpages.

In table 4 the extracted values of the warpages determined for the cases of the 90 um thin substrates have
been reported for the z . and z 4, respectively.

Measured Calculated H+ 2z, Calculated H+zgg Calculated
warpage (1um) warpage in um, for a warpage in um, for a warpage (um)
{int 2z, (0) in 90 um thin Sint,zze (0) IN 90 pm thin according to
um, for 90 pm substrate pm, for 90 pm substrate equation 5.4.
thin BSM 8” Si thin BSM 8” Si
taiko wafer. taiko wafer.
506.57 211.6 243.6 263.6 276.6 666.9
874.07 358.8 243.6 446.9 276.6 961.3
900.19 306.7 243.6 381.9 276.6 857.0
918.64 368.0 243.6 458.4 276.6 979.9
1122.44 465.8 243.6 580.2 276.6 1175.3
1286.18 547.1 243.6 681.4 276.6 1337.9

Table 4. Extracted values of the warpages determined for the cases of the 90 um thin substrates by the
neutral planes zz, and zg 4, respectively. The values of the surface of the ring with respect to the neutral
axis H + zg, and H + zp ¢ are reported for the case of 90 pm thin BSM 8” Si taiko wafer.
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In fig. 5a the linear correlation between the calculated warpages resulting from the neutral axis zz . and the
measured warpages referred to the neutral axis, that is the value Measured warpage — (H + z,), for the
six measured 8” taiko wafers, 90 pm thin, has been determined. A best fit line corresponding to y = 0.53x
, very close to the theoretical dependence reported in eq. 5.4, has been determined, with an R? = 0.99.
Very similarly, in Fig. 5b, the linear correlation of the calculated warpage determined by the neutral axis
zp g and the measured warpage with respect to the neutral axis (Measured warpage — (H + zp)) for the
six measured 8” taiko wafers, 90 pm thin. The calculated data are correlated with the measured ones,
though the best fit line y = 0.69x is a slightly further than the theoretical value of y=0.5x.

By considering the good agreement with the hypothesized dependence of the warpage, for the z; . neutral
axis, the linear correlation between the calculated warpages according to eg. 5.4 and the measured warpages
has been reported in figure 6. It results that the best fit line has a slope of 1.05, with an interval of
confidence of 95% ranging between 0.97 and 1.13. The two quantities show a good linear correlation,
being the R? = 0.99.

1000 __. 1000
900
800
700

600

= Warpage from z theta
230MPa, 1500nm

—warpage from krr, zBr
230MPa, 1500nm

——— Warpage da z theta 450
MPa, 1300nm

warpage from krr, zBr
450MPa 1300nm

Warpage from z theta
250 Mpa, 2000nm

500
400

warpage from krr, zBr
250 MPa, 2000nm
Warpage from z theta
400MPa, 1500nm

warpage from krr, zBr
400MPa, 1500nm

300
200 ——— Warpage from z theta

= warpage from krr, zBr
310MPa, 2450nm

310MPa, 2450nm

100

Calculated Warpage from z theta (pm

Calculated Warpage from krr, zBr (pum)

0 : —— Warpage from z theta

0 . ———warpage from krr, zBr
0 50 100 150 200 250 446 MPa, 2000nm

0 50 100 150 200 250 446MPa, 2000 nm

Substrate Thickness (um) Substrate Thickness (um)

Figure 4a. Calculated warpages determined by the neutral axis
75, according to eq. 5.2, as a function of the substrate thickness
(in pm), for the six cases of BSMs, experimentally tested, 8 Si
taiko wafer, with thick metallization. The thickness of 90 um
is reported and the values of the warpages have been extracted.

Figure 4b. Calculated warpages determined by the neutral axis
determined by z;, , according to eq. 5.2, as a function of the
substrate thickness (in pm), for the six cases of BSMs ,
experimentally tested, 8” Si taiko wafer , with thick
metallization. The thickness of 90 um is reported and the
values of the warpages have been extracted.
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Figure 5a. Linear correlation between the calculated warpage
determined by the neutral axis zz , and the measured warpage
with respect to the neutral axis, for the six measured 8” taiko
wafers, 90 um thin. The best fit line y=0.53x results very close
to the theoretical value of y=0.5x.

Figure 5b. Linear correlation between the calculated warpage
determined by the neutral axis zz o and the measured warpage
with respect to the neutral axis, for the six measured 8” taiko
wafers, 90 um thin. The calculated data are correlated with
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the measured ones, though the best fit line y=0.69x is a slightly
further the theoretical value of y=0.5x.

1600
= 2
5_1400 R°=0.99
g 1200
+
< 1000
+ B Warpage Calculated
; 800 best Fit y=1.05x
o
< 600 = = = Theoryy=x
[+5]
& y=mx_lower 95%
S 400
g y=mx_higher 95%
= 200
(']

0
0 500 1000 1500

Measured warpage (um)

Figure 6. Linear correlation between the calculated warpage determined by the neutral axis zz,- according to equation 5.4 and
the measured warpage with respect to the neutral axis, for the six measured 8” taiko wafers, 90 pm thin. The calculated warpage
shows a good linear correlation with the measured warpage.

7) Extension to the case of the 8 SiC taiko wafer.

It is possible to extend the determination of the warpages, for the case of an 8” SiC taiko wafer. In particular
we consider a taiko wafer having the same geometrical characteristics of the 8” Si taiko wafer, that is a
constant step of 450 um a ring width of 3.7 mm, a radius of 100 mm. The parameters exploited in this
calculation are reported in table 5.

Ryt H (um) | Ring Rint Step = | Poisson’s | E Young I I,
(mm) width (mm) H—h coefficient | Modulus
(mm) (um) of Si
(GPa)
100 775 3.7 96.3 450 0.36 370 -1.48257 | 6.864387

Table 5. Values of the parameters for the external radius R, H, ring width, internal radius R;,,¢, step height, Poisson’s coefficient
and Young modulus E for an 8” SiC taiko wafer. In the last two columns the values of the normalized integrals I, and I, is reported.

In figure 7, the calculated warpage according to eq. 5.4 determined by the neutral axis zg ,- , for an 8” SiC
taiko wafer, as a function of the substrate thickness (in pum), for the six cases of BSMs, examined for the
8” Si taiko wafer, with thick metallization, has been reported.
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Fig.7. Calculated warpages determined by the neutral axis z;, according to eq. 5.4, for an 8” SiC taiko wafer, as a function of
the substrate thickness (in pm), for the six cases of BSMs, examined for the 8” Si taiko wafer, with thick metallization.

With respect to the case of the 8” Si wafer, the warpages are lower in the case of the 8” SiC taiko wafer.
However, it occurs to consider that being SiC a brittle material, defects induced by e.g. the back grinding
process can result into cracks or fractures at wafer or die level, that can results in low flexural stresses.

8) Discussion: the utility of the extended Stoney equation

The extended Stoney equation 2.10 and eq. 5.4 can be usefully combined in order to determine the total
force orimhyum, determined by the BSM, acting on the substrate:

warpage_taiko_measured—(H+zg ;) Elsup(zBr)
Ofimhrim = — 5 > : I (8.1)
5 Rint _1_<Rint2+1>ln<Rint> (1—0')(h+ZB,r)Rext
o| _ Rint”  Rext Rext ext
27 2
2Rext _ Rint\_Rext
1-2In R
ext) R

int

In table 6 the values of the stresses have been determined for the six cases of BSM examined for an 8” Si
taiko wafer 90 um thin, having a step of 450 pm.

Step (um) | Substrate Measured | of Metal Film orty (Pa X orty (Pa X
thickness warpage | stress (MPa) | thickness m) m)
(pm) (Hm) tr(nm) Experimental | Calculated

450 90 506.57 230 1500 345 294

450 90 874.07 450 1300 585 704

450 90 900.19 250 2000 500 733

450 90 918.64 400 1500 600 754

450 90 1122.44 | 310 2450 759.5 981

450 90 1286.18 | 446 2000 892 1164
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Table 6. Summary of the properties of the BSM 8” taiko wafers 90 pm thin, having a step of 450 um. the last two columns report
the experimental values of the product oy, by, and the calculated values of;y,, by, according to equation eq. 8.1 .

1400

§ 1200

&

— 1000 /

o /

; 800 B Calculated o fxt f(Pa

,“7 X m)

o 600 7/ = = bestfit y=1.27%x

g /

E 400 4 Theory y=x

a

< 200 / !

o /

0 ¥
0 500 1000 1500
Experimental ¢_f xt_f (Paxm)

Figure 8. Plot of the calculated oy, hsiim from eq. 8.1 as a function of the experimental of;;m by, and evaluation of the linear
correlation. An error of 100 Pa x m has been attributed to both quantities. The experimental and calculated values of the product
OfitmPpum are correlated with an R?=0.99.

In figure 8 the calculated of;;, hys i1 quantity is compared with the experimental oy, b1 quantity of the
corresponding value for the six BSM examined cases of the 8 Si taiko wafer 90 pm thin. The best fit
analysis suggests a linear and positive correlation with a slope of 1.27. the discrepancy with respect to the
expected theoretical value of 1 of this quantity can also be determined by the different conditions of
measurements exploited. Indeed, the experimental value of the stress is determined by exploiting the
canonical Stoney formula in a thicker Si flat wafer. Clearly the two corresponding substrates can differ and
determine this discrepancy. Until now, in the normal practice, a further measurement was needed in order
to have an estimate of the stress, instead by exploiting eq. 8.1 it is possible to gain a value of the stress
determined by the BSM film on the taiko substrate.

In fact, from the values reported in table 8 we can determine a set of corresponding values for the stress,
directly calculated for the case of the taiko wafers. In table 7 we report the calculated values of the stress
determined by the BSM film in MPa. In figure 9, the correlation between the experimental and calculated
values of the stresses is reported. In particular, a slope of 1.24 can be determined with an R? value of 0.98.

or Metal Film of Metal
stress (MPa) | thickness stress (MPa)
Experimental | tr(nm) Calculated
230 1500 196

450 1300 542

250 2000 367

400 1500 502

310 2450 400

446 2000 582
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Table 7. Calculated metal stresses in MPa, calculated according to the extended Stoney equation, for the
six 8” BSM Si taiko wafers examined.

700
600

500

400 +
i B Metal Stress Calculated

300 : (MPa)

Best Fit y=1.24 x
200 +

100

Metal Stress (MPa) Calculated

0 200 400 600
Metal Stress (MPa) Experimental

Fig. 9. Plot of the calculated Metal stress (MPa) vs. the experimental stress value for the six 8” BSM Si
taiko wafers examined.

Finally, the value of the warpage at a die level can be also easily calculated. Indeed, once the ring is removed
and the wafer diced into LXL die, the corresponding warpage can be determined according to eq.8.2.

Isub(ZB,r)
3warpage_taiko_radial_from zg,—(H+zp ) h3

. — 2 2
Warpage x,y die = 5 — — — ) L% ,(8.2)
int__,_(Rint_, ln( mt) \2Br)
Rint® LR tzRextz Rext® Rext h
2 ex Rint\ Rext’
_ int)\_Stext
1 Zln(Rext) Rintz

9) Conclusions

In conclusion, an extension of the Stoney formula has been developed for the case of an 8 taiko wafer,
according to the theory of elasticity. It has been shown that the taiko wafer mitigates the warpage, because
of the presence of the annular region. On one hand the ring region increases the moment applied to the
substrate. In fact, the neutral axis is shifted upwardly because of the presence of the ring. On the other hand,
the higher moment applied to the substrate is mitigated by the higher moment of inertia of the section of
the taiko wafer. Therefore, the resulting warpage, despite a thicker BSM is mitigated and lowered with
respect to a canonical and flat substrate.

The developed model has been validated according to experimental values benchmarked for six case of 8”
BSM Si taiko wafer, having a substrate thickness of 90 pum and a step of 450 pum. It has been shown that
there is a good agreement between the developed theory and the experimental values of the warpage. The
modified Stoney equation has been usefully exploited to gain an estimate of the BSM metal stress. The
comparison between the measured valued of the stress and the calculated value of the stress shows a linear
correlation and states the utility of this formulation. Finally, an extension of the model has been considered
for the case of an 8 SiC BSM taiko wafer.
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Supporting information

Appendix A: Determination of {,,..(r)
If the taiko wafer is supported at r = R,,; by following Landau, the boundary conditions tell us that the
there is no vertical displacement at the edge r = R,,; and that the bending moment is zero:

{ext(Rext) =0
(A.1)

0 00ext

Roxt Rext OT

Elring (azfext

Mr,ring (Rext) = (1-02) \_ ar2 R ) =0
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In order to determine the four constants a, b, c, and d, two additional equations are required, to solve
alongside with the boundary conditions for ..
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By calculating the first and the second derivative of {,,:(r), we obtain:
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In the internal and thinned substrate region, 0 < r < R;,,;, the solution of the biharmonic equation is
Cint = asubr2 + bgyp (A.26)

by imposing the continuity of the functions and of the first derivatives in 7 = R, for {ine (r) and Joy (r),

we obtain:
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Appendix B: Curvatures
According to equation A.35 of appendix A, by considering that there are the two values of zgz , two
curvatures, indicated with the subscript zz ,- and zp g, will result in the substrate region:
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which allow us to calculate two functions ¢, (), evaluated along the two neutral axes:
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In particular, in the ring region R;,; < r < R, the curvatures are the following:
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_ —Orumhrum h/2
KStoney - ER3
12(1-0)
The relative curvatures can be expressed as:
K,"r‘r,‘ring,zB'.,. _ zpyth h3 o-1-— 21n( )(1+0-)+ Ext (1-0)
KStoney h/2 12I5yp(zBr) 1 Zln(Rmt) Rextz
ext/ Rint
K00,ringzpy _ zpr+h h3 1-0— Zln( )(1+a) ext Rext” (1_gq)
KStoney h/2 12Igup(zpy) 1 Zln(Rmtt) };extz
ex int
Krr.sub,zp _ K60,sub,zp ;- _ _afilmhfilm(zB,r+h) _O-filmhfilmh/z _ 2pp+h h3
KStoney KStoney 1515?11;7(2;3;) 3 WZ 2l (zan)
- 12(1-0)
(B.3)
Krrringzgg _ zgg+h h3 o—1- 2ln( )(1+a)+ ext” (1-0)

KStoney

h/2 12Isup(zpg)

1- Zln( mf)
Rext

R ext

5., 2
Rint

28

ext
KBB'Ting'ZB,Q _ zpg+h h3 1-0— Zln( )(1+O’)——(1 a)
KStoney h/2 1215ub(ZB,9) 1-2In ( Lnt) Rext
Rext Rmtz
3
Krrsubzgg  KoOsubup,  —Ofiumhrum(Zo+h) [ —0fumhrumh/2 _ zgg+h h
KStoney KStoney EIsub(ZB,G) ER3 h/2 1215ub(zB.9)
(1-0) 12(1-0)


https://doi.org/10.20944/preprints202010.0594.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2020 d0i:10.20944/preprints202010.0594.v1

Appendix C: evaluation of the integrals

The integral appearing in the equation of the z; can be easily evaluated from the function of {ex¢ yorm (1)
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The value of the integral is
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Analogously, we can calculate the integral
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Appendix D: Warpages
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0) = o fitmh fitm (Zg+R)Rine? ofitmhrim(Zp+MRext® [Rint? 1 Rint? 1)1 Rint D6
{ine(0) = Elgyp I R .z 1 (g =27 n\z (D6)
2 sub 1_21n( mt)_Rext ext ext ext
- (1-0) Rext/ Ript

Or also
ilm/tfilm in2 itmP fitm h ex2 in2 in2 in
Zint(o) _ Orit hriim(Zp+h)Rine _ _Oriumhru (zg+h)Rext ] [R 1 (R t 4 1) In (%)](Dn

EI 2 2 2
—_sub Elgyp 1-2In Rint\_Rext” | LRext Rext ext
a-o (1-0)

Rext/ Ript

Which can be expressed also as

2 2
R; R; R;

) lnt2_1_< mtz_l_l)ln(Rmt)
Rint +R 2 Rext Rext ext
2 ext R: R 2

1—21n( mt)_ ext
Rext/ Rint

{int(o) = Krrsub (D8)

This is the Warpage with respect to the neutral axis.
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