
1 
 

Extension of the Stoney Equation for a Taiko Wafer (Si and SiC) 
Antonio Landi1 and Vincenzo Vinciguerra1* 

STMicroelectronics, Stradale Primosole 50, 95121 Catania (Italy) 

*corresponding author email: vincenzo.vinciguerra@st.com 

 

 

Contents 
Extension of the Stoney Equation for a Taiko Wafer (Si and SiC) .............................................................. 1 

Abstract ..................................................................................................................................................... 1 

Introduction ............................................................................................................................................... 2 

1) Background: the Stoney formula .......................................................................................................... 3 

2) Taiko wafer According to the theory of elasticity ................................................................................ 4 

3) Determination of the moment of inertia ............................................................................................... 8 

4) Evaluation of 𝑧𝐵 ................................................................................................................................... 8 

5) Determination of warpages ................................................................................................................. 11 

6) Results and discussion ........................................................................................................................ 12 

7) Extension to the case of the 8” SiC taiko wafer. ................................................................................ 16 

8) Discussion: the utility of the extended Stoney equation ..................................................................... 17 

9) Conclusions ........................................................................................................................................ 19 

Acknowledgement .................................................................................................................................. 20 

Contributions........................................................................................................................................... 20 

References ................................................................................................................................................... 20 

Supporting information ........................................................................................................................... 22 

Appendix A: Determination of  𝜁𝑒𝑥𝑡𝑟 .................................................................................................... 22 

Appendix B: Curvatures ......................................................................................................................... 27 

Appendix C: evaluation of the integrals ................................................................................................. 29 

Appendix D: Warpages ........................................................................................................................... 31 

 
 

Abstract 
An extension of the Stoney formula for the case of a back side metallized 8” silicon taiko wafer has been 

developed, in the elastic regime, within the frame of the theory of elasticity. A good correlation between 

the calculated warpage, determined by the stress released by a given back side metallization (BSM), and 

the corresponding experimental warpages of the same thick metal layers deposited on an 8” silicon taiko 

wafer provides evidences of the correctness of the developed theory. This development suggests the 

possibility to extend this approach to the case of 8” taiko wafers based on a wide band gap semiconductor 

such as silicon carbide (SiC).  
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Introduction 
Developments in vertical power MOSFETs devices based on silicon [1] and silicon carbide [2] require, 

specifically in the automotive sector,  a significant cutdown of the switching losses as the technology 

evolves from one generation to another [3] [4]. A strategy to achieve this goal consists in modifying some 

key parameters which affect the operations of the device. For example, an improvement of the heat 

dissipation, along with a lowering of the drain-source on resistance (Rdson) of the device, allows to improve 

their performances.  A large contribution to Rdson and the thermal resistance results from the thickness of 

the substrate, since the electrical current goes through it. To reduce this quantity a method consists in 

thinning the semiconductor wafer. Moreover, to improve the thermal coupling as well as the electrical and 

mechanical properties, an appropriate back side metallization (BSM) is usually required in high power 

devices [5]. A BSM consists of a multiplicity of metal layers with thicknesses ranging from hundreds of 

nanometers to microns  However, the combination of thinned semiconductor wafer with a metalized 

multilayer determines that the whole wafer undergoes mechanical stress conditions which results in the 

warpage of the structure hindering, sometimes severely, the performances and the following manufacturing 

processes of the devices.  

 

In general, gaining a control on the warpage determined by the BSM residual stress can benefit the whole 

semiconductor industry and disclose future developments. And indeed, the trend of the increase of the wafer 

size, which is also occurring in the field of SiC [6] [7], requires a more fundamental control on the warpage 

effects in the whole wafer as well as an understanding of the resulting warpage in the singled die.    

Moreover, it is known that with the increase of the size, the handling of a thinned wafer becomes more and 

more critical.  For this reason, in 2008 DISCO proposed the patented taiko process [8] [9] [10], which 

consists in a back-grinding method that leaves an annular region around the whole wafer (see figure 1) . 

This solution, which is now a standard, allows an easier handling of the wafer itself and a reduction of the 

warpage.  

 Indeed, because of the intrinsic structure of the taiko wafer, for a given metal stress and metal film 

thickness, the resulting warpage of a BSM thinned wafer is mitigated with respect to the case of a canonical 

(flat) BSM thinned one (see figure 1b).  

 

According to the literature, extended reviews on the use and applications of ultrathin chips (UTC)  have 

been reported , with a focus ranging  from UTC for flexible electronics [11] to conventional ones [12] which 

included also power electronics  [13] [14] [15] [16].  
Moreover,  an attempt to extend the Stoney formula for a non-uniform wafer thickness has been considered 

in  [17] for the case of a wafers having a slight step change in the peripheral region. However, the considered 

step is treated as a small perturbation with respect to the thickness of the wafer. Therefore, this work does 

not provide a general solution for the case of a taiko wafer.  

  

Approaches based on the Finite Elements Analysis (FEA) have been also pursued, but for the case of flat 

canonical substrates by employing standard tools for structural analysis such as ANSYS [18] [19] and 

ABAQUS [20]. From these works it emerges that it is difficult to predict the final shape of the warped flat 

substrate. Indeed, the numerical and stable solution usually is not the physical one, unless a small 

perturbative displacement which will lead to the curl shape [18] is applied.  Moreover, simulations have 

been also reported for the case of a flat and patterned substrate [21] 

   However, and at the best of our knowledge, no extensive essays have been reported for the case of the 

taiko wafer, in the general case. It is hence unknown how the change of the warpage occurs for these kinds 

of wafers. In this work a rational and analytical description, developed according to the theory of the 

elasticity of the resulting warpage, induced by a stressing metal thin film, in the elastic or linear regime, in 

a taiko wafer, is provided.  The calculated warpage for a BSM thinned taiko wafer is benchmarked and 
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assessed according to experimental results gained investigating thick BSM 8” Si taiko wafers. Finally, the 

utility of a modified Stoney formula is proved and extended for the case of an 8” SiC taiko wafer.   

 

 

 

 

 

 

 

 

Figure 1a. Schematic of the taiko back grinding 

process.  

Figure 1b. Schematic of the taiko wafer with a back 

side metal (BSM) layer.  

 

 
Figure 1c. Taiko process vs conventional process 

[9] (12” wafers) 

Figure 1d. Typical curl-shape observed, in a thick 

BSM stressed 8” taiko wafer, by means of warpage 

measurements.  

 

 

1) Background: the Stoney formula 
 
Internal stresses in a thin BSM film deposited onto the back side of a semiconducting substrate cause the 

whole set of film and substrate pair to warp until the thermo-mechanical equilibrium is reached. This 

condition is reached when both the net forces and the resulting bending moments acting on the system reach 

a null value, at the given operating temperature 𝑇. A disk-shaped wafer substrate allows a simplification of 

the theory. Indeed, if the substrate thickness ℎ is constant and negligible with respect to the diameter 𝐷 of 

the wafer,  whenever the thickness of the film, 𝑡𝑓, is uniform and small compared to that of the substrate, 

the average film stress, 𝜎𝑓 can be determined from the curvature of the elastically deformed coated 

substrate. In 1909 Stoney published a simple formula [22] which provides a straightforward and rational 

relationship between the measured average curvature 𝜅 and the average film stress 𝜎𝑓: 

 

𝜎𝑓 =
𝐸ℎ2 

6𝑡𝑓(1−𝜎)
𝜅 ,          (1.1) 

where E, and 𝜎 are the Young’s modulus and Poisson’s ratio of the substrate. Equation (1.1) constitutes the 

standard formula which is exploited daily in manufacturing sites, labs and plentifully reported in the 

literature to infer how film stresses relates with the experimental measurement of the system’s curvature 

(2). After more than a hundred years [23] the Stoney’s formula is still the benchmark or reference for the 

thin film induced stress investigation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2020                   doi:10.20944/preprints202010.0594.v1

https://doi.org/10.20944/preprints202010.0594.v1


4 
 

 However, eq. 1.1 is not valid for the case of a taiko wafer, because it does not consider the presence of the 

ring. In this work steps to rationally modify eq. 1.1 for the case of a taiko wafer have been considered. The 

premises of these developments are the following. Though the abrasive removal of silicon or SiC during 

the back-grinding process leads to a layer of damaged silicon crystal structure which has high compressive 

stress [24], we will treat the taiko wafer as an idealized, symmetry driven structure, whose influence on the 

warpage is  determined by the presence of the ring. As in the case of the flat wafer, after thinning we 

consider that the wafer has approximately a constant curvature. Another important aspect is the influence 

of the gravitational force. In fact, as the final thickness decreases, the wafer becomes progressively less 

able to support its weight. However, corrections to the warpage can be applied in order to discriminate the 

influence of the stress  

 

From an instructive point of view the Stoney formula is usually recovered in textbooks in the context of the 

classical Euler-Bernoulli beam theory [25]. If we consider the cross section of an ultrathin wafer as a beam, 

its curvature 𝜅 is determined by the ratio between the bending moment 𝑀𝑠 applied to the substrate, which 

is  generated by the stressing metal film acting on the wafer, and the flexural rigidity 𝐸𝐼𝑠  
 

𝜅 =
𝑀𝑠

𝐸𝐼𝑠
    (1.2) 

where 𝐸 is the modulus of elasticity of the substrate and 𝐼𝑠 is the moment of inertia of the section of the beam 
with respect to the neutral axis, which results from the intersection between the neutral plane of the wafer and 

the plane containing the examined cross section.  The bending moment 𝑀𝑠 is determined by the product of 
the force applied to the substrate 𝐹𝑠, at the interface between the film and the substrate, times the 

distance 
ℎ

2
 between the surface of the substrate and the neutral axis, that in this case matches the 

gravity center axis. Because of the mechanical equilibrium, the resulting forces, acting on the film  𝐹𝑓 

and on the substrate 𝐹𝑠, as well as the bending moments, on the film 𝑀𝑓 and in the substrate 𝑀𝑠, are 

null: that is  𝐹𝑓 + 𝐹𝑠 = 0,  𝑀𝑓 +𝑀𝑠 = 0. This means that 𝑀𝑠 = −𝜎𝑓𝑡𝑓
ℎ

2
. Finally, the moment of inertia 

of a section of the beam whose height is ℎ and an infinitesimal width 𝑑𝑤, perpendicular to the height,  

with respect to the neutral axis, located at 
ℎ

2
 from the interface, is equal to 

ℎ3

12
. By combining these 

quantities, it is easy to recover eq. 1.1.  
 
In the case of a taiko wafer the neutral plane is shifted upward, because of the annular region. This 
has two outcomes. The first occurs on the bending moments, which changes because of the new 
position of the neutral axis. The second is that the moment of inertia of the section with respect to 
the neutral axis will increase. The modified Stoney formula, can be hence written as: 
 

𝜅𝑡𝑎𝑖𝑘𝑜 =
𝑀𝑡𝑎𝑖𝑘𝑜

𝐸𝐼𝑡𝑎𝑖𝑘𝑜
  (1.3) 

 

In order to determine the quantities that appear in eq. 1.3, a more rigorous point of view must be adopted 

and the whole dissertation must be developed within the theory of elasticity  [26], [27].  

 

 
 

2) Taiko wafer According to the theory of elasticity  
 

According to the theory of elasticity,  (see Landau-Lifshitz, [26]) ,  if the taiko wafer is not subject to the 

force of gravity, the vertical displacement 𝜁 with respect to the neutral surface satisfies the biharmonic 

equation ∆2𝜁 = 0, which holds both in the ring region as well as in the thinned wafer region.  
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In the ring region, 𝑅𝑖𝑛𝑡 < 𝑟 ≤ 𝑅𝑒𝑥𝑡 , the simplest solution of the biharmonic equation, that does not consider 

the dependence on the angle 𝜃 is: 

 

𝜁𝑒𝑥𝑡 = 𝑎𝑟
2 + 𝑏 + 𝑐𝑟2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 𝑑𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
)  (2.1), 

 
where a, b, c and d are four coefficients that must be determined from the boundary conditions.   

Whereas in the internal and thinned substrate region, 0 ≤ 𝑟 ≤ 𝑅𝑖𝑛𝑡, the solution of the biharmonic equation 

is  

 
𝜁𝑖𝑛𝑡 = 𝑎𝑠𝑢𝑏𝑟

2 + 𝑏𝑠𝑢𝑏 (2.2), 

 
with 𝑎𝑠𝑢𝑏 and 𝑏𝑠𝑢𝑏 two coefficients to be determined, such that to match with eq. 2.1. 

 
In general, the biharmonic equation has the Michell’s solution [28], which takes into account also of the 

dependence on the polar angle 𝜃.  In the case of a taiko wafer, in the experimental practice it results that 

these wafers warp preferentially in one direction and less in the perpendicular one, for the case of a thick 

BSM. In the hypothesis that the profile of warpage is parabolic, a simple mathematical solution that takes 

into account of the dependence on the angle 𝜗, in the internal region that can be considered is the following:   

 

𝜁𝑖𝑛𝑡(𝑟, 𝜃) = 𝑟
2 (

𝑎𝑠𝑢𝑏+𝑎𝑠𝑢𝑏
⊥

2
+
𝑎𝑠𝑢𝑏−𝑎𝑠𝑢𝑏

⊥

2
𝑐𝑜𝑠(2𝜃)) + 𝑏𝑠𝑢𝑏 (2.3). 

 

where 𝑎𝑠𝑢𝑏 and 𝑎𝑠𝑢𝑏
⊥  are related with the curvature in the preferential warpage direction and in the 

perpendicular direction, respectively.  

On the other hand, in the ring region, a solution which considers the dependence on the angle 𝜃, compatible 

with eq. 2.3 is:  

𝜁𝑒𝑥𝑡(𝑟, 𝜃) = (
𝑎+𝑎⊥

2
+
𝑎−𝑎⊥

2
𝑐𝑜𝑠(2𝜃)) 𝑟2 + 𝑏 + 𝑐𝑟2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 𝑑𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
)   (2.4), 

where 𝑎 and 𝑎⊥ are related to the curvatures in the preferential warpage direction and in the perpendicular 

direction of the ring region, respectively.  

By considering the average value of equation (2.3) and (2.4) along the 𝜗 angles, the resulting equations are 

still solutions of the biharmonic equation, but of the simplest form: 

 

{
 
 

 
 〈𝜁𝑖𝑛𝑡(𝑟, 𝜃)〉 = (

𝑎𝑠𝑢𝑏+𝑎𝑠𝑢𝑏
⊥

2
) 𝑟2 + 𝑏𝑠𝑢𝑏

〈𝜁𝑒𝑥𝑡(𝑟, 𝜃)〉 = (
𝑎+𝑎⊥

2
) 𝑟2 + 𝑏 + 𝑐𝑟2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 𝑑𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
)

 (2.5) 

 
 

 
Hereafter, it is considered that the average warpage of the real taiko wafer does not depend on the angle 𝜗, 

and that the behavior of the taiko wafer can be investigated by studying the behavior of the warpage on the 

radial distance 𝑟, only, by means of the set of equations 2.5 .  

 

In figure 2 a schematic of half of  the vertical cross section of a Taiko wafer  (supposed fully cylindrical 

symmetric) having a thickness of the substrate ℎ, a height of the rim 𝐻, an internal radius 𝑅𝑖𝑛𝑡 , and external 

radius 𝑅𝑒𝑥𝑡 , respectively, is reported. A reference frame is fixed at the center of the taiko wafer. The origin 

is placed at the neutral plane, such that the front of the wafer is at  𝑧 = 𝑧𝐵 with respect to the neutral plane, 
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with 𝑧𝐵 = −|𝑧𝐵|. Onto the thinned back side substrate surface a thin metal film having a modulus of 

elasticity 𝐸𝑓 and thickness 𝑡𝑓 , indicated in yellow, is deposited. The neutral axis results from the 

intersection of the neutral plane and the cross-section plane. Once the reference is fixed, ℎ + 𝑧𝐵 is the 

distance between the neutral axis (plane) and the back side substrate surface, ℎ + 𝑧𝐵 + 𝑡𝑓 is the distance 

between the neutral axis and the BSM thin film surface, whereas 𝐻 + 𝑧𝐵 is the distance of the ring region 

surface of the taiko wafer with respect to the neutral axis.  

At the interface between the BSM thin film and the wafer substrate, at a distance 𝑟 from the center, the 

taiko wafer is subject to a radial and a circumferential force, whose value per unit length is set equal to 𝐹𝑟 

and 𝐹𝜃, respectively.  

The wafer is supported at the external ring 𝑅𝑒𝑥𝑡 , whereas  𝑁𝑟 and 𝑁𝜃 are the reaction forces evaluated per 

unit length.    

 

 
Fig.2. Vertical cross section of a Taiko wafer having internal radius 𝑅𝑖𝑛𝑡 , external radius 𝑅𝑒𝑥𝑡 ,  
thickness of the substrate h and of the rim H, respectively. The taiko wafer is subject to a radial force at 

the internal step edge of the ring, whose value per unit length is Fr. The wafer is supported at the 

external ring 𝑅𝑒𝑥𝑡 and Nr is the reaction force evaluated per unit length.   The front of the wafer is at 

𝑧 = 𝑧𝐵   with respect to the neutral plane, with  𝑧𝐵 = −|𝑧𝐵| . 
 
 
If this is the case, since the taiko wafer is in mechanical equilibrium, the resultant of the forces and the 

moments must be equal to zero. In particular, the equilibrium of forces and moments holds locally for the 

thin film deposited in the substrate region:  

 

{

𝐹𝑟,𝜃𝑠𝑢𝑏 + 𝐹𝑟,𝜃𝑓𝑖𝑙𝑚 = 0

𝑀𝑟,𝜃𝑠𝑢𝑏 +𝑀𝑟,𝜃𝑓𝑖𝑙𝑚 = 0
 (2.6) 

 
And the reaction moments acting on the ring at 𝑅𝑒𝑥𝑡 are in equilibrium with those of the substrate. 

 

𝑀𝑟,𝜃𝑟𝑖𝑛𝑔|𝑅𝑒𝑥𝑡
= 0  (2.7) 

 
 
The moments per unit length in the substrate region and ring region are the following:  
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{
 
 
 
 
 

 
 
 
 
 𝑀𝑟,𝑠𝑢𝑏(𝑟) =

𝐸𝐼𝑠𝑢𝑏
(1−𝜎2)

(
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑖𝑛𝑡

𝜕𝑟
) = 𝐹𝑟𝑠𝑢𝑏(𝑧𝐵 + ℎ)

𝑀𝜃,𝑠𝑢𝑏(𝑟) =
𝐸𝐼𝑠𝑢𝑏
(1−𝜎2)

(𝜎
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑖𝑛𝑡

𝜕𝑟
) = 𝐹𝜃𝑠𝑢𝑏(𝑧𝐵 + ℎ)

𝑀𝑟,𝑟𝑖𝑛𝑔(𝑅𝑒𝑥𝑡) =
𝐸𝐼𝑟𝑖𝑛𝑔

(1−𝜎2)
(
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
𝜎

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) = 0

𝑀𝜃,𝑟𝑖𝑛𝑔(𝑅𝑒𝑥𝑡) =
𝐸𝐼𝑟𝑖𝑛𝑔

(1−𝜎2)
(𝜎

𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
1

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) = 0

 (2.8) 

 
  
Where 𝐸𝐼𝑠𝑢𝑏 and  𝐸𝐼𝑟𝑖𝑛𝑔 are the flexural rigidity of the substrate and ring regions, respectively. Whereas 

𝐼𝑠𝑢𝑏 and 𝐼𝑟𝑖𝑛𝑔 are the moments of inertia of a section of the taiko wafer, considered as a beam of width 

𝑑𝑤 = 𝑟𝑑𝛼, with respect to the neutral axis [29].  

Being  𝐹𝑟,𝜃𝑠𝑢𝑏 the forces per unit length acting on the length 𝑑𝑤 = 𝑟𝑑𝛼, the moment per unit length equals 

𝐹𝑟,𝜃𝑠𝑢𝑏(𝑧𝐵 + ℎ). 

 

Since 
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= 2𝑎𝑠𝑢𝑏, and 

𝜕𝜁𝑖𝑛𝑡

𝜕𝑟
= 2𝑎𝑠𝑢𝑏𝑟, in the limit 𝐻 → ℎ,  𝑀𝑟,𝑠𝑢𝑏(𝑟) = 𝑀𝜃,𝑠𝑢𝑏(𝑟) =

𝐸ℎ3

12(1−𝜎 )

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
, 

which implies that 𝐹𝑟𝑠𝑢𝑏 = 𝐹𝜃𝑠𝑢𝑏. Moreover, in the limit 𝐻 → ℎ   according to the Stoney formula 
𝐸ℎ3

12(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚

ℎ

2
, which implies that 𝐹𝑟𝑠𝑢𝑏 = 𝐹𝜃𝑠𝑢𝑏 = −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚. In the event, the set of 

four equations for the moments can be written as: 

 
 

{
 
 
 
 
 

 
 
 
 
 𝑀𝑟,𝑠𝑢𝑏(𝑟) =

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵)

𝑀𝜃,𝑠𝑢𝑏(𝑟) =
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵)

𝑀𝑟,𝑟𝑖𝑛𝑔(𝑅𝑒𝑥𝑡) =
𝐸𝐼𝑟𝑖𝑛𝑔

(1−𝜎2)
(
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
𝜎

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) = 0

𝑀𝜃,𝑟𝑖𝑛𝑔(𝑅𝑒𝑥𝑡) =
𝐸𝐼𝑟𝑖𝑛𝑔

(1−𝜎2)
(𝜎

𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
1

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) = 0

(2.9) 

 

In general, 𝐼𝑠𝑢𝑏 and 𝐼𝑟𝑖𝑛𝑔 are functions of 𝑧𝐵, such that in the limit 𝐻 → ℎ,  𝐼𝑠𝑢𝑏 = 𝐼𝑟𝑖𝑛𝑔 =
ℎ3

12
. 

 

The equation  

 
𝐸𝐼𝑠𝑢𝑏(𝑧𝐵)

(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵) (2.10) 

 

is the extension of the Stoney formula for the case of a taiko wafer. It can be solved once that  𝐼𝑠𝑢𝑏(𝑧𝐵) and 

𝑧𝐵 are known.  
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3) Determination of the moment of inertia  
By following reference [30] along with the schematic of figure 2, it is possible to gain an expression  of the 

flexural rigidities 𝐸𝐼𝑠𝑢𝑏(𝑧𝐵) and 𝐸𝐼𝑟𝑖𝑛𝑔(𝑧𝐵). Indeed, the total bending moment per unit length  𝑀𝑠𝑢𝑏
𝑇  acting 

in the substrate region covered with the BSM film can be expressed as: 

 
𝑀𝑠𝑢𝑏
𝑇

−𝜅
= 𝐸𝑓 ∫ 𝑧2𝑑𝑧 + 𝐸 ∫ 𝑧2𝑑𝑧

|ℎ+𝑧𝐵|

𝑧𝐵

|ℎ+𝑧𝐵+𝑡𝑓|

|ℎ+𝑧𝐵|
=

𝐸𝑓

3
[(|ℎ + 𝑧𝐵 + 𝑡𝑓|)

3
− (|ℎ + 𝑧𝐵|)

3] +
𝐸

3
[|ℎ + 𝑧𝐵|

3 −

𝑧𝐵
3] (3.1) 

 

Hence, the flexural rigidity of the substrate region, corrected by the Poisson coefficient 𝜎 of the thin film 

and of the substrate is (being −𝑧𝐵 = |𝑧𝐵|) :  
 

𝐸𝐼𝑠𝑢𝑏

1−𝜎
=

𝐸𝑓

3(1−𝜎𝑓)
[|ℎ + 𝑧𝐵 + 𝑡𝑓|

3
− |ℎ + 𝑧𝐵|

3] +
𝐸

3(1−𝜎)
[|ℎ + 𝑧𝐵|

3 + |𝑧𝐵|
3]      (3.2) 

 

If  𝑡𝑓 = 0,  
𝐸𝐼𝑠𝑢𝑏

1−𝜎
=

𝐸

3(1−𝜎)
[|ℎ + 𝑧𝐵|

3 + |𝑧𝐵|
3]. In the limit 𝐻 → ℎ, since ℎ + 𝑧𝐵 = ℎ/2, 𝐼𝑠𝑢𝑏 becomes 

ℎ3

12
, 

which is what we expect.  

 

Analogously, in the ring region it holds 

 
𝐸

(1−𝜎2)
(
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
𝜎

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

)∫ 𝑧2𝑑𝑧
𝐻+𝑧𝐵
𝑧𝐵

=
𝐸

3(1−𝜎2)
(
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
𝜎

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) [(𝐻 + 𝑧𝐵)
3 −

𝑧𝐵
3] (3.4) 

 

and the flexural rigidity in this region becomes  

 
𝐸

1−𝜎2
𝐼𝑟𝑖𝑛𝑔(𝑧𝐵) =

𝐸[(𝐻+𝑧𝐵)
3+|𝑧𝐵|

3]

3(1−𝜎2)
 (3.5) 

 

4) Evaluation of 𝑧𝐵 
In order to gain the stress 𝜎𝑓𝑖𝑙𝑚 from measurement of warpage, the evaluation of 𝑧𝐵, is required. This 

quantity can be calculated from the equilibrium of the forces.  

 

Substrate region. By following still  [30] we  can write the total force acting in the substrate region in the 

radial direction as 

 
𝐸𝑓

1−𝜎𝑓
∫ 𝑧𝑑𝑧 +

𝐸

1−𝜎
∫ 𝑧𝑑𝑧
ℎ1−𝑡𝑓
−ℎ2

ℎ1
ℎ1−𝑡𝑓

= 0   (4.1) 

 

 

where  ℎ1 = |ℎ + 𝑧𝐵 + 𝑡𝑓| and ℎ2 = |𝑧𝐵|. 

 

At a distance 𝑟 we can write,  

 
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
[
𝐸𝑓

1−𝜎𝑓
∫ 𝑧𝑑𝑧 +

𝐸

1−𝜎
∫ 𝑧𝑑𝑧
|ℎ+𝑧𝐵|

𝑧𝐵

|ℎ+𝑧𝐵+𝑡𝑓|

|ℎ+𝑧𝐵|
] 𝑑𝑤 (4.2) 

 

and the total force acting on the substrate region is  
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𝑑𝜃
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
[
𝐸𝑓

1−𝜎𝑓
∫ 𝑧𝑑𝑧 +

𝐸

1−𝜎
∫ 𝑧𝑑𝑧
|ℎ+𝑧𝐵|

𝑧𝐵

|ℎ+𝑧𝐵+𝑡𝑓|

|ℎ+𝑧𝐵|
] ∫ 𝑟𝑑𝑟

𝑅𝑖𝑛𝑡
0

(4.3) 

 

being 𝑑𝑤 = 𝑟𝑑𝑟𝑑𝜃. 

 

Ring region. In the ring region we need to evaluate the quantity: 

 

𝑑𝜃
𝐸

(1−𝜎2)
∫ 𝑧𝑑𝑧
𝐻+𝑧𝐵
𝑧𝐵

∫ (
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
) 𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

 (4.4) 

 

Taiko wafer. Hence, the total force acting on the wafer, in the radial direction, equals zero, being in 

equilibrium: 

 

 
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑅𝑖𝑛𝑡

[
𝐸𝑓

1−𝜎𝑓
∫ 𝑧𝑑𝑧 +

𝐸

1−𝜎
∫ 𝑧𝑑𝑧
|ℎ+𝑧𝐵|

𝑧𝐵

|ℎ+𝑧𝐵+𝑡𝑓|

|ℎ+𝑧𝐵|
] ∫ 𝑟𝑑𝑟

𝑅𝑖𝑛𝑡
0

+
𝐸

(1−𝜎2)
∫ 𝑧𝑑𝑧
𝐻+𝑧𝐵
𝑧𝐵

∫ (
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
) 𝑟𝑑𝑟 = 0 (4.5) 

 

In the limit 𝐻 → ℎ,  𝑅𝑒𝑥𝑡 = 𝑅𝑖𝑛𝑡 , equation (4.5) reduces to the canonical case of a flat disk wafer: 

 

[
𝐸𝑓

1−𝜎𝑓
∫ 𝑧𝑑𝑧 +

𝐸

1−𝜎
∫ 𝑧𝑑𝑧
|ℎ+𝑧𝐵|

𝑧𝐵

|ℎ+𝑧𝐵+𝑡𝑓|

|ℎ+𝑧𝐵|
] ∫ 𝑟𝑑𝑟

𝑅𝑖𝑛𝑡
0

= 0 (4.6) 

 

 

where 𝑧𝐵 is equal to  

 

𝑧𝐵 =
−
𝐸𝑓𝑡𝑓

1−𝜎𝑓

(2ℎ+𝑡𝑓)

2
−

𝐸

1−𝜎

ℎ2

2

𝐸𝑓𝑡𝑓

1−𝜎𝑓
+
𝐸ℎ

1−𝜎

   (4.7) 

 

which is the value of the limit 𝑙𝑖𝑚
𝐻→ℎ

𝑧𝐵 if 𝐻 → ℎ. Moreover, if 𝑡𝑓 = 0,  𝑙𝑖𝑚
𝐻→ℎ

𝑧𝐵 = −
ℎ

2
. 

 

To evaluate zB in the general case, it is necessary to combine,  the modified Stoney formula for the taiko 

wafer (eq 2.7) and calculate the value of the integral (see appendix C) according to the function 𝜁𝑒𝑥𝑡(𝑟) 
evaluated in appendix A.  By doing so a linear equation is obtained, whose solution provides the value of 

the neutral axis zB. 

 

𝑧𝐵 = −
(
𝐸𝑓𝑡𝑓

1−𝜎𝑓

(2ℎ+𝑡𝑓)

2
+

𝐸

1−𝜎

ℎ2

2
)
𝑅𝑖𝑛𝑡
2

2
+

𝐸

(1−𝜎2)

𝐻2

2
∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

(
𝐸𝑓𝑡𝑓

1−𝜎𝑓
+
𝐸ℎ

1−𝜎
)
𝑅𝑖𝑛𝑡
2

2
+

𝐸

(1−𝜎2)
𝐻∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

      (4.8) 

 

Where 𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚 is the normalized function reported in eq. C1 of Appendix C. 

 

If 𝑡𝑓 = 0, this expression is simplified as  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2020                   doi:10.20944/preprints202010.0594.v1

https://doi.org/10.20944/preprints202010.0594.v1


10 
 

𝑧𝐵 = −

𝐸

1−𝜎

ℎ2

2

𝑅𝑖𝑛𝑡
2

2
+

𝐸

(1−𝜎2)

𝐻2

2
∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

𝐸ℎ

1−𝜎

𝑅𝑖𝑛𝑡
2

2
+

𝐸

(1−𝜎2)
𝐻∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

=

−
1

2

ℎ2+𝐻2
1

1+𝜎

2

𝑅𝑖𝑛𝑡
2 ∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

ℎ+𝐻
1

1+𝜎

2

𝑅𝑖𝑛𝑡
2 ∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

        (4.9). 

 

The normalized integral 𝐼1 

 

𝐼1 =
1

1+𝜎

2

𝑅𝑖𝑛𝑡
2 ∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟
) 𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

  (4.10) 

 

has been evaluated and its value is also reported in Appendix C.  

 

Besides the equilibrium of the forces in the radial direction, also the net forces along the circumferential 𝜃 

direction must be considered. The net forces in this direction must satisfy eq. 4.11:  

 
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑅𝑖𝑛𝑡

[𝑧𝐵 (
𝐸𝑓𝑡𝑓

1−𝜎𝑓
+

𝐸ℎ

1−𝜎
) +

𝐸𝑓𝑡𝑓

1−𝜎𝑓

(2ℎ+𝑡𝑓)

2
+

𝐸

1−𝜎

ℎ2

2
]
𝑅𝑖𝑛𝑡
2

2
+

𝐸

(1−𝜎2)

𝐻(𝐻+2𝑧𝐵)

2
∫ (𝜎

𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

1

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
) 𝑟𝑑𝑟 = 0 (4.11) 

 

which leads to an additional value of the 𝑧𝐵 

 

𝑧𝐵 = −
(
𝐸𝑓𝑡𝑓

1−𝜎𝑓

(2ℎ+𝑡𝑓)

2
+

𝐸

1−𝜎

ℎ2

2
)
𝑅𝑖𝑛𝑡
2

2
+

𝐸

(1−𝜎2)

𝐻2

2
∫ (𝜎

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

(
𝐸𝑓𝑡𝑓

1−𝜎𝑓
+
𝐸ℎ

1−𝜎
)
𝑅𝑖𝑛𝑡
2

2
+

𝐸

(1−𝜎2)
𝐻∫ (𝜎

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

   (4.12) 

 

that can be simplified, if  𝑡𝑓 = 0, as  

 

𝑧𝐵 = −
1

2

ℎ2+
1

(1+𝜎)
𝐻2

2

𝑅𝑖𝑛𝑡
2 ∫ (𝜎

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

ℎ+
1

(1+𝜎)
𝐻

2

𝑅𝑖𝑛𝑡
2 ∫ (𝜎

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

)𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

  (4.13) 

 

Also in this case the normalized integral 𝐼2 

 

𝐼2 =
2

𝑅𝑖𝑛𝑡
2 ∫ (𝜎

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟
) 𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

 (4.14). 

 

has been evaluated and reported in appendix C.  

 

In the event, it results that there are two values of 𝑧𝐵, a value determined by eq. 4.8, hereafter indicated as 

𝑧𝐵,𝑟, which determines a neutral axis along the radial direction, because of the radial net force,  and a value 

determined by eq. 4.11,  hereafter indicated with 𝑧𝐵,𝜃, which determines an additional neutral axis in the 

radial direction determined by the equilibrium of the net circumferential forces.  

Indeed, according to this description, eq. 2.7 splits into a pair of equations: 
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{
 
 

 
 
𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑧𝐵,𝑟

= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵,𝑟)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑧𝐵,𝜃

= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵,𝜃)

(4.15) 

 

or also  

 

{
 
 

 
 𝜅𝑟𝑟,𝑧𝐵,𝑟 = −

(1−𝜎)𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ+𝑧𝐵,𝑟)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

𝜅𝑟𝑟,𝑧𝐵,𝜃 = −
(1−𝜎)𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ+𝑧𝐵,𝜃)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(4.16). 

 

5) Determination of warpages 
 

For the case of a standard and flat wafer, the warpage can be evaluated from the variation Δ𝜁 of the value 

of the measured z-coordinate between the center and the peripheral region. If 𝜁(𝑟) =
𝜅

2
𝑟2, where 𝜅 is the 

curvature, the Δ𝜁 between the value at 𝑟 = 𝑅𝑒𝑥𝑡 and 𝑟 = 0 is the warpage, which is equal to  
𝜅

2
𝑅𝑒𝑥𝑡

2. 

In the case of a taiko wafer, there are two radiuses that must be considered, 𝑅𝑖𝑛𝑡  and 𝑅𝑒𝑥𝑡. In the substrate 

region, according to details reported in appendix A, the 𝜁𝑖𝑛𝑡(𝑟) function (see eq. A.35) varies with respect 

to the neutral axis and assumes the value 𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) = 𝑎𝑠𝑢𝑏𝑅𝑖𝑛𝑡
2 + 𝑏𝑠𝑢𝑏 at 𝑟 = 𝑅𝑖𝑛𝑡 and  𝜁𝑖𝑛𝑡(0) = 𝑏𝑠𝑢𝑏at 

𝑟 = 0. On the other hand, being  𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) = 𝜁𝑒𝑥𝑡(𝑅𝑖𝑛𝑡) it results that  

 

𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) = 𝜁𝑒𝑥𝑡(𝑅𝑖𝑛𝑡) = −
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑒𝑥𝑡

2

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑅𝑖𝑛𝑡

2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
)] (5.1) 

and being  𝑎𝑠𝑢𝑏 = −
1

2

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

, the warpage 𝜁𝑖𝑛𝑡(0)with respect to the neutral plane is  

𝜁𝑖𝑛𝑡(0) = 𝑏𝑠𝑢𝑏 = 𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) − 𝑎𝑠𝑢𝑏𝑅𝑖𝑛𝑡
2 = 𝜅𝑟𝑟,𝑠𝑢𝑏 [−

𝑅𝑖𝑛𝑡
2

2
+ 𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2−1−(

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2+1)𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

](5.2) 

 

However, the warpage of the taiko wafer, is evaluated with respect to the surface of the ring region, which 

lies at a distance of 𝐻 + 𝑧𝐵 with respect to the neutral axis. Hence, by considering the case of a prevalent 

warping direction, 𝑎𝑠𝑢𝑏
⊥ ≈ 0, with respect to the surface of the external ring, the warpage of the taiko wafer 

is: 

 

𝑤𝑎𝑟𝑝𝑎𝑔𝑒_𝑡𝑎𝑖𝑘𝑜 = 2𝜁𝑖𝑛𝑡(0) + 𝐻 + 𝑧𝐵 = 2𝜅𝑟𝑟,𝑠𝑢𝑏 [−
𝑅𝑖𝑛𝑡

2

2
+ 𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2−1−(

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2+1)𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

] + 𝐻 + 𝑧𝐵      (5.3) 

 

Since there are two values of 𝑧𝐵, 𝑧𝐵,𝑟 and 𝑧𝐵,𝜃, respectively, we have two warpages  

 

𝑤𝑎𝑟𝑝𝑎𝑔𝑒_𝑡𝑎𝑖𝑘𝑜_𝑟𝑎𝑑𝑖𝑎𝑙_𝑓𝑟𝑜𝑚 𝑧𝐵,𝑟  = 2𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝑟 [−
𝑅𝑖𝑛𝑡

2

2
+ 𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2−1−(

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2+1)𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

] + 𝐻 + 𝑧𝐵,𝑟 (5.4) 
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𝑤𝑎𝑟𝑝𝑎𝑔𝑒_𝑡𝑎𝑖𝑘𝑜_𝑟𝑎𝑑𝑖𝑎𝑙 𝑓𝑟𝑜𝑚 𝑧𝐵,𝜃 = 2𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝜃 [−
𝑅𝑖𝑛𝑡

2

2
+ 𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2−1−(

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2+1)𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

] + 𝐻 + 𝑧𝐵,𝜃 (5.2) 

 

 

In table 1 the whole set of quantities determined for the case of a taiko wafer are reported. 

 
Direction Curvatures substrate 

region, 𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝑟, 
𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝜃 

Moments of Inertia 

𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟), 𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃) 

Neutral axis 
𝑧𝐵,𝑟, 𝑧𝐵,𝜃 

Warpages 

Radial 
−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵,𝑟)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)
(1 − 𝜎)

 
|ℎ + 𝑧𝐵,𝑟|

3
+ |𝑧𝐵,𝑟|

3

3
 

 

−
1

2

ℎ2 +
𝐻2𝐼1
1 + 𝜎

ℎ +
𝐻𝐼1
1 + 𝜎

 

 

2𝜁𝑖𝑛𝑡,𝑧𝐵,𝑟(0) + 𝐻 + 𝑧𝐵,𝑟 

Circumferential 

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵,𝜃)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)
(1 − 𝜎)

 
|ℎ + 𝑧𝐵,𝜃|

3
+ |𝑧𝐵,𝜃|

3

3
 

 
−
1

2

ℎ2 +
𝐻2𝐼2
(1 + 𝜎)

ℎ +
𝐻𝐼2

(1 + 𝜎)

 2𝜁𝑖𝑛𝑡,𝑧𝐵,𝜃(0) + 𝐻 + 𝑧𝐵,𝜃 

Table 1. Quantities determined for the case of a taiko wafer. 
 
 
 
 

6) Results and discussion 
 

In the standard practice, a taiko wafer typically has a constant step (𝐻 − ℎ according to figure 2) of hundreds 

of microns. In the case of an 8” taiko Si wafer it holds that 𝑠𝑡𝑒𝑝 + ℎ ≤ 725 𝜇𝑚, being  725 𝜇𝑚 the 

thickness of an 8” Si wafer.  The thickness of the substrate region typically ranges below 100 𝜇𝑚 for the 

case of ultrathin chips (UTC).  

 In table 2, the values of the main parameters used in this work, have been reported. In order to test our 

findings we have calculated the resulting curvatures in the substrate region and the warpages for the case 

of an 8” Si wafer, having a ring width of 3.7 mm and a constant step of 450 𝜇𝑚, as a function of the 

thickness ℎ of the substrate region, with   ℎ ≤ 295 𝜇𝑚 . The properties of the BSM metallization have been 

summarized in terms of a stress 𝜎𝑓, which is of the order of hundreds of MPa, and a thickness of the metal 

film, which ranges between 100 nm and 2000 nm in the case of thick metal layers.  

 

𝑅𝑒𝑥𝑡 
(mm) 

𝐻 (µm) Ring 

width 

(mm) 

𝑅𝑖𝑛𝑡 
(mm) 

𝑆𝑡𝑒𝑝 =
𝐻 − ℎ 

(µm) 

Poisson’s 

coefficient 
𝐸 Young 

Modulus 

of Si 

(GPa) 

𝐼1 𝐼2 

100 725 3.7 96.3 450 0.27 131 -1.58943 5.51814 
 

Table 2. Values of the parameters for the external radius 𝑅𝑒𝑥𝑡, 𝐻, ring width, internal radius 𝑅𝑖𝑛𝑡, step height, Poisson’s coefficient 

and Young modulus 𝐸 for an 8” Si taiko wafer.  In the last two columns the values of the normalized integrals 𝐼1 and 𝐼2 is reported.  

 

 

 

Experimental  

The warpages of six thick BSM 8” Si taiko wafers 90 µm thin, all having a step of 450 µm and a ring width 

of 3.7 mm, have been measured with an MX-204 equipment (E+H Metrology), at room temperature, and 

the measurement have been reported in Fig.3a-3d. The BSMs consist of a multilayer of several metals 
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which result in a global metal stress 𝜎𝑓 and film thickness that ranges from 230 MPa to 450 MPa and from 

1300 nm to 2450 nm, whereas the warpage ranges from 500 µm to about 1300 µm, respectively. The thick 

BSMs have been deposited by one of our suppliers and the values of the metal stress has been determined 

independently on thicker chip size substrates, by exploiting the canonical Stoney formula.  

 

  
Figure 3a. Measured warpage, for the case of an 

8” taiko Si wafer, 90 µm thick, having a measured 

stress of 230 MPa and metal film of 1500 nm, 

respectively. The measured warpage is 506.57 µm. 

Figure 3b. Measured warpage of 874.07 µm for an 

8” taiko Si wafer, 90 µm thick, having a BSM of 

450 MPa and a thickness of 1300 nm.  

 

 
 

Figure 3c. Measured warpage of 900.19 µm for an 

8” taiko Si wafer, 90 µm thick, having a BSM of 

250 MPa and a thickness of 2000 nm.  

 

Figure 3d. Measured warpage of 918.64 µm for an 

8” taiko Si wafer, 90 µm thick, having a BSM of 

400 MPa and a thickness of 1500 nm.  

 

  
Figure 3e. Measured warpage of 1122.44 µm for 

an 8” taiko Si wafer, 90 µm thick, having a BSM 

of 310 MPa and a thickness of 2450 nm.  

Figure 3d. Measured warpage of 1286.18 µm for 

an 8” taiko Si wafer, 90 µm thick, having a BSM 

of 446 MPa and a thickness of 2000 nm.  
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It is evident that all the wafers show a preferential direction of warpage which determine a curl-shape. Table 

3, summarizes and compares the measured warpages for the cases reported in figure 3 from a to d.   

  

 

Step (µm) Substrate 

thickness (µm) 
𝜎𝑓 Metal stress 

(MPa)  

Film thickness 

𝑡𝑓(nm) 

Measured 

warpage (µm) 

450 90 230 1500 506.57 

450 90 450 1300 874.07 

450 90 250 2000 900.19 

450 90 400 1500 918.64 

450 90 310 2450 1122.44 

450 90 446 2000 1286.18 
Table 3. Measured warpages for the case of an 8” Si taiko wafers 90 µm thin, deposited with thick metal layers whose 

thickness and stress values have been obtained by measurements on equivalent thicker non-taiko wafers. On the last 

column it is reported the evaluation of the warpage according to the proposed model.  

 

Calculations 

The warpages 𝜁𝑖𝑛𝑡(0) determined by the neutral axis 𝑧𝐵,𝑟 and 𝑧𝐵,𝜃 respectively, have been calculated 

according to eq. 5.2, by exploiting the values of the curvatures 𝜅𝑟𝑟,𝑧𝐵,𝑟 and  𝜅𝑟𝑟,𝑧𝐵,𝜃 in the substrate region 

gained from the modified Stoney’s equation 4.15, for the six cases of BSM investigated experimentally.     

 Fig. 4a reports the warpages determined by the neutral axis 𝑧𝐵,𝑟 as a function of the substrate thickness (in 

µm), for the six cases of BSMs 8” Si taiko wafer, with thick metallization. The warpages depend on the 

product 𝜎𝑓ℎ𝑓 and decreases as the substrate thickness increases. The values of the warpages for a substrate 

thickness of 90 µm, have been extracted for a comparison with the measured values of the warpages. 

Analogously, in Fig. 4b the warpages determined by the neutral axis  𝑧𝐵,𝜃 have been reported as a function 

of the substrate thickness, for the six cases of BSMs 8” Si taiko wafer, with thick metallization. Also in this 

case the warpages increase as the product 𝜎𝑓ℎ𝑓 increase and decreases as the substrate thickness increases. 

Similarly, also in this case, the values of the warpages for a substrate thickness of 90 µm, have been 

extracted for a comparison with the measured values of the warpages. 
 

In table 4 the extracted values of the warpages determined for the cases of the 90 µm thin substrates have 

been reported for the 𝑧𝐵,𝑟 and 𝑧𝐵,𝜃, respectively.  

 
Measured 

warpage (µm) 

Calculated 

warpage 

𝜁𝑖𝑛𝑡,𝑧𝐵,𝑟 (0) in 

µm, for 90 µm 

thin BSM 8” Si 

taiko wafer. 

𝐻 + 𝑧𝐵,𝑟 

in µm, for a 

90 µm thin 

substrate 

Calculated 

warpage 

𝜁𝑖𝑛𝑡,𝑧𝐵,𝜃 (0) in 

µm, for 90 µm 

thin BSM 8” Si 

taiko wafer. 

𝐻 + 𝑧𝐵,𝜃 

in µm, for a 

90 µm thin 

substrate 

Calculated 

warpage (µm) 

according to 

equation 5.4. 

506.57 211.6 243.6 263.6 276.6 666.9 

874.07 358.8 243.6 446.9 276.6 961.3 

900.19 306.7 243.6 381.9 276.6 857.0 

918.64 368.0 243.6 458.4 276.6 979.9 

1122.44 465.8 243.6 580.2 276.6 1175.3 

1286.18 547.1 243.6 681.4 276.6 1337.9 

Table 4. Extracted values of the warpages determined for the cases of the 90 µm thin substrates by the 

neutral planes 𝑧𝐵,𝑟 and 𝑧𝐵,𝜃, respectively. The values of the surface of the ring with respect to the neutral 

axis  𝐻 + 𝑧𝐵,𝑟 and 𝐻 + 𝑧𝐵,𝜃 are reported for the case of 90 µm thin BSM 8” Si taiko wafer. 
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In fig. 5a the linear correlation between the calculated warpages resulting from the neutral axis 𝑧𝐵,r and the 

measured warpages referred to the neutral axis, that is the value  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑎𝑟𝑝𝑎𝑔𝑒 − (𝐻 + 𝑧𝐵,𝑟), for the 

six measured 8” taiko wafers, 90 µm thin, has been determined. A best fit line corresponding to 𝑦 = 0.53𝑥  

, very close to the theoretical dependence reported in eq. 5.4, has been determined, with an 𝑅2 = 0.99.  

Very similarly, in Fig. 5b, the linear correlation of the calculated warpage determined by the neutral axis 

𝑧𝐵,𝜃  and the measured warpage with respect to the neutral axis (𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑎𝑟𝑝𝑎𝑔𝑒 −  (𝐻 + 𝑧𝐵,𝜃)) for the 

six measured 8” taiko wafers, 90 µm thin.  The calculated data are correlated with the measured ones, 

though the best fit line 𝑦 = 0.69𝑥 is a slightly further than the theoretical value of y=0.5x.   

 

By considering the good agreement with the hypothesized dependence of the warpage, for the 𝑧𝐵,𝑟 neutral 

axis, the linear correlation between the calculated warpages according to eq. 5.4 and the measured warpages 

has been reported in figure 6.  It results that the best fit line has a slope of 1.05, with an interval of 

confidence of 95% ranging between  0.97 and 1.13. The two quantities show a good linear correlation, 

being the  𝑅2 = 0.99. 

 

 

 

  
Figure 4a. Calculated warpages determined by the neutral axis 

𝑧𝐵,𝑟 according to eq. 5.2, as a function of the substrate thickness 

(in µm), for the six cases of BSMs, experimentally tested, 8” Si 

taiko wafer, with thick metallization. The thickness of 90 µm 

is reported and the values of the warpages have been extracted.    

Figure 4b. Calculated warpages determined by the neutral axis 

determined by 𝑧𝐵,𝜃 , according to eq. 5.2, as a function of the 

substrate thickness (in µm), for the six cases of BSMs , 

experimentally tested, 8” Si taiko wafer , with thick 

metallization. The thickness of 90 µm is reported and the 

values of the warpages have been extracted.      

 

 

 

 

 

 

 

 

Figure 5a. Linear correlation between the calculated warpage 

determined by the neutral axis 𝑧𝐵,𝑟   and the measured warpage 

with respect to the neutral axis, for the six measured 8” taiko 

wafers, 90 µm thin.  The best fit line y=0.53x results very close 

to the theoretical value of y=0.5x.   

Figure 5b. Linear correlation between the calculated warpage 

determined by the neutral axis 𝑧𝐵,𝜃   and the measured warpage 

with respect to the neutral axis, for the six measured 8” taiko 

wafers, 90 µm thin.  The calculated data are correlated with 
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the measured ones, though the best fit line y=0.69x is a slightly 

further the theoretical value of y=0.5x.   

 

 

 

 

 
Figure 6.  Linear correlation between the calculated warpage determined by the neutral axis 𝑧𝐵,𝑟 according to equation 5.4  and 

the measured warpage with respect to the neutral axis, for the six measured 8” taiko wafers, 90 µm thin.  The calculated warpage 

shows a good linear correlation with the measured warpage.   

 

 

7) Extension to the case of the 8” SiC taiko wafer.  
It is possible to extend the determination of the warpages, for the case of an 8” SiC taiko wafer.  In particular 

we consider a taiko wafer having the same geometrical characteristics of the 8” Si taiko wafer, that is a 

constant step of 450 µm a ring width of 3.7 mm, a radius of 100 mm.  The parameters exploited in this 

calculation are reported in table 5. 

 

𝑅𝑒𝑥𝑡 
(mm) 

𝐻 (µm) Ring 

width 

(mm) 

𝑅𝑖𝑛𝑡 
(mm) 

𝑆𝑡𝑒𝑝 =
𝐻 − ℎ 

(µm) 

Poisson’s 

coefficient 
𝐸 Young 

Modulus 

of Si 

(GPa) 

𝐼1 𝐼2 

100 775 3.7 96.3 450 0.36 370 -1.48257 6.864387 
Table 5. Values of the parameters for the external radius 𝑅𝑒𝑥𝑡, 𝐻, ring width, internal radius 𝑅𝑖𝑛𝑡, step height, Poisson’s coefficient 

and Young modulus 𝐸 for an 8” SiC taiko wafer.  In the last two columns the values of the normalized integrals 𝐼1 and 𝐼2 is reported.  

 

In figure 7, the calculated warpage according to eq. 5.4 determined by the neutral axis 𝑧𝐵,𝑟 , for an 8” SiC 

taiko wafer, as a function of the substrate thickness (in µm), for the six cases of BSMs, examined for the 

8” Si taiko wafer, with thick metallization, has been reported. 
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Fig.7. Calculated warpages determined by the neutral axis 𝑧𝐵,𝑟 according to eq. 5.4, for an 8” SiC taiko wafer, as a function of 

the substrate thickness (in µm), for the six cases of BSMs, examined for the 8” Si taiko wafer, with thick metallization.  

 

With respect to the case of the 8” Si wafer, the warpages are lower in the case of the 8” SiC taiko wafer.   

However, it occurs to consider that being SiC a brittle material, defects induced by e.g. the back grinding 

process can result into cracks or fractures at wafer or die level, that can results in low flexural stresses.   

 

 

 

 

8) Discussion: the utility of the extended Stoney equation 
 

The extended Stoney equation 2.10 and eq. 5.4 can be usefully combined in order to determine the total 

force 𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚, determined by the BSM, acting on the substrate: 

 

    

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚 = −
𝑤𝑎𝑟𝑝𝑎𝑔𝑒_𝑡𝑎𝑖𝑘𝑜_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−(𝐻+𝑧𝐵,𝑟)

2

[
 
 
 
 
 

−
𝑅𝑖𝑛𝑡

2

2𝑅𝑒𝑥𝑡
2+

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2
−1−(

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2
+1)𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

]
 
 
 
 
 

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)(ℎ+𝑧𝐵,𝑟)𝑅𝑒𝑥𝑡
2    (8.1) 

 

 

 

In table 6 the values of the stresses have been determined for the six cases of BSM examined for an 8” Si 

taiko wafer 90 µm thin, having a step of 450 µm. 

 

 

Step (µm) Substrate 

thickness 

(µm) 

Measured 

warpage 

(µm) 

𝜎𝑓 Metal 

stress (MPa)  

Film 

thickness 

𝑡𝑓(nm) 

𝜎𝑓𝑡𝑓 (𝑃𝑎 ×

𝑚) 
Experimental  

𝜎𝑓𝑡𝑓 (𝑃𝑎 ×

𝑚) 
Calculated 

450 90 506.57 230 1500 345 294 

450 90 874.07 450 1300 585 704 

450 90 900.19 250 2000 500 733 

450 90 918.64 400 1500 600 754 

450 90 1122.44 310 2450 759.5 981 

450 90 1286.18 446 2000 892 1164 
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Table 6. Summary of the properties of the BSM 8” taiko wafers 90 µm thin, having a step of 450 µm. the last two columns report 

the experimental values of the product 𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚  and the calculated values 𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚 according to equation  eq. 8.1 . 

 

 

 
Figure 8. Plot of the calculated 𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚 from eq. 8.1 as a function of the experimental 𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚  and evaluation of the linear 

correlation. An error of 100 Pa x m has been attributed to both quantities. The experimental and calculated values of the product  

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚 are correlated with an R2=0.99. 

 
 

In figure 8 the calculated 𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚 quantity is compared with the experimental 𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚 quantity of the 

corresponding value for the six BSM examined cases of the 8” Si taiko wafer 90 µm thin. The best fit 

analysis suggests a linear and positive correlation with a slope of 1.27. the discrepancy with respect to the 

expected theoretical value of 1 of this quantity can also be determined by the different conditions of 

measurements exploited. Indeed, the experimental value of the stress is determined by exploiting the 

canonical Stoney formula in a thicker Si flat wafer. Clearly the two corresponding substrates can differ and 

determine this discrepancy.  Until now, in the normal practice, a further measurement was needed in order 

to have an estimate of the stress, instead by exploiting eq. 8.1 it is possible to gain a value of the stress 

determined by the BSM film on the taiko substrate.  

In fact, from the values reported in table 8 we can determine a set of corresponding values for the stress, 

directly calculated for the case of the taiko wafers. In table 7 we report the calculated values of the stress 

determined by the BSM film in MPa. In figure 9, the correlation between the experimental and calculated 

values of the stresses is reported. In particular, a slope of 1.24 can be determined with an R2 value of 0.98.  

 

𝜎𝑓 Metal 

stress (MPa) 

Experimental  

Film 

thickness 

𝑡𝑓(nm) 

𝜎𝑓 Metal 

stress (MPa) 

Calculated 

230 1500 196 

450 1300 542 

250 2000 367 

400 1500 502 

310 2450 400 

446 2000 582 
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  Table 7. Calculated metal stresses in MPa, calculated according to the extended Stoney equation,  for the 

six 8” BSM Si taiko wafers examined.   

 

 

 
Fig. 9. Plot of the calculated Metal stress (MPa) vs. the experimental stress value for the six 8” BSM Si 

taiko wafers examined. 

 

Finally, the value of the warpage at a die level can be also easily calculated. Indeed, once the ring is removed 

and the wafer diced into LxL die, the corresponding warpage can be determined according to eq.8.2. 
 

 

𝑊𝑎𝑟𝑝𝑎𝑔𝑒 𝑥, 𝑦 𝑑𝑖𝑒 =
3

8

𝑤𝑎𝑟𝑝𝑎𝑔𝑒_𝑡𝑎𝑖𝑘𝑜_𝑟𝑎𝑑𝑖𝑎𝑙_𝑓𝑟𝑜𝑚 𝑧𝐵,𝑟−(𝐻+𝑧𝐵,𝑟)

[
 
 
 
 

−
𝑅𝑖𝑛𝑡

2

2
+𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2−1−(

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2+1)𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2 ]

 
 
 
 

𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

ℎ
3

(ℎ+𝑧𝐵,𝑟)

ℎ

𝐿𝑥,𝑦
2 (8.2) 

 

 

9) Conclusions 
In conclusion, an extension of the Stoney formula has been developed for the case of an 8” taiko wafer, 

according to the theory of elasticity. It has been shown that the taiko wafer mitigates the warpage, because 

of the presence of the annular region. On one hand the ring region increases the moment applied to the 

substrate. In fact, the neutral axis is shifted upwardly because of the presence of the ring. On the other hand, 

the higher moment applied to the substrate is mitigated by the higher moment of inertia of the section of 

the taiko wafer. Therefore, the resulting warpage, despite a thicker BSM is mitigated and lowered with 

respect to a canonical and flat substrate.   

 The developed model has been validated according to experimental values benchmarked for six case of 8” 

BSM Si taiko wafer, having a substrate thickness of 90 µm and a step of 450 µm. It has been shown that 

there is a good agreement between the developed theory and the experimental values of the warpage. The 

modified Stoney equation has been usefully exploited to gain an estimate of the BSM metal stress. The 

comparison between the measured valued of the stress and the calculated value of the stress shows a linear 

correlation and states the utility of this formulation. Finally, an extension of the model has been considered 

for the case of an 8” SiC BSM taiko wafer.    

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2020                   doi:10.20944/preprints202010.0594.v1

https://doi.org/10.20944/preprints202010.0594.v1


20 
 

 

 

Acknowledgement  
The research activity done in STMicroelectronics leading to the  results  shown  in this paper was partially  

funded  by the H2020-ECSEL Joint Undertaking  under  grant  agreement  n  783158,  REACTION(first 

and euRopEAn siC eigTh Inches pilOt liNe) Project and by  the  Italian  Ministry  of  Economic 

Development  (MiSE)  in  the  frame  of  the Important Project of Common European Interest (IPCEI).  

 

Contributions 
A.L. proposed the case to V.V. and elaborated an earliest explanation according to the beam theory. V.V. 

elaborated the model of warpage according to the theory of elasticity and drafted the initial version of the 

paper. A.L. conducted and provided the warpage measurements on the six thick BSM wafers. A.L. and 

V.V. have elaborated the results section and both edited the final version of the paper. 

 

 

References 
 

[1]  J. Lutz, H. Schlangenotto, U. Scheuermann and R. De Doncker, Semiconductor power devices: 

Physics, characteristics, reliability, Springer International Publishing, 2018, pp. 1-714. 

[2]  T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, 

Characterization, Devices and Applications, vol. 9781118313527, 2014.  

[3]  V. Benda, "Power semiconductors - State of art and future trends," in AIP Conference Proceedings, 

2011.  

[4]  P. Fiorenza, F. Giannazzo and F. Roccaforte, Characterization of SiO2/4H-SiC interfaces in 4H-SiC 

MOSFETs: A review, vol. 12, 2019.  

[5]  G. Pope and P. A. Mawby, "Improved 4H-silicon carbide Schottky diodes using multiple metal 

alloy contacts," in 2002 23rd International Conference on Microelectronics, MIEL 2002 - 

Proceedings, 2002.  

[6]  A. M. e. al, "The "first and euRopEAn siC eighT Inches pilOt liNe": a project, called REACTION, 

that will boost key SiC Technologies upgrading (developments) in Europe, unleashing Applications 

in the Automotive Power Electronics Sector) to 2020 AEIT International Confe," [Online].  

[7]  R. E.-J. Project, "https://www.ecsel.eu/projects/reaction," [Online].  

[8]  S Yoshida et al., "“Wafer Grinding Method” United States Patent US7462094B2,". 2008. 

[9]  D. Co., "http://www.disco.co.jp/eg/solution/library/taiko.html," [Online]. (Reproduced with 

permision). 

[10]  A. Dhadda, R. Montgomery, P. Jones, J. Heirene, R. Kuthakis and F. Bieck, "Processing of ultrathin 

wafers for power chip applications," in Proceedings of the 2012 IEEE 14th Electronics Packaging 

Technology Conference, EPTC 2012, 2012.  

[11]  S. Gupta, W. T. Navaraj, L. Lorenzelli and R. Dahiya, Ultra-thin chips for high-performance 

flexible electronics, vol. 2, 2018.  

[12]  G. Klug, "Advanced solutions for ultra-thin wafers and packaging," in 2009 European 

Microelectronics and Packaging Conference, EMPC 2009, 2009.  

[13]  Z. Dong and Y. Lin, Ultra-thin wafer technology and applications: A review, vol. 105, 2020.  

[14]  J. N. Burghartz, Ultra-thin chip technology and applications, 2011.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2020                   doi:10.20944/preprints202010.0594.v1

https://doi.org/10.20944/preprints202010.0594.v1


21 
 

[15]  J. N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter and M. Zimmermann, "Ultra-thin 

chip technology and applications, a new paradigm in silicon technology," in Solid-State Electronics, 

2010.  

[16]  Y. Kobayashi, M. Plankensteiner and M. Honda, "Thin wafer handling and processing without 

carrier substrates," in Ultra-thin Chip Technology and Applications, 2011.  

[17]  X. Feng, Y. Huang and A. J. Rosakis, "On the stoney formula for a thin film/substrate system with 

nonuniform substrate thickness," Journal of Applied Mechanics, Transactions ASME, vol. 74, no. 6, 

2007.  

[18]  A. Mallik, R. Stout and J. Ackaert, "Finite-element simulation of different kinds of wafer warpages: 

Spherical, cylindrical, and saddle," IEEE Transactions on Components, Packaging and 

Manufacturing Technology, vol. 4, no. 2, 2014.  

[19]  A. Mallik and R. Stout, "Simulation of process-stress induced warpage of silicon wafers using 

ANSYS® finite element analysis," in 43rd International Symposium on Microelectronics 2010, 

IMAPS 2010, 2010.  

[20]  A. H. Abdelnaby, G. P. Potirniche, F. Barlow, A. Elshabini, S. Groothuis and R. Parker, "Numerical 

simulation of silicon wafer warpage due to thin film residual stresses," in IEEE Workshop on 

Microelectronics and Electron Devices, WMED, 2013.  

[21]  G. T. Ostrowicki and S. P. Gurrum, "A stress-based effective film technique for wafer warpage 

prediction of arbitrarily patterned films," in Proceedings - Electronic Components and Technology 

Conference, 2014.  

[22]  "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of 

London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82, no. 553, 

pp. 172-175, 6 5 1909.  

[23]  G. C. Janssen, M. M. Abdalla, F. van Keulen, B. R. Pujada and B. van Venrooy, Celebrating the 

100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel 

strips to single crystal silicon wafers, vol. 517, 2009, pp. 1858-1867. 

[24]  S. Gao, Z. Dong, R. Kang, B. Zhang and D. Guo, "Warping of silicon wafers subjected to back-

grinding process," Precision Engineering,Volume 40, April 2015, Pages 87-93, 2015.  

[25]  O. A. Bauchau and J. I. Craig, "Euler-Bernoulli beam theory," 2009, pp. 173-221. 

[26]  L. D. Landau, E. M. Lifshitz, J. B. Sykes, W. H. Reid and E. H. Dill, Theory of Elasticity: Vol. 7 of 

Course of Theoretical Physics, Oxford, New York, Toronto: Pergamon Press, 1960.  

[27]  S. Timoshenko and J. N. Goodier, Theory of elasticity., New York: McGraw-Hill, 1970.  

[28]  J. H. Michell, "On the direct determination of stress in an elastic solid, with application to the 

theory of plates," Proceedings of the London Mathematical Society, Vols. s1-31, no. 1, 1899.  

[29]  R. J. Y. W. C. B. R. G. &. S. A. M. Roark, Roark's formulas for stress and strain., 2012.  

[30]  J. W. Eischen and J. S. Everett, "Thermal stress analysis of a bimaterial strip subject to an axial 

temperature gradient," Journal of Electronic Packaging, Transactions of the ASME, vol. 111, no. 4, 

pp. 282-288, 1989.  

 

 
 
 
 
 
 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2020                   doi:10.20944/preprints202010.0594.v1

https://doi.org/10.20944/preprints202010.0594.v1


22 
 

Supporting information 

Appendix A: Determination of  𝜁𝑒𝑥𝑡(𝑟) 
If the taiko wafer is supported at 𝑟 = 𝑅𝑒𝑥𝑡 by following Landau, the boundary conditions tell us that the 

there is no vertical displacement at the edge 𝑟 = 𝑅𝑒𝑥𝑡 and that the bending moment is zero:  

 

{

𝜁𝑒𝑥𝑡(𝑅𝑒𝑥𝑡) = 0

𝑀𝑟,𝑟𝑖𝑛𝑔(𝑅𝑒𝑥𝑡) =
𝐸𝐼𝑟𝑖𝑛𝑔

(1−𝜎2)
(
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
𝜎

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) = 0
    (A.1) 

 

 

In order to determine the four constants 𝑎, 𝑏, 𝑐, and 𝑑, two additional equations are required, to solve 

alongside with the boundary conditions for 𝜁𝑒𝑥𝑡.  
 

 

{
 
 
 
 
 

 
 
 
 
 

𝑎𝑅𝑒𝑥𝑡
2 + 𝑏 = 0

𝐸𝐼𝑟𝑖𝑛𝑔

(1−𝜎2)
(
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
𝜎

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) = 0

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵 + ℎ)

𝐸𝐼𝑟𝑖𝑛𝑔

(1−𝜎2)
(𝜎

𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
|
𝑅𝑒𝑥𝑡

+
1

𝑅𝑒𝑥𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑒𝑥𝑡

) = 0

(A.2) 

 

 

 

By calculating the first and the second derivative of  𝜁𝑒𝑥𝑡(𝑟), we obtain: 

 

 

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 2𝑎𝑟 + 2𝑐𝑟𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 𝑐𝑟2

1

𝑅𝑒𝑥𝑡
𝑟

𝑅𝑒𝑥𝑡

+ 𝑑

1

𝑅𝑒𝑥𝑡
𝑟

𝑅𝑒𝑥𝑡

= 2𝑎𝑟 + 2𝑐𝑟𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
) + 𝑐𝑟 + 𝑑

1

𝑟
  (A3) 

 

𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
= 2𝑎 + 𝑐 + 2𝑐𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 2𝑐𝑟

1

𝑅𝑒𝑥𝑡
𝑟

𝑅𝑒𝑥𝑡

−
𝑑

𝑟2
= 2𝑎 + 3𝑐 + 2𝑐𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) −

𝑑

𝑟2
  (A4) 

 

 

 

 

 
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 2𝑎 + 3𝑐 + 2𝑐𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) −

𝑑

𝑟2
+
𝜎

𝑟
(2𝑎𝑟 + 2𝑐𝑟𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 𝑐𝑟 + 𝑑

1

𝑟
) = 2𝑎(1 + 𝜎) +

2𝑐𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) + 𝑐(3 + 𝜎) −

𝑑

𝑟2
(1 − 𝜎) (A5) 
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𝜎
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 2𝑎𝜎 + 3𝑐𝜎 + 2𝑐𝜎𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) −

𝑑𝜎

𝑟2
+ 2𝑎 + 2𝑐𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 𝑐 +

𝑑

𝑟2
= 2𝑎(1 + 𝜎) +

𝑐(3𝜎 + 1) + 2𝑐𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) +

𝑑

𝑟2
(1 − 𝜎) (A6) 

 

 

 

{
 
 
 
 
 

 
 
 
 
 

𝑎𝑅𝑒𝑥𝑡
2 + 𝑏 = 0

2𝑎(1 + 𝜎) + 𝑐(3 + 𝜎) −
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = 0

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵 + ℎ)

2𝑎(1 + 𝜎) + 𝑐(3𝜎 + 1) +
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = 0

(A.7) 

 

 

 

{
 

 2𝑎(1 + 𝜎) + 𝑐(3 + 𝜎) −
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = 0

2𝑎(1 + 𝜎) + 𝑐(3𝜎 + 1) +
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = 0

(A.8) 

 

 

 

{
 

 𝑐(3 + 𝜎) −
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎)

𝑐(3𝜎 + 1) +
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎)

(A.9) 

 

 

𝛥 = |
(3 + 𝜎) −

1

𝑅𝑒𝑥𝑡
2 (1 − 𝜎)

(3𝜎 + 1)
1

𝑅𝑒𝑥𝑡
2 (1 − 𝜎)

| = (3 + 𝜎)
1

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) + (3𝜎 + 1)

1

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) =

1

𝑅𝑒𝑥𝑡
2 [(3 + 𝜎)(1 − 𝜎) + (3𝜎 + 1)(1 − 𝜎)] =

1

𝑅𝑒𝑥𝑡
2 [3 − 3𝜎 + 𝜎 − 𝜎

2 + 3𝜎 − 3𝜎2 + 1 − 𝜎] =

1

𝑅𝑒𝑥𝑡
2 [4 − 4𝜎

2] (A10) 

 

 

 

 

 

𝑐 =

|

−2𝑎(1+𝜎) −
1

𝑅𝑒𝑥𝑡
2(1−𝜎)

−2𝑎(1+𝜎)
1

𝑅𝑒𝑥𝑡
2(1−𝜎)

|

4(1−𝜎2)

𝑅𝑒𝑥𝑡
2

=
−2𝑎(1+𝜎)(1−𝜎)−2𝑎(1+𝜎)(1−𝜎)

4(1−𝜎2)
= −𝑎 (A11) 
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𝑑 =
|
(3+𝜎) −2𝑎(1+𝜎)
(3𝜎+1) −2𝑎(1+𝜎)

|

4(1−𝜎2)

𝑅𝑒𝑥𝑡
2

=
2𝑎(1+𝜎)[−(3+𝜎)+(3𝜎+1)]

4(1−𝜎2)

𝑅𝑒𝑥𝑡
2

=
2𝑎(1+𝜎)2[−1+𝜎]

4(1−𝜎2)

𝑅𝑒𝑥𝑡
2

 = −𝑎𝑅𝑒𝑥𝑡
2 (A12) 

 

 

 

{
 
 

 
 𝑐(3 + 𝜎) −

𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎)

𝑐(3𝜎 + 1) +
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎)

(A13) 

 

 

{
 
 

 
 𝑐(4 + 4𝜎) = −4𝑎(1 + 𝜎)

𝑐(3𝜎 + 1) +
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎)

 (A14) 

 

 

{
 

 
𝑐 = −𝑎

𝑐(3𝜎 + 1) +
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎)

 (A15) 

 

{
 

 
𝑐 = −𝑎

−𝑎(3𝜎 + 1) +
𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎)

 (A16) 

 

 

{
 

 
𝑐 = −𝑎

𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎(1 + 𝜎) + 𝑎(3𝜎 + 1)

  (A17) 

 

 

{
 

 
𝑐 = −𝑎

𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −2𝑎 − 2𝑎𝜎 + 3𝑎𝜎 + 𝑎

 (A18) 

 

{
 

 
𝑐 = −𝑎

𝑑

𝑅𝑒𝑥𝑡
2 (1 − 𝜎) = −𝑎 + 𝑎𝜎

 (A19) 
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{
 
 

 
 
𝑐 = −𝑎

𝑑

𝑅𝑒𝑥𝑡
2 = −𝑎

𝑐 =
𝑑

𝑅𝑒𝑥𝑡
2

    (A20) 

 

 

 

 

{
 
 
 
 
 

 
 
 
 
 𝜁𝑒𝑥𝑡(𝑟) = 𝑎𝑟

2 + 𝑏 + 𝑐𝑟2𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
) + 𝑑𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
)

𝑏 = −𝑎𝑅𝑒𝑥𝑡
2

𝑐 = −𝑎

𝑑 = −𝑎𝑅𝑒𝑥𝑡
2

𝐸𝐼𝑠𝑢𝑏
(1 − 𝜎)

𝜕2𝜁𝑖𝑛𝑡
𝜕𝑟2

= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵 + ℎ)

(𝐴21) 

 
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 2𝑎(1 + 𝜎) − 2𝑎𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) − 𝑎(3 + 𝜎) +

𝑎𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎) (A22) 

 
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 𝑎 [2(1 + 𝜎) − 2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) − (3 + 𝜎) +

𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎)](A23) 

 

 

𝜎
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 𝑎 [2(1 + 𝜎) − (3𝜎 + 1) − 2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) −

𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎)](A24) 

 

 

 

{
 
 

 
 𝜁𝑒𝑥𝑡(𝑟) = 𝑎 [𝑟

2 − 𝑅𝑒𝑥𝑡
2 − 𝑟2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) − 𝑅𝑒𝑥𝑡

2𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
)]

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵 + ℎ)

(A.25) 

 

In the internal and thinned substrate region, 0 ≤ 𝑟 ≤ 𝑅𝑖𝑛𝑡, the solution of the biharmonic equation is  

 

𝜁𝑖𝑛𝑡 = 𝑎𝑠𝑢𝑏𝑟
2 + 𝑏𝑠𝑢𝑏 (A.26) 

 

by imposing the continuity of the functions and of the first derivatives in   𝑟 = 𝑅𝑖𝑛𝑡 for 𝜁𝑖𝑛𝑡(𝑟) and  𝜁𝑒𝑥𝑡(𝑟), 
we obtain: 

{

𝜁𝑒𝑥𝑡(𝑅𝑖𝑛𝑡) = 𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡)

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

=
𝜕𝜁𝑖𝑛𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

(A.27) 
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Moreover, being 
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑅𝑖𝑛𝑡

=
1

𝑅𝑖𝑛𝑡

𝜕𝜁𝑖𝑛𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

, we gain a condition on 
𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

. In fact  
1

𝑅𝑖𝑛𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

=

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑅𝑖𝑛𝑡

 

 
𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 2𝑎𝑟 + 2𝑐𝑟𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) + 𝑐𝑟 + 𝑑

1

𝑟
  (A28) 

 

 
1

𝑅𝑖𝑛𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

= 2𝑎 − 2𝑎𝑙𝑛 (
𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
) − 𝑎 −

𝑎𝑅𝑒𝑥𝑡
2

𝑅𝑖𝑛𝑡
2  (A29) 

 
1

𝑅𝑖𝑛𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

= 𝑎 [1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
) −

𝑅𝑒𝑥𝑡
2

𝑅𝑖𝑛𝑡
2] (A30) 

 

 

 

{
 
 
 
 

 
 
 
 𝜁𝑒𝑥𝑡(𝑟) = 𝑎 [𝑟

2 − 𝑅𝑒𝑥𝑡
2 − 𝑟2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) − 𝑅𝑒𝑥𝑡

2𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
)]

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵 + ℎ)

1

𝑅𝑖𝑛𝑡

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
|
𝑅𝑖𝑛𝑡

=
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑅𝑖𝑛𝑡

= 𝑎 [1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
) −

𝑅𝑒𝑥𝑡
2

𝑅𝑖𝑛𝑡
2]

(A.31) 

 

 

Hence  

 

𝑎 =

𝜕2𝜁𝑖𝑛𝑡
𝜕𝑟2

|
𝑅𝑖𝑛𝑡

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

=
−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑜𝑔(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

  (A.32) 

 

 

In conclusion, 

 

 

{
 
 

 
 𝜁𝑒𝑥𝑡(𝑟) = −

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[𝑟2 − 𝑅𝑒𝑥𝑡
2 − 𝑟2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) − 𝑅𝑒𝑥𝑡

2𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
)]

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵 + ℎ)

(A.34) 

 

Or also  
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{
 
 

 
 𝜁𝑒𝑥𝑡(𝑟) = −

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑒𝑥𝑡
2

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑟2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑟2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
)]

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵 + ℎ)

(A.35) 

 

 

 

Appendix B: Curvatures 
According to equation A.35 of appendix A, by considering that there are the two values of 𝑧𝐵 , two 

curvatures, indicated with the subscript 𝑧𝐵,𝑟 and 𝑧𝐵,𝜃, will result in the substrate region: 

 

{
 
 

 
 
𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑧𝐵,𝑟

= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵,𝑟)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑧𝐵,𝜃

= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(ℎ + 𝑧𝐵,𝜃)

(4.17) 

 

which allow us to calculate two functions 𝜁𝑒𝑥𝑡(𝑟), evaluated along the two neutral axes: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝜁𝑒𝑥𝑡,𝑧𝐵,𝑟(𝑟) = −

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝑟+ℎ)𝑅𝑒𝑥𝑡
2

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑟2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑟2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
)]

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑧𝐵,𝑟

= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝑟 + ℎ)

𝜁𝑒𝑥𝑡,𝑧𝐵,𝜃(𝑟) = −
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝜃+ℎ)𝑅𝑒𝑥𝑡

2

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑟2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑟2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
)]

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)

𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
|
𝑧𝐵,𝜃

= −𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝜃 + ℎ)

(B.1) 

 

In particular, in the ring region 𝑅𝑖𝑛𝑡 < 𝑟 ≤ 𝑅𝑒𝑥𝑡 the curvatures are the following: 
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 𝜅𝑟𝑟,𝑟𝑖𝑛𝑔,𝑧𝐵,𝑟 =

𝜕2𝜁𝑒𝑥𝑡,𝑧𝐵,𝑟

𝜕𝑟2
+

𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑧𝐵,𝑟

𝜕𝑟
=

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝑟+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]
[𝜎 − 1 − 2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) +

𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎)]

𝜅𝜃𝜃,𝑟𝑖𝑛𝑔,𝑧𝐵,𝑟 = 𝜎
𝜕2𝜁𝑒𝑥𝑡,𝑧𝐵,𝑟

𝜕𝑟2
+

1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑧𝐵,𝑟

𝜕𝑟
=

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝑟+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]
[1 − 𝜎 − 2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) −

𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎)]

𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝑟 = 𝜅𝜃𝜃,𝑠𝑢𝑏,𝑧𝐵,𝑟 =
−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝑟+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]
[1 − 2𝑙𝑛 (

𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
) −

𝑅𝑒𝑥𝑡
2

𝑅𝑖𝑛𝑡
2]

𝜅𝑟𝑟,𝑟𝑖𝑛𝑔,𝑧𝐵,𝜃 =
𝜕2𝜁𝑒𝑥𝑡,𝑧𝐵,𝜃

𝜕𝑟2
+

𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑧𝐵,𝜃

𝜕𝑟
=

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝜃+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[𝜎 − 1 − 2𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) +

𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎)]

𝜅𝜃𝜃,𝑟𝑖𝑛𝑔,𝑧𝐵,𝜃 = 𝜎
𝜕2𝜁𝑒𝑥𝑡,𝑧𝐵,𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑧𝐵,𝜃

𝜕𝑟
=

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝜃+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[1 − 𝜎 − 2𝑙𝑛 (
𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) −

𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎)]

𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝜃 = 𝜅𝜃𝜃,𝑠𝑢𝑏,𝑧𝐵,𝜃 =
−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝜃+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)
[1−2𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
) −

𝑅𝑒𝑥𝑡
2

𝑅𝑖𝑛𝑡
2]

(B.2) 

 

 

By exploiting also the canonical Stoney equation eq (1.1): 

𝜅𝑆𝑡𝑜𝑛𝑒𝑦 =
−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚 ℎ 2⁄

𝐸ℎ3

12(1 − 𝜎)

 

 

The relative curvatures can be expressed as: 

 

 

 

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 𝜅𝑟𝑟,𝑟𝑖𝑛𝑔,𝑧𝐵,𝑟

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

𝑧𝐵,𝑟+ℎ

ℎ 2⁄

ℎ
3

12𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)
[
𝜎−1 −2𝑙𝑛(

𝑟

𝑅𝑒𝑥𝑡
)(1+𝜎)+

𝑅𝑒𝑥𝑡
2

𝑟2
(1−𝜎)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

]

𝜅𝜃𝜃,𝑟𝑖𝑛𝑔,𝑧𝐵,𝑟

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

𝑧𝐵,𝑟+ℎ

ℎ 2⁄

ℎ
3

12𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)
[
1−𝜎−2𝑙𝑛(

𝑟

𝑅𝑒𝑥𝑡
)(1+𝜎)−

𝑅𝑒𝑥𝑡
2

𝑟2
(1−𝜎)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

]

𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝑟

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

𝜅𝜃𝜃,𝑠𝑢𝑏,𝑧𝐵,𝑟

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝑟+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

(1−𝜎)

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚ℎ 2⁄

𝐸ℎ3

12(1−𝜎)

⁄ =
𝑧𝐵,𝑟+ℎ

ℎ 2⁄

ℎ
3

12𝐼𝑠𝑢𝑏(𝑧𝐵,𝑟)

𝜅𝑟𝑟,𝑟𝑖𝑛𝑔,𝑧𝐵,𝜃

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

𝑧𝐵,𝜃+ℎ

ℎ 2⁄

ℎ
3

12𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)
[
𝜎−1 −2𝑙𝑛(

𝑟

𝑅𝑒𝑥𝑡
)(1+𝜎)+

𝑅𝑒𝑥𝑡
2

𝑟2
(1−𝜎)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

]

𝜅𝜃𝜃,𝑟𝑖𝑛𝑔,𝑧𝐵,𝜃

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

𝑧𝐵,𝜃+ℎ

ℎ 2⁄

ℎ
3

12𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)
[
1−𝜎−2𝑙𝑛(

𝑟

𝑅𝑒𝑥𝑡
)(1+𝜎)−

𝑅𝑒𝑥𝑡
2

𝑟2
(1−𝜎)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

]

𝜅𝑟𝑟,𝑠𝑢𝑏,𝑧𝐵,𝜃

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

𝜅𝜃𝜃,𝑠𝑢𝑏,𝑧𝐵,𝜃

𝜅𝑆𝑡𝑜𝑛𝑒𝑦
=

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵,𝜃+ℎ)

𝐸𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(1−𝜎)

−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚ℎ 2⁄

𝐸ℎ3

12(1−𝜎)

⁄ =
𝑧𝐵,𝜃+ℎ

ℎ 2⁄

ℎ
3

12𝐼𝑠𝑢𝑏(𝑧𝐵,𝜃)

(B.3) 
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Appendix C: evaluation of the integrals  
 

The integral appearing in the equation of the 𝑧𝐵 can be easily evaluated from the function of 𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚(𝑟) 
 

𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚(𝑟) =
𝑟2−𝑅𝑒𝑥𝑡

2−𝑟2𝑙𝑛(
𝑟

𝑅𝑒𝑥𝑡
)−𝑅𝑒𝑥𝑡

2𝑙𝑛(
𝑟

𝑅𝑒𝑥𝑡
)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

  (C1) 

 

Indeed, being  

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟
=

[2(1+𝜎)−2𝑙𝑛(
𝑟

𝑅𝑒𝑥𝑡
)(1+𝜎)−(3+𝜎)+

𝑅𝑒𝑥𝑡
2

𝑟2
(1−𝜎)]

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

 (C2) 

The value of the integral is  

 

∫ (
𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟
) 𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

=
∫ [2(1+𝜎)−2𝑙𝑛(

𝑟

𝑅𝑒𝑥𝑡
)(1+𝜎)−(3+𝜎)+

𝑅𝑒𝑥𝑡
2

𝑟2
(1−𝜎)]𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

=

(𝜎−1)
1

2
(𝑅𝑒𝑥𝑡

2−𝑅𝑖𝑛𝑡
2)+𝑅𝑒𝑥𝑡

2(1−𝜎)𝑙𝑛(
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)−(1+𝜎)∫ 2𝑙𝑛(
𝑟

𝑅𝑒𝑥𝑡
)𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

=

(𝜎−1)
1

2
(𝑅𝑒𝑥𝑡

2−𝑅𝑖𝑛𝑡
2)+𝑅𝑒𝑥𝑡

2(1−𝜎)𝑙𝑛(
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)−(1+𝜎)[𝑙𝑛(
𝑅𝑒𝑥𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑒𝑥𝑡
2−

𝑅𝑒𝑥𝑡
2

2
−𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑖𝑛𝑡
2+

𝑅𝑖𝑛𝑡
2

2
]

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

=

(𝜎−1)
1

2
(𝑅𝑒𝑥𝑡

2−𝑅𝑖𝑛𝑡
2)+𝑅𝑒𝑥𝑡

2(1−𝜎)𝑙𝑛(
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)−(1+𝜎)[
𝑅𝑖𝑛𝑡

2

2
−
𝑅𝑒𝑥𝑡

2

2
−𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑖𝑛𝑡
2]

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

 (C3) 

 

 

 

∫ (
𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟
) 𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

=

(𝜎−1)
1

2
(𝑅𝑒𝑥𝑡

2−𝑅𝑖𝑛𝑡
2)+𝑅𝑒𝑥𝑡

2(1−𝜎)𝑙𝑛(
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)−(1+𝜎)[
𝑅𝑖𝑛𝑡

2

2
−
𝑅𝑒𝑥𝑡

2

2
−𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑖𝑛𝑡
2]

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

(C4) 

 

Analogously, we can calculate the integral   

 

∫ (𝜎
𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟
) 𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

 (C5) 

 

𝜎
𝜕2𝜁𝑒𝑥𝑡

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡

𝜕𝑟
= 𝑎 [2(1 + 𝜎) − (3𝜎 + 1) − 2𝑙𝑛 (

𝑟

𝑅𝑒𝑥𝑡
) (1 + 𝜎) −

𝑅𝑒𝑥𝑡
2

𝑟2
(1 − 𝜎)] (C6) 
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With  

𝑎 =

𝜕2𝜁𝑖𝑛𝑡
𝜕𝑟2

|
𝑅𝑖𝑛𝑡

[1−2𝑙𝑜𝑔(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

=
−𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑜𝑔(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

  (C7) 

 

∫ (𝜎
𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

) 𝑟𝑑𝑟
𝑅𝑒𝑥𝑡

𝑅𝑖𝑛𝑡

= ∫
1 − 𝜎 − 2𝑙𝑛 (

𝑟
𝑅𝑒𝑥𝑡

) (1 + 𝜎) −
𝑅𝑒𝑥𝑡

2

𝑟2
(1 − 𝜎)

1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

𝑟𝑑𝑟
𝑅𝑒𝑥𝑡

𝑅𝑖𝑛𝑡

=
(1 − 𝜎)∫ 𝑟𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

− (1 + 𝜎)∫ 2𝑙𝑛 (
𝑟
𝑅𝑒𝑥𝑡

) 𝑟𝑑𝑟
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

− (1 − 𝜎)𝑅𝑒𝑥𝑡
2 ∫

1
𝑟
𝑑𝑟

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

=
(1 − 𝜎)

1
2 (
𝑅𝑒𝑥𝑡

2 − 𝑅𝑖𝑛𝑡
2) − (1 + 𝜎)∫ 2𝑙𝑛 (

𝑟
𝑅𝑒𝑥𝑡

) 𝑟𝑑𝑟 − (1 − 𝜎)𝑅𝑒𝑥𝑡
2𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)
𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

=

(1 − 𝜎)
1
2 (𝑅𝑒𝑥𝑡

2 − 𝑅𝑖𝑛𝑡
2) − (1 + 𝜎)(𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑒𝑥𝑡
2 −

𝑅𝑒𝑥𝑡
2

2 − 𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑖𝑛𝑡
2 +

𝑅𝑖𝑛𝑡
2

2 ) − (1 − 𝜎)𝑅𝑒𝑥𝑡
2𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)

1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

 

(C8) 

 

∫ (𝜎
𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚

𝜕𝑟2
+
1

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

) 𝑟𝑑𝑟
𝑅𝑒𝑥𝑡

𝑅𝑖𝑛𝑡

=

(1 − 𝜎)
1
2 (
𝑅𝑒𝑥𝑡

2 − 𝑅𝑖𝑛𝑡
2) − (1 + 𝜎)(𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑒𝑥𝑡
2 −

𝑅𝑒𝑥𝑡
2

2
− 𝑙𝑛 (

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑖𝑛𝑡
2 +

𝑅𝑖𝑛𝑡
2

2 ) − (1 − 𝜎)𝑅𝑒𝑥𝑡
2𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)

1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

 

 

(C10) 
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1

𝑅𝑖𝑛𝑡
2 ∫ (

𝜕2𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟2

+
𝜎

𝑟

𝜕𝜁𝑒𝑥𝑡,𝑁𝑜𝑟𝑚
𝜕𝑟

) 𝑟𝑑𝑟
𝑅𝑒𝑥𝑡

𝑅𝑖𝑛𝑡

=
1

𝑅𝑖𝑛𝑡
2

(𝜎 − 1)(𝑅𝑒𝑥𝑡
2 − 𝑅𝑖𝑛𝑡

2) + 𝑅𝑒𝑥𝑡
2(1 − 𝜎)𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

) − (1 + 𝜎) [
𝑅𝑖𝑛𝑡

2

2
−
𝑅𝑒𝑥𝑡

2

2
− 𝑙𝑛 (

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)𝑅𝑖𝑛𝑡
2]

[1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

=

(𝜎 − 1)(
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2 − 1) +

𝑅𝑒𝑥𝑡
2

𝑅𝑖𝑛𝑡
2 (1 − 𝜎)𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

) − (1 + 𝜎) [
1
2
−
𝑅𝑒𝑥𝑡

2

2𝑅𝑖𝑛𝑡
2 − 𝑙𝑛 (

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)]

[1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

= (
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2 − 1)

(𝜎 − 1) +

𝑅𝑒𝑥𝑡
2

𝑅𝑖𝑛𝑡
2 (1 − 𝜎)𝑙𝑛 (

𝑅𝑒𝑥𝑡
𝑅𝑖𝑛𝑡

)

(
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2 − 1)

− (1 + 𝜎)

[
1
2
−
𝑅𝑒𝑥𝑡

2

2𝑅𝑖𝑛𝑡
2 − 𝑙𝑛 (

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)]

(
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2 − 1)

[1 − 2𝑙𝑛 (
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

) −
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

 

 

(C11) 

 

 

Appendix D: Warpages 

Because of eq. 4.17, since 2𝑎𝑠𝑢𝑏 =
𝜕2𝜁𝑖𝑛𝑡

𝜕𝑟2
, it results that  𝜁𝑖𝑛𝑡(𝑟) = −

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑟
2

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

+ 𝑏𝑠𝑢𝑏 . 

 

Being (see eq. A.11 and A.14)  

𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) = 𝜁𝑒𝑥𝑡(𝑅𝑖𝑛𝑡) = −
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑒𝑥𝑡

2

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑅𝑖𝑛𝑡

2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
)] (D1) 

 

where 

𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) = −
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑖𝑛𝑡

2

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

+ 𝑏𝑠𝑢𝑏(D2) 

and 

𝑏𝑠𝑢𝑏 = 𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) +
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑖𝑛𝑡

2

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

 (D3) 

Finally, it is obtained 

𝜁𝑖𝑛𝑡(𝑟) = −
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑟

2

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

+ 𝜁𝑖𝑛𝑡(𝑅𝑖𝑛𝑡) +
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑖𝑛𝑡

2

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

 (D4) 

That can be expressed also as,  

𝜁𝑖𝑛𝑡(𝑟) = −
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)(𝑟

2−𝑅𝑖𝑛𝑡
2)

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

+ 𝜁𝑒𝑥𝑡(𝑅𝑖𝑛𝑡) = −
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑒𝑥𝑡

2(
𝑟2

𝑅𝑒𝑥𝑡
2−

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2)

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

−

𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑒𝑥𝑡
2

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑅𝑖𝑛𝑡

2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
)]  (D5) 
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The 𝜁𝑖𝑛𝑡(𝑟) value at 𝑟 = 0 is  

 

 

𝜁𝑖𝑛𝑡(0) =
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑖𝑛𝑡

2

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

−
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑒𝑥𝑡

2

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑅𝑖𝑛𝑡

2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
)](D6) 

 

Or also  

𝜁𝑖𝑛𝑡(0) =
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑖𝑛𝑡

2

2
𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

−
𝜎𝑓𝑖𝑙𝑚ℎ𝑓𝑖𝑙𝑚(𝑧𝐵+ℎ)𝑅𝑒𝑥𝑡

2

𝐸𝐼𝑠𝑢𝑏
(1−𝜎)

[1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2]

[
𝑅𝑖𝑛𝑡

2

𝑅𝑒𝑥𝑡
2 − 1 − (

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2 + 1) 𝑙𝑛 (

𝑅𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
)](D7) 

 

Which can be expressed also as  

 

𝜁𝑖𝑛𝑡(0) = 𝜅𝑟𝑟,𝑠𝑢𝑏 [−
𝑅𝑖𝑛𝑡

2

2
+ 𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2−1−(

𝑅𝑖𝑛𝑡
2

𝑅𝑒𝑥𝑡
2+1)𝑙𝑛(

𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)

1−2𝑙𝑛(
𝑅𝑖𝑛𝑡
𝑅𝑒𝑥𝑡

)−
𝑅𝑒𝑥𝑡

2

𝑅𝑖𝑛𝑡
2

](D8) 

This is the Warpage with respect to the neutral axis.  
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