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Abstract: There is a marked momentum towards the use of clean hydrogen energy as an alternative 

for fossil fuels. Renewable energies such as solar and wind are being used to generate hydrogen 

from the water hydrolysis process. Indeed, this approach stores renewable energies in the form of 

combustible hydrogen for other energy uses. The other alternative that could be economically more 

cost-effective at the current technology stage is to explore the natural “Hydrogen System” where 

the natural hydrogen is generated and accumulated within the earth system, the same that stands 

for a “Petroleum System”.  

The Discovery of a large accumulation of relatively pure natural hydrogen (H2) in Mali has triggered 

the opportunity of searching for natural hydrogen accumulations in other countries. The generation 

of hydrogen from a circular depression in Mali and some other countries is linked to the presence 

of geologically very old iron-rich basement rocks. Solid-liquid redox reactions between iron-rich 

minerals and groundwater that split water are a possible source of H2 in deep basement rocks. It is 

believed that the hydrogen degassing may be detected by surface topographic circular to sub-

circular shallow depressions. Chemical processes such as dissolution by hydrogen are considered 

to play the main role in the formation of the circular depressions through preferential vertical 

hydrogen migration channel. 

Archean iron-rich Yilgarn Craton that covers a vast area of Western Australia (WA) contains 

abundant iron-rich mafic-ultramafic rocks. The craton reveals many surficial circular depressions 

visible through satellite images.  The area has abundant fault systems and is blanketed with Eocene 

sedimentary rocks containing high-quality reservoir rocks. All these characteristics seem to provide 

most of the required elements, such as hydrogen source, migration pathway, and reservoir rock for 

a “Hydrogen System” in this area. 

Keywords: Natural Hydrogen System; circular depressions; Archean iron-rich Craton; Western 

Australia 

 

1. Introduction 

Hydrogen as the most abundant element in the Universe has the potential to become one of the 

sources of the future’s clean energy. Natural hydrogen emanation could be of practical interest, as it 

serves as an environmentally friendly combustible fuel source. Hydrogen due to its high reactivity is 

rare in Earth’s atmosphere but the presence of molecular hydrogen (H2) is reported in many deep 

boreholes, with no clear explanation for the source (Ward, 1933; Tenenbaum, 2008). Although there 

are known sources of biotic production of hydrogen in the subsurface, hydrogen is also found in 

recent hot igneous rocks where no microbes can survive suggesting abiotic sources for hydrogen as 

well (Tenenbaum, 2008). There are some publications from several countries reporting the presence 

of naturally emanated H2 (e.g., Larin et al., 2015; Zgonnik et al., 2015; Prinzhofer et al., 2018). The 

following paragraphs summaries some of the recent hydrogen discoveries: 

Exploration of relatively pure hydrogen reservoirs in Mali (Prinzhofer et al., 2018) highlights the 

possibility of producing natural hydrogen from hydrogen reservoir rocks. In Mali, H2 generation and 

accumulation are related to the presence of multi overlaid doleritic sills and aquifers to play as a seal. 

Soil analysis above a circular structure (Figure 1A) shows a hydrogen concentration profile in 1-m 

depth samplings suggesting regular upward hydrogen seeping. Hydrogen generation is believed to 

be sourced from the basement, as relatively large amounts of radiogenic Helium and Argon are 
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associated with hydrogen. The current estimate of Mali’s hydrogen exploitation price seems cheaper 

than synthesizing from water hydrolysis.  

Seeping of H2 out from about 562 subcircular morphological depressions is also reported in 

Russia (Larin et al., 2015). The size of subcircular structures ranges from a hundred meters to several 

kilometers in diameter (Figure 1B). The perimeter of the structures generally shows a ring of soil-

bleaching associated with growth anomalies of vegetation and the cores of the structures commonly 

covered by marshes or lakes. The subsoil gas composition of one of these structures was estimated as 

a daily hydrogen flow seeping out at the surface between 21,000 and 27,000 m3 (Larin et al., 2015).  

A significant amount of H2 is also reported in North Carolina (USA) emanating from circular 

depressions around the Carolina bays (Zgonnik et al., 2015) (Figure 1C). It is reported the surficial 

circular expressions are from hydrogen gas fluid flow pathways moving from depth to the surface. 

It is believed the alteration of rock along the deep pathways of H2 migrating has resulted in local 

ovoid shape collapse surface patterns.  

A circular depression in the Sao Francisco Basin (Brazil) (Figure 1D), emits H2 that is believed to 

be generated from deeply seated basement rocks (Prinzhofer et al., 2019).  

Yakymchuk and Korchagin (2020) reported the H2 degassing and accumulation in Azerbaijan, 

Tatarstan, and Latvia. They located hydrogen degassing in these areas in circular structures 

associated with channels of vertical migration of fluids and minerals matter filled above basaltic rocks 

(Figures 1E & 1F). They introduced the application of frequency-resonance methods of satellite 

images and photographs processing to identify the location and the depth of natural hydrogen 

accumulation sites.  

Based on Guélard et al., (2017) several wells in Kansas have shown occurrences of H2 rich gases. 

Near the H2-bearing wells silicic igneous and metamorphic Precambrian basement rocks are found 

below the Paleozoic strata. They propose that the presence of iron-rich basement rocks has generated 

H2 by coupled Fe+2 oxidation and reduction of H2O.  

An abnormally high H2 concentration in the eastern coastal area of China is reported by Hao et 

al., (2020) to be dominantly originated by the reduction of water and oxidation of Fe+2-rich pyroxene 

and olivine (serpentinization) in the basalt under near-surface conditions and migration to a 

sandstone reservoir. In this area, the basement is composed of Archaean and Paleoproterozoic 

metamorphic rocks.  

Interestingly, most of the above H2 discovery share two distinct similar conditions as follows: 

• They are associated with circular to sub-circular depressions, 

• They are located in areas with iron-rich, metamorphic, and igneous Precambrian basement 

rocks where Fe+2 oxidation and reduction of H2O may occur. 

In Australia, specifically in Western Australia (WA), the above two conditions exist. The satellite 

images of WA shows abundant magnificent circular to subcircular depressions formed over relatively 

thin Tertiary sediments that blanket Archean Yilgarn Craton.  Yilgarn Craton is made of iron-rich 

metamorphosed granites, volcanic rocks, and abundant mafic-ultramafic dykes. Such a condition has 

promoted this question of whether some of the circular depressions in WA are related to the natural 

emission of H2. Although this study, at the current stage, does not provide a definitive answer to this 

question it provides some reasoning that supports the possibility of the presence of such a natural H2 

system in WA.  

The future step of this research study will be to measure the hydrogen content of the soils within 

and around circular depressions at different depths using small shallow holes and also to do 

geophysical imaging to understand the subsurface feature of one of the depressions. 
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Figure 1. A) Mali’s circular structure emanating nearly pure H2. A profile of the hydrogen 

concentrations (in ppm) is also presented (From Prinzhofer et al., 2018); B) Distribution of depression 

sizes in Central Russia (Borisoglebsk–Novokhopersk) that are seeping H2. Structures are outlined in 

orange polygons, and alignments of structures are shown as pink dashed lines (From Larin et al., 

2015); C) Location of the Carolina bays seeping H2 outlined by orange polygons (Zgonnik et al., 2015); 

D) A circular depression of the Sao Francisco Basin (Brazil), H2 sensors positions can be seen in this 

photo (Prinzhofer et al., 2019); E & F) Satellite images of local sites in Azerbaijan and Latvia. Hydrogen 

degassing occurs from circular structures formed above basaltic rocks (Yakymchuk and Korchagin, 

2020). 
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2. Hydrogen System in WA 

Like a “Petroleum System” a “Hydrogen System” requires several elements including a 

hydrogen source, a migration pathway, a reservoir rock, and a suitable tarp and seal. Abiotic H2 can 

be sourced through water reduction and oxidation of metals, especially iron, in the ultramafic-mafic 

rocks (Vacquand et al., 2018). In this process, Fe2+ is oxidized to Fe3+, and water reduction produces 

H2. The proposed oxidation of ferrous iron-containing minerals and water, at high temperatures 

through the following reactions, can generate large quantities of H2: 

 

2FeO + H2O → Fe2O3 + H2    (Equ. 1) 

2Fe3O4 + H2O → 3Fe2O3 + H2    (Equ. 2) 

 

A study by Murray (1974) reveals the concentration of Fe3+ above a dolerite dyke in Darling 

Range, WA (Figure 2) that proves the oxidation of ferrous iron-containing minerals is happening in 

the area. 

 

Figure 2. - Iron oxide concentration above granite bedrock intruded by a dolerite dyke (from Murray, 

1974). 

The serpentinization of the ultramafic rocks, rich in olivine and pyroxene, with water, is another 

source of hydrogen generation (Brazelto et al., 2012). It is also proposed by Freund et al., (2002) that 

the subsurface rocks could have comparatively large amounts of H2, formed inside anhydrous 

minerals by the redox conversion of hydroxyl pairs. This molecular hydrogen expels out of the 

minerals when for any reason a fresh surface, such as natural fracture forms.  

By cold crushing to liberate volatiles from granites and gneiss of Archean and Palaeoproterozoic 

(>1600 Ma) age, Parnell and Blamey (2017) demonstrated that they contain an order of magnitude 

greater hydrogen than in very young (<200 Ma) granites. Lollar et al., (2014) estimated that H2 
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production rate via both radiolytic dissociations of water and hydration of mafic/ultramafic rocks 

from the Precambrian continental lithosphere is about 0.36–2.27×1011 moles per year. 

In WA although there are no direct pieces of evidence to report the presence of H2 but some 

natural chemical processes may suggest that hydrogen must be involved with them. For example, 

diagenetic alunite is pervasive in many of Western Australia’s salt lakes. It is believed that Yilgarn 

Craton has provided conditions for the generation of high acidity water and alunite formation. The 

formation of alunite requires acidic conditions so that Al3+ and Fe3+ may be mobilised (McArthur et 

al., 1991). Indeed, many salt lakes in south-western WA are acidic (McArthur et al., 1991) and their 

pH ranges from 2.8 to 6.7. Mann (1983) suggested that the widespread occurrence of acidic water in 

Western Australia could be explained by weathering of Fe2+ in bedrock minerals, followed by 

diffusion of the Fe2+ to the oxic zone of the water table where its oxidation and hydrolysis (ferrolysis) 

generated acidity. The Source of Aluminium in Alunite is suggested to be from kaolinite that has 

been disintegrated by H+ generated during ferrolysis (McArthur et al., 1991). Another example is the 

pervasive laterite formation in Yilgarn Craton reported by Mann (1983) that also forms as a result of 

ferrolysis. In general, the Western Australia ironstone pavements are linked to the transport and 

deposition of Si and Al generated by acidic weathering as a result of ferrolysis (McArthur et al., 1991). 

This has to be noted that both weathering of Fe2+ in bedrock minerals and ferrolysis produce 

hydrogen. 

This has to be noted that one of the reasons that no hydrogen has been reported in the area is the 

standard analytical approach for gas chromatography often does not detect hydrogen and indeed 

nobody was searching for natural H2 in the area to date. This is worth mentioning that a high 

concentration of hydrogen has been reported in a well drilled in Kangaroo Island, South Australia, 

in an area very similar to WA (Ward, 1933). 

3. Yilgarn Craton 

The Archaean Yilgarn Craton in Western Australia with the age of about 4000 Ma covers an area 

of about 650,000 km2. The Craton is made of metamorphosed granites, volcanic, and sedimentary 

rocks and it has experienced strong metamorphism and hydrothermal activity at about 2700 Ma 

(Wilde et al., 1996). Cassidy et al. (2006) subdivided the tectonic evolution of the Yilgarn Craton into 

six terranes (Figure 3). There are series of dyke swarms of different orientations around the margins 

and into the craton interior (Hallberg, 1987; Wingate 2017). Most of the dyke swarms are dolerite or 

gabbro in composition. They are poorly-exposed but a high-resolution aeromagnetic study by Isles 

and Cooke (1990) indicated a high-density swarm of NE-trending dolerite dykes intruded on into 

Archean rocks of the southeastern Yilgarn Craton (Figure 3). The oldest mafic dykes belong to the 

east to northeast-trending Widgiemooltha dyke swarm (Pisarevsky et al., 2015). The Widgiemooltha 

dykes are up to 3.2 km wide, vertical to sub-vertical, and comprise predominantly massive olivine 

dolerite and gabbro (Myers, 1990). The next extensive dyke swarm is Marnda Moorn LIP (1210 Ma) 

intruding along the craton margins (Isles and Cooke, 1990). Other identified dyke swarms include 

the NW trending Boonadgin dyke swarm (1888 Ma) in the southwest (Stark et al., 2017). 
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Figure 3. – Left) Yilgarn Craton of WA is subdivided, based on the tectonic evolution, into six terranes 

(Cassidy et al. (2006) in Myer and Hocking (1998). Right) Map of dyke and sill suites in Western 

Australia. Different sets of dykes are introduced in a different color (Modified from Wingate 2017). 

4. Circular to subcircular depressions in WA 

Satellite images from Google Earth reveal a large number of circular to subcircular depressions 

in WA (Figure 4). They are unique features that widely occur across south-western WA. In general, 

most of the depressions are along paleochannels. Some of the depressions are roughly oriented in the 

direction of NW-SE following the linear faults and dykes trends. There are some other relatively 

smaller depressions, specifically at the southwest of WA, that do not show a clear relation with any 

drainage systems and are scattered throughout the area. Indeed, some of the depressions are quite 

isolated with no connections to other depressions. The size of the depressions ranges from about less 

than 100 m to above 3.0 km in diameter. Based on the Satellite images from Google Earth Pro, the 

depth of depressions varies from about 1 to 10 m, for example, it is about 10m in Figure 4D. There 

are some signs of possible discoloration and variation in the type of vegetation due to gas emanation 

close to some of the depressions (Figure 5). 
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Figure 4. – Examples of circular/subcircular depressions in WA. Some of the depressions do not show 

a clear relation with drainage systems (e.g, A, and B) whereas some are aligned with paleochannels 

(e.g., C,). Some depressions are close to foothills (D, inset shows a close-up view), some are dry (e.g., 

E) and some are partially or completely covered by vegetation (e.g., F). 
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Figure 5. - Some of the depressions show clear discoloration and variation of vegetation (arrows) that 

could be due to gas emission. 

Many publications relate the presence and the shape of the circular depressions to several 

natural processes such as tectonic rejuvenation, climate change, wind activity, paleomorphology, etc., 

and consider them as playas and salt lakes. Bettenay (1962), based on field studies and examination 

of aerial photographs, concluded that some of the salt lakes in WA are originated from river systems 

and wind modification in arid climatic phases during the Tertiary period. Van De Graaff (1977) 

related the oval depressions to playas or salt lakes formed along with paleodrainage systems which 

stopped flowing regularly when the Australian climate changed from humid to arid. English (2016) 

attributed some of the salt lakes that are disconnected from major drainages and that lie within basins 

containing ancient evaporite units, to the salt diapir process. 

Although the formation of most of the large salt lakes of WA can be attributed to the above-

mentioned processes the question is why these natural features are abundant in WA and do not exist 

in other places with nearly the same tectonic and climate conditions. This has to be noted even in WA 

the abundance of the circular depressions vary from one location to another. Besides, there are many 

other drainage channel systems in WA with no circular depressions associated with them.  

This has to be noted that some of the circular depressions are very similar to playa lakes or salina 

and are formed within paleochannels. But there are so many other circular depressions in the area 

that cannot be easily related to any drainage systems and there is no wind-blown sediment around 

to shape them. Salama (1997) reported that the type of sediments in some of the oval lakes (e.g., 

Yenyening Lakes) indicate deposition in a closed system. This suggests that some of the circular 

depressions could be isolated features with no relation to any drainage system. Moreover, some of 

the depressions are dry and are close to the foothills with no indication of any drainage system (e.g., 

Figure 4D).  

Zgonnik et al., (2015) and Larin et al., (2015) suggest that hydrogenation of rocks will generally 

produce acid that can be mobilized and dissolve the rocks during upward movement by gas creating 

a preferred vertical migration pathway or channel. The preferred migration pathway will generate 

excessive dissolution that can end up to a collapse structure and subsidence that may be evident as 
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circular to subcircular surface depressions. Besides, it is believed that the diffusive efficiency of 

hydrogen into other minerals such as calcite can make them prone to further change and make them 

brittle and prone to collapse.   

The explanation of the formation of some of the circular depressions along paleochannels could 

be due to the tendency of paleochannels to align with paleotopography. Paleotopography lows, 

where surface water prefers to run, somehow can be controlled by faults vertical displacement. In 

such a situation running water acts as a source of oxidation agent penetrating deep into the iron-rich 

basement rock.  Faults play the role of conduit to expose basement rock to oxidizing agents. 

Paleotopography lows may also coincide with low weathered exposed ultramafic rocks, such as 

olivine-rich doleritic dykes that are abundant in the area, where the serpentinization process and thus 

H2 production may occur. This is supported by some publications reporting high concentrations of 

H2 along some Japanese faults (Sugisaki et al., 1983), along the San Andreas and Calaveras faults in 

central California (Sato et al., 1986); and many other places (e.g., Wakita et al., 1980; Ware et al., 1985). 

5. Discussion 

There are many natural ways of H2 generation such as ferrous minerals oxidation; water 

radiolysis; decomposition of methane; organic matter alteration; and H2 emission from deep Earth. 

From published papers, it appears that the alteration of Fe+2-bearing minerals is the most commonly 

reported source of natural H2 seepages on Earth (Zgonnik et al., 2015).  A study by Lollar et al. (2014) 

reported that the H2 generation from the Precambrian continental lithosphere has been 

underestimated and needs to be revisited.  

The Archaean Yilgarn Craton in Western Australia has all the required elements for a Hydrogen 

System to generate and preserve a vast amount of H2.  The following pieces of evidence may support 

this opinion: 

• The Archean Yilgarn Craton with abundant iron-rich rocks and ample mafic to ultramafic 

dyke swarms support the presence of the source for H2 generation. The oxidation of ferrous 

iron-containing minerals and serpentinization of ultramafic minerals such as olivine and 

pyroxene that are reported to exist in WA doleritic dykes could be a vast sustainable source 

of H2 generation. 

• The presence of a complex set of fault systems that can play the migration pathway. Faults 

are believed to act as the fluid pathway from the deep subsurface to the surface or 

shallower part of the earth's crust. In some areas of the Earth degassing of the interior is 

often observed along with some deep faults (Sugisaki et al., 1983; Shangguan et al., 2000). 

The gas emission varies noticeably depending on the fault activity. Larin et al. (2014) 

reported hydrogen emission along some structural trends associated with basement faults 

in Russia. 

• A blanket of Eocene sedimentary rocks, that covers the Yilgarn Craton, can provide suitable 

reservoirs and caprock to store and to prevent further upward migration of hydrogen.  

• The presence of abundant circular depressions that are proved in many countries to be the 

sign of H2 emanation from the subsurface. 

There are many publications about the formation of the circular depressions in WA where most 

of them suggest they are associated with the tectonically uplifted paleodrainage systems in the arid 

and semi-arid environment. Based on the publications, the role of wind-blown dunes and the 

prevailing wind direction has also played an important role to shape these so-called playa or salt 

lakes. The above-mentioned elements that highlight the formation of the pervasive circular 

depressions in WA and other Australian states cannot be ignored since they might be correct for some 

of the lakes. But the following points urge us to reconsider other elements that may help to form some 

of the isolated peculiar circular depressions in the area: 

1. In WA there are so many other paleodrainage systems that do not show any circular 

depressions. Besides, there is no universal solid evidence to prove that paleodrainage 

develop circular lakes in arid condition, 
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2. There are many circular depressions in WA that cannot be easily related to any 

paleodrainage system. Indeed, some of the circular depressions seem quite isolated with no 

connections to other depressions. Some of the circular depressions are on the 

topographically elevated area with no drainage systems present. 

3. Not all of these structures are associated with any sand-blown dunes to shape them, 

4. Many of the circular depressions are aligned with some linear deep faults and doleritic 

dykes where hydrogen generation and migration can occur. This is worth mentioning that 

some of the paleodrainage systems may have formed above paleovalleys of the Archean 

basement. The paleovalleys may have been aligned parallel with structural trends such as 

deep basement faults that are the conduit of hydrogen. Airborne electromagnetic 

conductivity depth image (AEM-CDI) is a method for geological mapping and mineral 

targeting by detecting variations in the conductivity of the ground to a depth of several 

hundred metres. The method perhaps enables us to locate the migration pathway of 

hydrogen where rock alteration and possibly concentration of conductive iron-rich mineral 

has occurred. Figure 6 shows a deeply rooted fluid migration pathway where conductive 

minerals (e.g., iron) are concentrated. 

5. Most of the structures are associated with low pH acidic water, 

6. The presence of high iron oxide concentration above doleritic intrusions, 

7. Last but not least, based on Ward (1933) a high concentration of hydrogen (84%) was 

recorded at the depth of 1666 ft in a borehole drilled at Kangaroo Island, South Australia 

(Table 1). In  Kangaroo Island, the same as Western Australia, the Archean basement is 

very close to the surface and many circular depressions can be seen in the area close to the 

drilled borehole (Figure 7). 

 

Figure 6. - Airborne electromagnetic conductivity depth image (AEM-CDI) at Fortescue River, WA. 

Although this profile does not cross any circular depression it shows that faults are the conduit of 

fluid migration and mineralization in the area (Modified from Department of Water Government of 

Western Australia, 2009).  
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Table 1.  Gas sample analysis for a borehole in Kangaroo Island (Ward, 1933). Note the high 

concentration of H2 collected at the depth of 1666 ft. 

 

 

 

Figure 7. – Satellite image from part of Kangaroo Island, South Australia, where a high hydrogen 

concentration (84%) was reported by Ward (1933) while drilling a well in the area. 

6. Conclusions 

The knowledge of “Hydrogen System” is in its infancy stage and needs to be studied worldwide. 

There are many questions about the main global mechanism of natural H2 generation, storage, fluid 

flow mechanism in porous media, and their trapping and sealing efficiency. The possibility of natural 

accumulation of the H2 in the porous and permeable intervals and sealing capacity of caprock to 

efficiently prevent hydrogen to escape from reservoir rocks need to be evaluated.  

Since the chemical and physical properties of hydrogen are different from other natural gases, 

such as methane, the effects of hydrogen on the reservoir rock, caprock would be different.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2020                   doi:10.20944/preprints202010.0589.v1

https://doi.org/10.20944/preprints202010.0589.v1


 12 of 13 

 

It is not clear yet in a high concentration of H2 (e.g., Mali’s H2 natural accumulation) at reservoir 

condition hydrogen-bacteria, which use H2 for reductive and energy-yielding purposes, would be 

active or not. Based on a modelling study by Hemme and van Berk (2018) at pressure and 

temperature around 2300psi and 80C sulfate-reducing bacteria and methanogenic bacteria are not 

active.  

Hydrogen has a higher diffusivity, lower viscosity, and lower density when compared to 

methane. This leads to high mobility and therefore the potential to escape through caprock (Ebigbo 

et al., 2013).  The chemical reaction of hydrogen with caprock that may enhance or reduce the sealing 

efficiency is still unknown, although hydrogeochemical modelling by Hemme and van Berk (2018) 

suggest negligibly small effects of H2 on the caprock mineralogy. 

In conclusion, there is a pressing need for a detailed field study to prove the hypothesis of the 

presence of a complete “Hydrogen System” in WA. The first stage is to categorize different types of 

circular depressions using satellite images in the area and then choose the most suitable ones to test 

the presence and possible emanation of H2 from them. The H2 may be a continuous and sustainable 

generation that could be economically viable for collection or it may be commercially accumulated 

in some hydrogen traps in the area.  
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