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Abstract
When dealing with galactic dynamics, or more specifically, with galactic rotation curves, one basic
assumption is always taken: the frame of reference relative to which the rotational velocities are given is
assumed to be inertial. In other words, fictitious forces are assumed to vanish relative to the observational
frame of a given galaxy. It might be interesting, however, to explore the outcomes of dropping that
assumption; that is, to search for signatures of non-inertial behavior in the observed data. In this work,
we show that the very discrepancy in galaxy rotation curves could be attributed to non-inertial effects.
We derive a model for spiral galaxies that takes into account the possible influence of fictitious forces
and find that the additional terms in the new model, due to fictitious forces, closely resemble dark halo
profiles. Following this result, we apply the new model to a wide sample of galaxies, spanning a large
range of luminosities and radii. It turns out that the new model accurately reproduces the structures of
the rotation curves and provides very good fittings to the data.
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1 INTRODUCTION

One of the major tools to analyze the dynamics and
mass distributions of disk galaxies is a Rotation Curve
(Sofue & Rubin, 2001). It presents the variation in the
orbital velocities within a galaxy at different distances
from the center. Its introduction, however, gave rise
to a fundamental discrepancy: Newtonian predictions
seemed to be incompatible with actual observations.
According to Newtonian dynamics, the rotational
velocities at the outskirts of galaxies should decrease
with distance. However, actual observations did not
show such a trend (Babcock, 1939; Salpeter, 1978;
Rubin, Ford & Thonnard, 1980; Sancisi & van Albada,
1987). An illustration of the discrepancy is presented in
Fig. 1.

Two different approaches to dealing with the discrep-
ancy have emerged over the years. One approach poses
that Newtonian models are missing additional mass
(i.e. dark matter), while the second approach argues
that the very application of Newton’s laws is invalid
in these cases (Milgrom, 1983). The vast majority of
astrophysicists support the first explanation as dark
matter explains much more than only rotation curves.
Dark matter is a major ingredient in current cosmology,

explaining the CMB (Jarosik et al., 2011), structure
formation (del Popolo, 2007), the discrepancies in
galaxy clusters (Massey, Kitching & Richard, 2010),
merging galaxy clusters (Markevitch et al., 2004), and
more.

In the field of galaxy dynamics, and specifically
in disk galaxies with measured rotation curves, a
basic assumption has always been made: the frame
of reference, relative to which the observed rotational
velocities are given, is assumed to be inertial (e.g. the
black points in Fig. 1 are assumed to be given relative to
an inertial frame of reference). In such frames fictitious
forces do not arise, and therefore their influence should
not be taken into account in the models. Indeed, the
blue curve in Fig. 1 (i.e. the baryonic rotation curve)
does not include any contribution of fictitious forces.

This current work explores the consequences of
dropping the basic assumption. What if the observed
rotational velocities (of each and every galaxy) cannot
be treated as inertial? In the next section we show
that when defining the local inertial frame of a given
galaxy by relying on the physical constraints alone,
and avoiding any cosmological interpretation, a single
(hidden) degree of freedom is revealed. That is, the
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2 Gomel and Zimmerman

Figure 1. A measured rotation curve (black points with error-
bars) and its Newtonian prediction (dashed blue line). The pre-
dicted curve is based on visible matter alone. The inconsistency
with the observed data is known as the discrepancy in galaxy
rotation curves. The data (NGC 4157) was taken from McGaugh’s
Data Pages (McGaugh, 2017).

observational frame (where the RC is presented) and
the local inertial frame (where Newton’s laws are valid)
do not necessarily coincide. We also show that the
recent observations of Lee et al. (2019) are consistent
with such a view.

Motivated by this insight, we derive a new model
for the rotational velocities. The new model includes
an additional term due to the transformation of the
velocities between the frames. It turns out that the
contribution of the additional term to the rotational
velocities is similar to the contribution of common
dark halo profiles (e.g. NFW, Burkert). This surprising
result might have implications other than those directly
related to rotation curves. However, these implications
should be discussed separately and independently.

This paper is organized as follows: Section 2 derives
a new model for the rotational velocities, i.e. a model
for disk galaxies that takes into account the influence of
inertial forces. Section 3 demonstrates that this model
is effectively similar to common dark halo profiles. Sec-
tion 4 uses this model to fit a wide sample of rotation
curves, and in Section 5 we conclude and discuss future
directions.

2 DERIVING A NEW MODEL

One of the main results of the general theory of relativity
(GR) is the insight that a gravitational field could arise
not only by means of mass distributions, but also due
to the state of motion of the frame itself (Einstein,
1920). That is, with respect to an "accelerating" or

a "rotating" frame of reference, a gravitational field
would appear. Although the weak-field approximation
is used in the regime of galactic dynamics, this basic
insight still holds: a gravitational field would appear if
the frame is non-inertial. The frame, in this context,
is simply the observational frame of reference, relative
to which the data is presented. The gravitational field,
in this context, is simply the field due to classical
fictitious forces. If indeed such a field exists relative to
the observational frame of a given galaxy, it may "play
the role" of a dark halo. But first, can the observational
frame be non-inertial?

Let us introduce frame K, which is assumed to be
inertial, at least locally. That is, a frame of reference
relative to which the behavior of bodies in a specific disk
galaxy could be described by applying Newton’s laws
of motion. Without loss of generality, this frame can
always be arranged with its x− y plane aligned with the
galactic plane and its origin aligned with the galactic
center (see Fig. 2). The reason for this stems from the
nature of the central-force problem: if Newton’s laws
are to be valid relative to that frame, then, assuming
a central-force problem, each body would preserve its
plane of motion. Therefore, the whole galactic plane
would be "stationary" relative to that frame. It is
now only a matter of definition to call it "the x−y plane".

Next, we introduce a second system of coordinates,
K ′, relative to which the RC data of a given disk galaxy
is presented (i.e. the "observational" frame). Note that
the RC data must be given relative to some frame of
reference. In Appendix A, we show that this frame of
reference can be chosen such that its x′ − y′ plane is
aligned with the galactic plane and its origin with the
galactic center. We also show that K ′ is constrained:
the line-of-sight connecting the observer and the specific
galaxy must be "fixed" relative to that frame (see Fig. 2).
This results directly from using line-of-sight velocities
when deriving a rotation curve.

Without any further information, one has no basis
to assume the coincidence of K and K ′. There is a
possible relative motion between the two systems: an
angular velocity of one system relative to the z − axis
of the other. Therefore, the observational frame K ′

could in principle be non-inertial. Recent observations
seem to support this result: Lee et al. (2019) used the
line-of-sight velocity measurements of 434 disk galaxies
to show that the rotational direction of a galaxy is
coherent with the average motion of its neighbors.
Using our notations, this means that the neighbors of
a given disk galaxy were found to orbit (on average)
around the origin of frame K ′. The "neighbors", in this
context, are galaxies located up to 15 Mpc from the
given disk galaxy. Such a rotation could, in general,
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Non-inertial effects in disk galaxies 3

Figure 2. The measured velocities presented in RCs are valid
only with respect to K′, by definition. If K′ is not inertial, then
the relative motion between K (the inertial frame) and K′ (the
observational frame) includes only rotation. For the sake of sim-
plicity, in this figure the observer is located on the galactic plane.
The definitions of K and K′, however, hold for any observer.

be responsible for the introduction of inertial forces
in K ′ (Thirring, 1918; Brill & Cohen, 1966; Schmid,
2006), or, in different words, be responsible for the
"dragging" of the local inertial frame K . However, let
us clarify: explaining or modeling the surprising results
found by Lee et al. (2019) is not included in the scope
of this work. We mention their results as it seems to
be consistent with the view presented in this work. In
order to model the rotational velocities in K ′ we take a
different approach.

We treat the possible angular velocity between K
and K ′ (of a given galaxy) as a free parameter. In
accordance with the previous definitions, our goal is to
derive a model for the rotational velocities vK′(r) in
K ′. For this purpose, a relation between the velocities
vK′(r) and vK(r) should be found. By using such a
relation and the known model for vK(r), the velocities
vK′(r) could be extracted. The model for vK(r), in
this context, is simply the Newtonian model using a
baryonic mass distribution (e.g. the blue curve in Fig. 1).

Finding such a relation is quite straightforward. How-
ever, it would be beneficial to derive it from the relation
between the accelerations. Given a frame of reference K ′,
rotating at a constant angular velocity ω relative to an
inertial frame K, the relation between the accelerations
in the two frames is given by:

aK′ = aK − 2ω × vK′ − ω × (ω × rK′), (1)

where aK (aK′) is the acceleration of a body relative
to K (K ′), ω is the constant angular velocity at which
system K ′ revolves relative to system K, vK′ is the
velocity of the body relative to K ′ and rK′ is the
position of the body relative to K ′. Note that the

Coriolis term, −2ω × vK′ , and the centrifugal term,
−ω × (ω × rK′), are present in the transformation.

In our case it would be more convenient to define
a positive angular velocity in the opposite direction,
as can be seen in Fig. 2. Therefore, taking ω → −ω
and assuming that a body performs a counterclockwise
uniform circular motion, leads to the following relation
in the r̂ direction:

− v2
K′

r
= −v

2
K

r
− 2ωvK′ + ω2r, (2)

where vK (vK′) is the magnitude of the rotational
velocity relative to K (K ′) , ω is the constant angular
velocity at which system K revolves around the z′−axis
of system K ′ and r is the radius of the circular motion.

At this stage, a useful sanity check could already be
done. We recall that a dark halo produces an extra force
in the inward direction. Therefore, we have to make
sure that the two fictitious forces combined, could also
act in the inward direction. Looking at Eq. (2), one can
see that this condition is satisfied when ω2r < 2ωvK′ , or
0 < ω < 2vK′

r . For a given galaxy and a given observed
rotation curve vK′(r), this inequality sets limits on ω.
Within these limits, one can find an ω which produces
an inward net force in K ′ at any radius. Whether this
additional force could imitate the behavior of dark halo
profiles is the subject of the following section.

Next, solving Eq. (2), we find:

vK′(r) = vK(r) + ωr. (3)

Eq. (3) is the essence of this work. The velocities vK′(r)
are the new model for the rotational velocities. The
idea is that the expected Keplerian behavior (for the
rotational velocities) could be measured only relative
to K. The observational frame K ′, however, differs
from K when ω 6= 0 (see Fig. 2). In that case, the
model for the rotational velocities should include an
additional linear term (ωr). In the next section we
show that the additional term can effectively "play the
role" of a dark halo. In section 4 we show that the new
model can be used to fit a large sample of rotation curves.

3 INERTIAL FORCES AS AN EFFECTIVE
DARK HALO

It is well known that dark halos are used successfully to
fit all sorts of RCs (Carignan, 1985; Corbelli & Salucci,
2000; de Blok et al., 2008). It would be beneficial, there-
fore, to explore whether our model can imitate the behav-
ior of some common dark-halo profiles. In this section,
we wish to derive an effective dark component, with a
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velocity distribution Vdark(r), which would be equivalent
to the new model. To that end, the following condition
must be satisfied:√

V 2
baryonic(r) + V 2

dark(r) = Vinertial(r) + ωr. (4)

The left-hand side is simply the model for the rotational
velocities in the presence of a dark halo. The right-hand
side is our new model for the rotational velocities. Using
a dark component with a distribution Vdark(r) which
satisfies the above equation, is effectively the same as
using the new model.

Before proceeding, note that the terms Vbaryonic(r)
and Vinertial(r) refer exactly to the same thing - the
circular velocities produced by the baryonic component
as seen from an inertial frame of reference (e.g. the blue
curve in Fig. 1). Taking this into account and extracting
Vdark(r) from Eq. (4) gives:

Vdark(r) =
√
ω2r2 + 2ωrVbaryonic(r), (5)

where Vdark(r) denotes the circular velocities of bodies
orbiting an effective dark halo; that is, a dark halo which
produces the same velocity field (and gravitational field)
as fictitious forces do. Assuming a spherically symmet-
rical effective halo, the density distribution can also be
calculated. A short derivation gives:

ρdark(r) = ω

4πG (3ω + 4Vbaryonic(r)
r

+ 2V ′baryonic(r)).
(6)

As can be seen in equations 5–6, the effective halo
is characterized by some unique features. First, the
distribution of baryons is embedded within the effective
halo. This coupling between dark and baryonic matter
in spiral galaxies has been discussed extensively in
the literature (Persic, Salucci & Stel, 1996; Salucci &
Burkert, 2000; Swaters et al., 2012; McGaugh, 2014).
Here, this connection is a natural characteristic of the
effective halo. Second, the effective halo includes a single
free parameter (i.e. ω). Most of the common dark-halo
profiles include two free parameters (e.g. the virial mass
and the concentration parameter). However, these two
parameters are known to be observationally correlated
(Burkert, 1995; Jimenez, Verde & Oh, 2003). Therefore,
in practice, common dark halos as well as effective dark
halos can be expressed with a single free-parameter. It
is worth mentioning that the mass-to-light parameter
(hiding in Vbaryonic(r)) was not counted as an additional
parameter since it has to be set also when real dark
halos are used.

Next, we plot the effective-halo profile together
with common dark-halo profiles. The dependence of

the effective halo on Vbaryonic(r), however, compels
us to do so only per given galaxy. In Fig. 3 we use
three different galaxies in order to compare between a
Burkert dark halo (Burkert, 1995), an NFW dark halo
(Navarro, Frenk & White, 1997) and our effective halo.
For each galaxy we draw the density distribution and
the circular-velocity distribution of each halo. In order
to set the free parameters of each halo we use the RCs
data of McGaugh (2017). For each galaxy, we choose
the halo parameters which produce the best-fit to the
data, using a fixed M/L for the baryonic component.
The process of fitting the data is explained in section 4.
The values and the actual distributions are presented in
the figure.

Looking at each panel of Fig. 3, the main result is the
similarity between the distributions. In general, it seems
that non-inertial effects can reproduce the behavior of
dark halos. Considering the density profiles, one can
notice that the effective-halo distribution in the inner
regions is less steep than that shown by NFW. Thus, the
effective halo may not suffer from the difficulties that
the NFW profile experience due to its "cuspy" behavior
(de Blok, 2010). In the central region, the effective halo
mostly follows the NFW behavior, while in the outer
regions it has a "tail". Let us note that the effective halo
cannot reproduce all the different shapes that NFW or
Burkert support. It can imitate their shapes only when
their parameters are tuned to fit real data. Specifically,
in the cases we present here, the parameters’ values are
consistent with a "maximal" disk, i.e. the contribution
of the dark halos in the inner regions is small.

4 APPLYING THE NEW MODEL ON A
SAMPLE OF DISK GALAXIES

In section 2, we suggested that the new model for the
rotational velocities should include an additional term
(ωr). This additional term arises in non-inertial systems.
It represents the additional tangential velocity relative
to these systems. In section 3, we demonstrated that
such a term can effectively "play the role" of a dark
halo. Its contribution to the circular velocities (at least
in the examined test cases) is practically similar to the
contribution of NFW or Burkert. The next natural step
would be to fit a large number of rotation curves using
the new model.

When fitting a rotation curve, one should first model
the galaxy’s mass distribution. This can be done either
analytically or numerically. When taking the analytical
approach the galaxy is traditionally divided into its
main components. Then, the contribution of each com-
ponent to the circular velocity is calculated separately.
Examples of such components may include a Freeman
disk (Freeman, 1970), an Hernquist bulge (Hernquist,
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Non-inertial effects in disk galaxies 5

Figure 3. Density distributions of Burkert, NFW, and the effective halo are plotted in the upper panels. The corresponding rotational
velocities are given in the lower panels. The Burkert and the NFW halos use two free parameters: The virial mass, Mvir [1010 Msun]
and the concentration parameter, c. The effective halo has one parameter, namely ω [10−16 rad/sec]. Left Panels: NGC 4157 (NFW:
Mvir = 170 , c = 5; Burkert: Mvir = 120 , c = 12; effective halo: ω = 1.12). Middle Panels: NGC 4088 (NFW: Mvir = 70 , c = 7;
Burkert: Mvir = 70 , c = 13.5; effective halo: ω = 1.04). Right Panels: UGC 6930 (NFW: Mvir = 40 , c = 5; Burkert: Mvir = 30 , c =
11.5; effective halo: ω = 1.17).

1989) and gaseous disk (Toomre, 1963). The derivation
of the gravitational field (and circular velocities) of each
component assumes the validity of Newton’s laws. There-
fore, the circular velocities predicted by these models
are valid only with respect to inertial frames of reference.

This conclusion also holds when a numerical approach
is taken. Modern techniques use the observed light dis-
tribution of a galaxy as a tracer for the galaxy’s mass
distribution. The gravitational field and the circular
velocities are then derived numerically. A detailed de-
scription of such a process can be found in Sanders &
McGaugh (2002). In this section, we follow the same
process in order to calculate the inertial velocities for
a sample of disk galaxies. Unless a bulge is present, a
single parameter is required: the stellar mass-to-light
ratio of the disk (M/L), which is assumed to be constant
for a given galaxy. The Newtonian (inertial) velocity is
then given by:

Vinertial(r) = VK(r) =
√

(M/L) · v2
disk(r) + v2

g(r),
(7)

where M/L is the free parameter, vdisk(r) is the
numerically-derived stellar-disk contribution and vg(r)
is the numerically-derived gaseous-disk contribution. In
this work, the model contributions vdisk(r), vg(r) for
each individual galaxy, as well as the observed RCs,

were kindly provided by McGaugh and can be found in
McGaugh’s Data Pages (McGaugh, 2017). The sample
of galaxies we use here is based on the sample used by
McGaugh in his Baryonic Tully-Fisher work (McGaugh,
2005). It includes galaxies with extended 21-cm rotation
curves spanning a large range of luminosities, radii,
and flat rotation velocities. For the sake of simplicity,
only galaxies without a bulge contribution were selected.

According to the new model, an additional term
(ωr) should be added to the inertial velocities in order
to predict the observed velocities. The new model,
therefore, includes two free parameters: M/L and ω.
For each galaxy, we use the least-squares method in
order to find the best-fit values for the two parameters;
i.e. the values that give the minimum-χ2. In Fig. 4 we
present a fair selection of our fits to RCs. The rest of
the fits and a table summarizing the best-fit parameters
can be found in Appendix B.

Looking at Fig. 4, the first outcome is the dominance
of the Newtonian curve in the inner regions of the
RCs. Inside the inner regions, where the linear term is
still small, the Newtonian term almost fits the data.
In fact, it is similar to the "maximum-disk" approach,
where the dark-halo contribution in the inner regions
is still small, and the baryonic curve almost fits the
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6 Gomel and Zimmerman

Figure 4. RCs for the different galaxies are presented. In each panel one can see the measured values (black error bars) together with
the predicted curve (red line). The dashed blue curve corresponds to the Newtonian term vk(r) while the dashed green line corresponds
to the linear correction term ωr.
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Figure 5. Left panel: a scatter plot of the best-fitted ω’s vs rmax (the last point of the RC). Right Panel: a scatter plot of ω vs the
galaxy’s mass. Both plots were produced using the sample of galaxies summarized in Appendix B.

data. This result is very important. When using a dark
halo without adopting the maximal-disk approach, a
degeneracy between the disk and the halo is usually
revealed (Dutton et al., 2005; Geehan et al., 2006). Our
model eliminates the degeneracy but still provides very
accurate results.

Another natural outcome is the consistency of the fits
with Renzo’s experimental law (Sancisi, 2004). This law
states that every time a feature arises in the radial light
distribution, the rotation curve shows a corresponding
feature. These features should clearly be evident in
the inertial (baryonic) velocities VK(r), as those were
directly derived from the light distributions. In our case,
the predicted curves are obtained simply by adding a
linear term to the inertial velocities; thus the features
are preserved. NGC 1560 (see Appendix B) is a good
example: it can clearly be seen that the small "bump" in
the data (at 5 Kpc) has a corresponding "bump" in the
predicted curve. Common dark halos usually struggle
to predict these "bumps" (Gentile et al., 2010).

The next point deals with the M/L values. Looking
at Table 2 (given in Appendix B) one can notice that
the fitted values are quite reasonable. The median value
of the population is 1.5 [Msun/Lsun] while the median
absolute deviation is 0.5 [Msun/Lsun].

The last point deals with the fitted values of our new
parameter, ω. First, only positive ω’s were obtained in
the fits. This means that the local inertial frame K is
"dragged" relative to the observational frame K ′ in the
same direction as the direction of the revolving matter in
each and every galaxy. This is consistent with our initial
expectations since the rotational direction of a galaxy
was found to be coherent with the average motion of
neighbor galaxies (Lee et al., 2019). If indeed the inertial
frame K is rotating relative to the observational frame
K ′, then the cause for such a rotation could well be

originated in this average motion of background galaxies.
Second, as can be seen in Fig. 5, the values of ω correlate
with other galaxy parameters. In the left panel one can
see that the larger the radius of a galaxy (represented
here by the last point of the RC), the smaller the value
of ω. In the right panel one can see a similar trend
(although weaker) with the galaxy’s total (baryonic)
mass. A deeper understanding of these correlations may
require the construction of a general-relativistic model
which takes into account the effects found by Lee et al.
(2019).

5 SUMMARY AND FUTURE
DIRECTIONS

Thus far, two main approaches have been taken in order
to deal with the discrepancy in galaxy rotation curves:
changing the underlying laws of physics, or adding more
mass to the detectable mass distribution. The additional
inward attraction, in both cases, result in corrected
rotational velocities. In the scope of this work, we have
shown that the different dynamics in the presence of
inertial forces also lead to corrected rotational velocities.
In fact, these new rotational velocities strongly resemble
those obtained by using dark-halo profiles.

The motivation for proposing that fictitious forces
may arise relative to the observational frame of a galaxy
originated in two complementary arguments. First, the
assumption that the observational frame (K ′) is inertial
was not tested. It was taken as "ground truth" mostly
due to its implicit nature. Testing such an assumption
may require a model that takes into account the various
possible phenomena (in different scales) that affect
the determination of a local inertial frame. Second,
the unexpected findings of Lee et al. (2019) support a
scenario of non-inertial K ′. As was discussed in Section
2, the rotation of background matter can, in general,
produce fictitious forces in K ′. However, modeling or
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explaining these observations is not included in the
scope of this work.

Here, we have demonstrated that a single degree of
freedom is sufficient in order to represent the possible
relative motion between the observational frame (K ′)
and the local inertial frame (K) of a given disk galaxy.
Relying on this degree of freedom, we have shown that
the additional gravitational field in K ′ due to fictitious
forces resembles the gravitational field of a dark halo.
Additionally, we developed a model that predicts the
(non-inertial) rotational velocities in K ′. Applying the
new model to a wide sample of RCs produced very
accurate results.

The idea that the observed velocities might be
non-inertial can be generalized, in principle, to other
types of galaxies. However, the specific model we
developed here is applicable only to disk galaxies. It
might be interesting, therefore, to search for equivalent
models in the field of elliptical galaxies; that is, to
explore the discrepancy in measured velocity dispersions.
Another interesting direction for further investigation is
to model galactic formation in the presence of inertial
forces. If those would indeed turn out to be relevant
in rotation curves, then their role in galaxy formation
might be important as well.

The discrepancy in galaxy rotation curves is probably
one of the most surprising discrepancies in astrophysics.
It seems to puzzle us even today, decades after it was
first discovered.
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this work.

A DEFINING THE OBSERVATIONAL
FRAME

The goal of this appendix is to remind the reader how
the rotational velocities of a galaxy are derived (i.e. the
data points in an RC), and to provide a well-defined
system of coordinates relative to which these rotational
velocities are given.

In general, the process of deriving a rotation curve
could be separated into two steps: first, measure the
line-of-sight velocities in a galaxy (i.e. the 2D velocity
field); second, convert these line-of-sight velocities into
rotational velocities (Swaters et al., 2009). Before pro-
ceeding, a crucial clarification is needed: the line-of-sight
velocity of an object is a component of the object’s
total velocity along the line of sight. The object’s
total velocity, by definition, must be given relative
to some frame of reference. Therefore, if an object’s
total velocity is to be calculated from the line-of-sight
velocity (e.g. by some geometrical considerations), then
it is necessary to provide the corresponding frame as well.

The most basic conversion between line-of-sight ve-
locities and circular velocities uses only the line-of-sight
velocities located on the main axis of the galaxy’s pro-
jected image, and assumes a single fixed value for the
disk inclination (de Blok et al., 2008). In this case, the
conversion is simply given by:

vc(r) = v(r)− vsys

sin(i) , (8)

where vc(r) are the rotational velocities (e.g. the
black data points in Fig. 1), v(r) are the line-of-sight
velocities, vsys is the galaxy’s systemic velocity, and i is
the inclination angle of the galactic plane (i = 90o for
edge-on galaxies). Relying on this simple transformation
would not change the conclusions we draw at the end of
this section.

As noted before, the reference frame (relative to
which the rotational velocities vc(r) are given) is in fact
determined when using such a relation. Actually, it is
not fully determined, but strongly constrained. It turns
out that any reference frame in which the systemic
velocity of a galaxy vanishes and the line-of-sight is
stationary (i.e. does not rotate), can be regarded as
valid. To illustrate this, let us focus on the (unrealistic)
example in which vsys = 0, sin(i) = 1. In this case,
relation 8 states that the rotational velocities are equal
to the measured line-of-sight velocities. However, as can
be seen in Fig. 6, this statement holds only relative to
system K ′, where the line of sight is stationary. In any
reference frame which is rotating relative to K ′, the
rotational velocity would take a different value, the line
of sight wouldn’t be fixed and relation 8 wouldn’t hold.
The reader may take a minute to be fully convinced at
this point.

Now, let us define one specific reference frame which
satisfies the above requirement (i.e. a frame, relative
to which the rotational velocities are given). We define
a frame whose fundamental plane coincides with the
galaxy plane and its origin coincides with the galactic
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Galaxy ωa M/Lb Galaxy ω M/L
M33 1.12 0.97 NGC 4085 4.58 0.50

NGC 5033 0.74 5.06 NGC 4088 1.04 1.16
NGC 1560 1.82 2.57 NGC 4100 1.07 2.36
NGC 247 1.51 1.76 NGC 4157 1.12 2.27
NGC 300 1.55 0.96 NGC 4183 0.81 1.45
NGC 3726 0.93 1.19 NGC 4217 1.73 1.72
NGC 3877 0.94 1.78 NGC 5585 1.50 0.87
NGC 3893 1.71 1.43 NGC 6946 0.72 0.79
NGC 3917 1.16 1.58 NGC 7793 1.49 1.40
NGC 3949 4.51 0.48 UGC 128 0.63 3.49
NGC 3953 1.40 2.25 UGC 6446 0.81 1.70
NGC 3972 2.66 1.00 UGC 6667 1.47 1.74
NGC 3992 0.99 4.26 UGC 6818 2.86 0.16
NGC 4010 1.80 1.37 UGC 6917 1.28 2.01
NGC 4013 1.13 2.90 UGC 6930 1.17 1.30
NGC 4051 1.49 1.11 UGC 6983 0.80 3.11

Table 1 Best-fitted parameters of each galaxy.

a ω is given in [10−16rad/sec].
b M/Ls are given in the B-band, in units of [Msun/Lsun].

center. We also set the frame in such a way that the
line-of-sight of the observer is stationary (in the simple
case of an edge-on galaxy, the primary axis is pointing
towards the observer). This frame of reference is denoted
in the main text as K ′. It turns out that frame K ′ might
be non-inertial (see section 2).

Figure 6. A stationary distant observer is located on the y′−axis
(i.e. vsys = 0, sin(i) = 1). Such an observer would measure a value
of V for the line of sight velocity, thus, relying on relation 8, would
extract a value of V for the rotational velocity. As can be seen
in the figure, this value is valid relative to the system K′. At
any other frame which is rotating relative to K′, the rotational
velocity would take a different value.

B RC FITTINGS

The RC fittings for the entire sample as well as the
best-fitted parameters of each galaxy are given in the
next pages.
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Figure 7. RCs for the different galaxies are presented. In each panel one can see the measured values (black error bars) together with
the predicted curve (red line). The dashed blue curve corresponds to the Newtonian term vk(r) while the dashed green line corresponds
to the linear correction term ωr.
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