
Article

The Self-Similarity of Industrial SAT Instances
Carlos Ansótegui 1 , Maria Luisa Bonet 2 , Jesús Giráldez-Cru3 and Jordi Levy 4,∗

1 DIEI, Universitat de Lleida (UdL), Spain; carlos@diei.udl.cat
2 LSI, Universitat Politècnica de Catalunya (UPC), Spain; bonet@cs.upc.edu
3 DaSCI, DECSAI, Universidad de Granada (UGR), Spain; jgiraldez@ugr.es
4 Artificial Intelligence Research Institute (IIIA-CSIC), Spain; levy@iiia.csic.es
* Correspondence: levy@iiia.csic.es; Tel.: +34 935809570

Version October 26, 2020 submitted to Mathematics

Abstract: In the last years, we have witnessed a remarkable progress of algorithms solving Boolean satisfiability1

(SAT). The success of these algorithms has been especially relevant in a large number of industrial or real-world2

applications, for which these SAT solvers are nowadays an essential core part of their solving processes.3

Interestingly enough, these applications include a very diverse and heterogeneous range of domains, such4

as hardware verification, planning, and cryptography, among others. Unfortunately, the reasons of the good5

performance of these solvers on this variety of industrial benchmarks are not completely understood yet. Since6

SAT solvers’ efficiency is fundamental in various domains, obtaining a better understanding of these algorithms7

and the reasons of their good performance is crucial.8

In order to shed light on this question, SAT solvers are often viewed as complex systems with many9

interconnected components (e.g., conflict analysis and learning mechanism, database management, search10

restarts) interacting in many unpredictable ways. There is the common belief that the resulting emergent11

behavior of these complex systems takes advantage of a certain underlying structure of the SAT formula, which12

is shared by the majority of these industrial problems regardless the domain they come from. Recently, there13

have been some attempts of characterizing this structure under the lens of complex networks, with the purpose14

of better understanding the success of the solvers, and potentially improving them.15

In this paper, we analyze the structure of industrial SAT instances under the lens of self-similarity, and study16

how the execution of SAT solvers affect that structure. Many real-world graphs exhibit self-similar structure17

(with small fractal dimension), which means that after rescaling (replacing groups of nodes by a single node),18

the same kind of structure can be observed. In our analysis, in which we represent SAT instances as graphs, we19

observe that many industrial SAT formulas exhibit the same kind of structure. Moreover, we analyze how this20

structure evolves by effects of learning new clauses during the search. In particular, we observe that learned21

clauses usually contain variables that are close in the graph representation of the formula. This is, the learning22

mechanism tends to work locally. On the contrary, this learning mechanism on random SAT formulas –which23

do not exhibit any structure at all– is unable to generate these local clauses. This difference contributes to24

explain the success of modern SAT solvers on industrial problems.25

Keywords: satisfiability; SAT; fractal dimension; complex networks.26

1. Introduction27

The Boolean Satisfiability Problem (SAT) is the problem of deciding whether the Boolean variables of28

a propositional formula can be assigned in such a way that the formula is evaluated as true. A SAT formula29

is said to be satisfiable if such an assignment does exist, and unsatisfiable otherwise. This problem is central30

in Computer Science, from both theory and applications perspectives. It is the first NP-complete problem,31

which means that existing algorithms can run during exponentially long executions, in the worst case. But some32

algorithms –the so known modern SAT solvers– show a very good performance solving a certain kind of instances:33

Submitted to Mathematics, pages 1 – 16 www.mdpi.com/journal/mathematics

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

http://www.mdpi.com
https://orcid.org/0000-0001-7727-2766
https://orcid.org/0000-0003-1646-7177
https://orcid.org/0000-0001-8963-6299
https://orcid.org/0000-0001-5883-5746
http://www.mdpi.com/journal/mathematics
https://doi.org/10.20944/preprints202010.0560.v1
http://creativecommons.org/licenses/by/4.0/

Version October 26, 2020 submitted to Mathematics 2 of 16

instances encoding problems from real-world applications or industrial domains, such as hardware and software34

verification, scheduling, cryptography, or planning, among others [1–3].35

It is well established that those industrial SAT instances have a very distinct nature to randomly generated36

SAT formulas. As a consequence, SAT solving algorithms more specialized in random benchmarks do not usually37

perform well on industrial ones, whilst solvers for industrial purposes usually show a very bad performance on38

random SAT formulas. For instance, these industrial-specialized solvers are able to solve very large industrial39

SAT instances with millions of variables in a few seconds, whereas they are unable to solve random SAT formulas40

with hundreds of variables in a few hours or even days.41

Modern SAT solvers implement the Conflict-Driven Clause Learning (CDCL) algorithm [4]. Built on42

the basis of the classical DPLL algorithm [5,6], which is a depth-first search algorithm exploring the variables43

assignment space of the formula, CDCL incorporates a number of complex techniques such as conflict analysis44

and clause learning [7], sophisticated variable branching heuristics [8], clause removal policies to delete useless45

learned clauses [9], random restarts of the search [10], or pre-/in-processing techniques to detect variables46

dependencies and simplify the formula [11].47

Since CDCL SAT solvers can be seen as complex systems where there are many unpredictable interactions48

between its components, the reasons that explain why these solvers show such a different performance on random49

and industrial instances, or more specifically, the reasons that explain their success on a large variety of industrial50

benchmarks, are not completely understood yet. It is therefore fundamental to shed light to this open question,51

which is the main motivation of this manuscript. A better understanding of these solvers and the reasons of their52

success will possibly help to improve them.53

The main component of CDCL SAT solvers is clause learning [12,13]. These learned clauses are the result54

of the conflicts found during the search, and they prevent the solver to find the same conflicts in the future.55

Moreover, a very extended heuristic implemented in many CDCL SAT solvers is VSIDS [8]. This heuristic56

selects the next branching variable based on the already found conflicts. This results into a synergy between57

expanding the search (branching variables) and delimiting it (found conflicts); this synergy is somehow captured58

by learned clauses.1 Therefore, learned clauses play a key role in the algorithm.259

A common intuition to explain the distinct performance of CDCL SAT solvers between random and60

industrial benchmarks comes from the belief that these solvers are able to exploit a certain underlying structure61

of the formula [9,16–20], that is shared by the majority of the benchmarks. In our work, we are inspired by the62

work of complex networks where the general structure of real-world graphs is studied. An extended observation63

is that the classical Erdős-Rényi random graph model [21] is not suitable to study the structure of these complex64

networks. In order to characterize the underlying structure of industrial SAT instances, we follow a similar65

approach. In particular, we represent SAT instances as graphs, and then analyze some graph features in these66

graph representations. For this purpose, we use two graph models. In one model, SAT formulas are represented67

as bipartite graphs where their nodes represent either the variables or the clauses of the formulas, and an edge68

between a variable-node and a clause-node indicates the existence of such a variable in such a clause. In the69

second model, nodes only represent variables, and there is an edge between two variable-nodes if there is a clause70

containing both variables.71

Following this approach of representing SAT instances as graphs, an interesting observation is described72

in [22]. In this work, it is studied the community structure of industrial SAT formulas, and authors observe73

that most of the industrial formulas show a very clear community structure. In a graph with clear community74

structure, it can be found a partition of disjoint sets of nodes, called communities, such that the graph has more75

edges connecting nodes of the same community. In the context of SAT instances, this means that the variables of76

the formula mostly appear in clauses with the same subset of variables. Interestingly enough, they observe that77

1 Every variable has an activity score, equally initialized. When a variable occurs in a conflict, it increases its activity, and it is very likely
that such a variable occurs in the resulting learned clause. The VSIDS heuristic selects the variable with highest activity. Since this
variable probably occurs in existing learned clauses, it is very likely it triggers new conflicts. This is the synergy between the conflicts
and the heuristic, captured by learned clauses.

2 It is intriguing if they also play the same role in other common heuristics, as LRB [14] or VMTF [15].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 3 of 16

the quality of this community structure tends to decrease by the addition of learned clauses.3 It remains unclear,78

however, whether this decrease is achieved quickly or slowly.79

In this work, we focus on the analysis of the self-similarity of SAT formulas and their fractal dimension.80

In a graph with self-similar structure, the structure of the graph is preserved at different scales (for instance,81

by grouping sets of nodes into a single nodes). It also means that the diameter dmax of the graph grows as82

dmax ∼ n1/d, being d its fractal dimension. Notice that in random graphs or small-world graphs dmax ∼ log n.83

Our experimental evaluation shows that many application SAT instances exhibit self-similar structure with84

a small fractal dimension ranging between 2 and 4. We conjecture that this structure, as well as other common85

properties in these instances, such as community structure [22] or scale-free structure [23], are already existent86

in many of the high-level problems encoded into the SAT instances. Thus, for example, hardware-verification87

problems may exhibit this structure as a consequence of the circuits they encode. We also evaluate how the88

fractal dimension is affected by the effect of learning new clauses during the search. In particular, we observe89

that most learned clauses contain variables that are already related by other clauses. In the graph representation90

of the formula, this means that learned clauses create edges between already connected nodes (i.e., variables) or91

very close ones. In other words, the learning mechanism tends to work locally. This observation allows us to92

determine that the underlying structure of the formula is destroyed slowly.93

This paper is an extended and revised version of [24]. Some preliminary results were also included in Jesús94

Giráldez-Cru’s PhD thesis [25].95

The rest of the paper proceeds as follows. Some preliminary concepts are introduced in Section 2. We study96

the self-similar structure of graphs and SAT formulas in Sections 3 and 4 respectively. We analyze how this97

structure is affected by the CDCL SAT solving techniques in Section 5. Finally, related works and conclusions98

are respectively described in Sections 6 and 7.99

2. Preliminaries100

Given a set of Boolean variables X = {x1, . . . , xn}, a literal is an expression of the form xi or ¬xi. A101

clause c of size s is a disjunction of s literals, l1 ∨ . . . ∨ ls. We note s = |c|, and say that x ∈ c, if c contains the102

literal x or ¬x. A CNF formula or SAT instance of length t is a conjunction of t clauses, c1 ∧ . . . ∧ ct. A k-CNF103

formula is a conjunction of k-sized clauses.104

An undirected graph is a pair (V, E) where V is a set of vertices and E ⊆ V ×V is a set of edges between105

the vertices. The degree of a vertex x is defined as deg(x) = |{y ∈ V|(x, y) ∈ E}|. A bipartite graph is a tuple106

(V1, V2, E) where E ⊆ V1 ×V2.107

We represent SAT instances using two graph models. In the Variable Incidence Graph model (VIG, for108

short), vertices represent variables, and edges represent the existence of a clause relating two variables. A clause109

x1 ∨ · · · ∨ xn results into (n
2) edges, one for every pair of variables.110

Definition 1 (Variable Incidence Graph (VIG)). Given a SAT instance Γ over the set of variables X, its variable
incidence graph is a graph (X, E) with set of vertices the set of Boolean variables, and the set of edges E:

(x, y) ∈ E⇔ c ∈ Γ ∧ x ∈ c ∧ y ∈ c (1)

In the Clause-Variable Incidence Graph model (CVIG, for short), vertices represent either variables or111

clauses, and edges represent the occurrence of a variable in a clause.112

3 The addition of learned clauses tends to destroy the community structure of the formula.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 4 of 16

Figure 1. Example of a graph with self-similar structure at distinct scales.

Definition 2 (Clause-Variable Incidence Graph (CVIG)). Given a SAT instance Γ over the set of variables X, its
clause-variable incidence graph is a bipartite graph (X, {c | c ∈ Γ}, E), with vertices the set of variables and
the set of clauses, and a set of edges E:

(x, y) ∈ E⇔ y ∈ Γ ∧ x ∈ y (2)

These models do not fully represent the SAT formula, ignoring some of its features. For instance, having113

the CVIG it cannot be known the sign of a variable in a clause, or the length of clauses cannot be known having114

the VIG. In the literature there are other graph models for SAT formulas capturing all their information. For115

instance, the factor graph (similar to the CVIG) with two kind of edges (one for positive literals and the other for116

negative ones). However, these simplified models have already all the information required for our analysis.117

3. The Self-Similar Structure of Graphs118

In this section, we describe the concepts and techniques used to analyze the self-similar structure of graphs.119

In particular, we introduce the Burning by Node Degree (BND) algorithm (see Alg. 1), which will be used to120

analyze the fractal dimension in very large graphs, as the graph representation of industrial SAT formulas are.121

We also analyze the relation between fractal dimension and diameter.122

In Figure 1 we depict a graph with clear self-similar structure in order to graphically describe the concept of123

fractal dimension of a graph.124

In order to define the fractal dimension of a graph, we follow the principle of self-similarity. We first need125

to define the concepts of distance between nodes and graph coverage. For this purpose, we will use the definition126

of box covering [26].127

Definition 3. The distance between two nodes of a graph is the minimum number of its edges we need to follow128

to go from one node to the other.129

Definition 4. The diameter dmax of a graph is the maximal distance between any two nodes of the graph.130

Definition 5. Given a graph G, a box B of size l is a subset of its nodes such that the distance between any pair131

of them is strictly smaller than l.132

Definition 6. The minimum number of boxes of size l, M(l), to cover the graph is the minimum number of133

boxes such that every node of the graph belongs to some box.134

Notice that M(1) is equal to the number of nodes of G, and M(dmax + 1) is the number of connected135

components of the graph (i.e., M(dmax + 1) = 1 if the graph is fully connected). Notice also that the function136

M(l) has the same value for any l strictly greater than dmax (i.e., the number of connected components of the137

graph).138

Definition 7. A graph has the self-similarity property if the function M(l) decreases polynomially, i.e. M(l) ∼139

l−d, for some value d. In this case, we call d the dimension of the graph.140

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 5 of 16

In graphs with self-similar structure, this function M(l) decreases slowly, in contrast to other graphs for141

which this functions decreases faster. Therefore, in this latter case of graphs, the diameter is comparatively142

smaller than in those graphs showing fractal dimension.143

Lemma 8. Computing the function M(l) is NP-hard. 4
144

Proof. We prove that computing M(2) is already NP-hard by reducing the graph coloring problem to the145

computation of M(2). Given a graph G, let G, the complement of G, be a graph with the same nodes, and where146

any pair of distinct nodes are connected in G iff they are not connected in G. Boxes of size 2 in G are cliques,147

thus they are sets of nodes of G without an edge between them. Therefore, the minimal number of colors needed148

to color G is equal to the minimal number of cliques needed to cover G, i.e. M(2).149

There are several efficient algorithms that approximate M(l). They compute upper bounds of M(l). They150

are called burning algorithms (see [27]). Following a greedy strategy, at every step they try to select the box that151

covers (burns) the maximal number of uncovered (unburned) nodes. Although they are polynomial algorithms,152

we still need to do some further approximations to make the algorithms of practical use in very large graphs.153

First, instead of boxes, we will use circles.154

Definition 9. Given a graph G, a circle of radius r and center c is a subset of its nodes such that the distance155

between any of them and the node c is strictly smaller than r.156

Definition 10. The minimum number of circles of radius r, N(r), to cover the graph is the minimum number157

of circles such that every node of the graph belongs to some circle.158

Notice that any circle of radius r is inside of a box of size 2 r− 1 (the opposite is in general false) and any159

box of size l is inside a circle of radius l (it does not matter what node of the box we use as center). Notice also160

that every radius r and center c characterizes a unique circle.161

According to Hausdorff’s dimension definition, N(r) ∼ r−d also characterizes self-similar graphs of162

dimension d. We can approximate this fractal dimension using the Maximum-Excluded-Mass-Burning (MEMB)163

algorithm [27], which works as follows: Consider a graph G and a radius r. We compute an upper bound of the164

number of circles with radius r necessary to cover the graph N(r). We start with all nodes set to unburned. At165

every step, for every possible node c, we compute the number of unburned nodes covered by the circle of center166

c and radius r, then select the node c that maximizes this number, and burn the new covered nodes. Starting with167

r = 1, we repeat this process for every value of r until we get N(r) = 1.168

The MEMB algorithm is still too costly for our purposes. Notice that in every step a node is selected as a169

center, the algorithm has previously visited every node of the graph in order to find the best center. So in order to170

make the algorithm more efficient, we apply the following algorithm, called Burning by Node Degree (BND),171

and described in Alg. 1. First, we compute N(1) as the number of nodes in the graph (line 1). Then, we iterate to172

compute N(r) with r > 1, until we reach the number of connected components of the graph (line 3). In each173

iteration, we use node degrees to order the set of nodes: 〈c1, . . . , cn〉 such that degree(ci) ≥ degree(cj), when174

i < j (line 7). Now, for i = 1 to n, if ci has not been burned in previous iterations, the circle of center ci and175

radius r is selected, burning all the nodes contained in this circle (line 8-10). This is repeated until all nodes are176

burned, obtaining N(r) for this value of r (line 11). Notice that this criterion may not maximize the number of177

burned nodes.178

We recall that BND (see Alg. 1) computes upper bounds of the function N(r) until it gets the number of179

connected components of the graph. Notice that N(dmax + 1) = 1, placing the center of this circle in any node180

4 In [27] it is stated the same result, but they prove the wrong reduction. They reduce the computation of M(2) to the graph coloring
problem.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 6 of 16

Algorithm 1: Burning by Node Degree (BND)
Input: Graph G = (V, E)
Output: vector[int] N

1 N[1] := |V|;
2 int i := 2;
3 while N[i− 1] > connectedComponents(G) do
4 vector[bool] burned(|V|,false); // all nodes initially unburned;
5 N[i] := 0;
6 while existsUnburnedNode(burned) do
7 c := highestDegreeUnburnedNode(G, burned);
8 S := circle(c, i); // circle with center c and radius i;
9 foreach x ∈ S do

10 burned[x] := true;

11 N[i] := N[i] + 1;

12 i := i + 1;

of the path between the two most distant nodes. However, it is possible that BND computes the approximation of181

N(r) for values of r greater than dmax + 1.182

In the next section, the accuracy and performance of algorithms MEMB and BND will be compared. This183

analysis will allow us to justify the use of the latter in our experimental evaluation.184

In this paper we analyze the function N(r) for the graphs obtained from a SAT instance following the VIG185

and CVIG models. These two functions are denoted NV(r) and NC(r), respectively, and they relate to each186

other as follows.187

Lemma 11. If NV(r) ∼ r−d then NC(r) ∼ r−d.

If NV(r) ∼ e−β r then NC(r) ∼ e−
β
2 r.

188

Proof. Notice that, for any formula, given a circle of radius r in the VIG model, using the same center and radius189

2 r− 1 we can cover the same variable nodes in the CVIG model. With radius 2 r we can also cover all clauses190

adjacent to some covered variable. Hence NC(2 r) ≤ NV(r).191

Conversely, given a circle of radius 2 r in the CVIG model, we consider two possibilities. If the center is a192

variable node, we cover the same variables in the VIG model using a circle of radius r and the same center. If the193

center is a clause c, to cover the same variables in the VIG model, we need a circle of radius r + 1 centered in a194

variable node adjacent to c. Hence N(r + 1) ≤ NC(2 r).195

Therefore NV(r + 1) ≤ NC(2 r) ≤ NV(r), and NV(r) ∼ NC(2 r). From this asymptotic relation, we196

can derive the two implications stated in the lemma.197

From the previous lemma, it can be concluded that if a SAT instances has a (perfect) self-similar structure,198

its fractal dimension is the same in both models VIG and CVIG. In this case, we would obtain a line if we199

represent N(r) as a function of r in double-logarithmic scale, being −d its slope. If there is an exponential decay200

in the function N(r), then the decay factor in the VIG is double of the decay factor in the CVIG model. In that201

case, representing N(r) in semi-logarithmic axes, we would obtain a line with slope −β. In our analysis, we202

always represent N(r) in double-logarithmic axes. Therefore, if N(r) decays exponentially, we will observe a203

concave curve.204

3.1. Fractal Dimension versus Diameter205

The function N(r) determines the maximal radius rmax of a connected graph, defined as the minimum206

radius of a circle covering the whole graph minus one: N(rmax + 1) = 1. The maximal radius and the diameter207

dmax of a graph are also related, because rmax ≤ dmax ≤ 2 rmax. From these relations we can conclude the208

following.209

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 7 of 16

Lemma 12. For self-similar graphs (where N(r) ∼ r−d), the diameter is dmax ≈ n1/d, where d is the fractal210

dimension.211

In graphs where N(r) ∼ e−β r, the diameter is dmax ≈ log n
β .212

Proof. The diameter of a graph and the maximal radius are related as rmax ≤ dmax ≤ 2 rmax. Notice that, by213

definition of the function N(r), we have N(1) = n, where n is the number of nodes, and N(rmax + 1) = 1.214

Assuming N(r) = C r−d and replacing r by 1 we get C = n. Then, replacing r by rmax + 1, we get215

1 = N(rmax + 1) = n (rmax + 1)−d. Hence, rmax = n1/d − 1.216

Assuming N(r) = C e−β r and replacing r by 1 we get C = n eβ. Then, replacing r by rmax + 1, we get217

1 = N(rmax + 1) = n e−β (rmax). Hence, rmax =
log n

β .218

The diameter, as well as the typical distance5 L of a graph, have been extensively used for characterizing219

graphs. For instance, small world graphs [28] are characterized by small typical distance L ∼ log n and a large220

clustering coefficient.221

Notice that this characterization works well for families of graphs since these features can be expressed as a222

function on the number of nodes. On the other hand, it may be inaccurate in the case of a particular graph, since223

it is hard to asses whether its typical distance is “small” or if its clustering coefficient is “large”. Moreover, both224

the diameter and the typical distance of a graph are hard-to-compute features. Notice that even though there is a225

quadratic algorithm, computing them in huge graphs is a time-consuming task. This is the case of the application226

SAT instances. In fact, our approximation to the fractal dimension can be computed more efficiently than the227

diameter.228

Additionally, the fractal dimension is independent of the graph size, and thus is a better feature to characterize229

the instance structure. As a consequence, we can analyze formulas of the same family and very distinct size, all230

having a similar structure. In particular, the fractal dimension will be similar in all the instances of the family,231

and the shapes of the function N(r) will be resembling.232

4. The Self-Similar Structure of SAT Instances233

In this paper, we have used the set of industrial formulas of the SAT Competition 20136. They are 300234

instances grouped into 19 families: 2d-strip-packing, bio, crypto-aes, crypto-des, crypto-gos, crypto-md5,235

crypto-sha, crytpo-vmpc, diagnosis, hardware-bmc, hardware-bmc-ibm, hardware-cec, hardware-velev, planning,236

scheduling, scheduling-pesp, software-bit-verif, software-bmc and termination. In Table 1, we report some237

statistics about these benchmarks. All these instances are industrial, in the sense that they come from a real-world238

problem. During the paper, we compare them to random 3-CNF formulas.239

We have conducted an exhaustive analysis of these 300 industrial SAT instances, and 90 random 3-CNF240

formulas of 105 variables generated at different clause/variable ratios. We will see that most industrial instances241

are self-similar and have a small fractal dimension, i.e. N(r) ∼ r−d, for small d. In random instances N(r)242

decays exponentially, i.e. N(r) ∼ e−β r. All experiments were carried out in a cluster of 9 nodes IBM dx360243

M2, each of them with 32GB of RAM and 2 processors Intel(R) Xeon(R) CPU L5520 2.27 GHz, limiting all244

experiments to a single core and to a maximum of 4GB of RAM.245

Before presenting the results of this experimental analysis, we present a comparison of the BND and the246

MEMB [27] algorithms, evaluating their performance and their accuracy. This analysis allows us to justify the247

use of the BND algorithm to compute the fractal dimension of SAT instances.248

We execute the BND and the MEMB algorithms for the set of 300 industrial instances of the SAT249

Competition 2013. In this experiment, we set a timeout limit of half an hour. The BND algorithm is able250

to complete the computation in all the 300 instances. On the contrary, the MEMB algorithm only finishes in 17251

instances. Also, the BND algorithm spends an average run-time of 0.11 seconds, while the MEMB algorithms252

spends 607.2 seconds in average. Finally, the function NC(r) approximated by both algorithms is very alike.253

5 The typical distance of a graph is the average of the distances between any two nodes.
6 http://satcompetition.org/2013/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

http://satcompetition.org/2013/
https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 8 of 16

Family #instances avg. #vars. avg. #clauses
2d-strip-packing 5 12753.20 1267404.40
bio 5 46376.40 471256.00
crypto-aes 11 25285.90 82980.81
crypto-des 9 31590.22 95015.66
crypto-gos 30 1892.93 22883.60
crypto-md5 11 66894.00 267579.54
crypto-sha 30 4773.33 151027.86
crypto-vmpc 8 1061.50 171947.00
diagnosis 26 235279.42 1129797.46
hardware-bmc-ibm 4 1335863.00 5234846.00
hardware-bmc 3 114448.33 341918.00
hardware-cec 30 255757.16 754358.03
hardware-velev 21 282973.85 7478281.09
planning 25 469285.60 3323685.24
scheduling-pesp 30 37454.30 270133.10
scheduling 30 160310.13 722325.73
software-bit-verif 14 131492.71 378409.78
software-bmc 3 11216817.00 32697150.00
termination 5 219846.80 950546.60
SATComp2013 300 234984.90 1469306.71

Table 1. Statistics about the application benchmarks of the SAT Competition 2013.

This can be seen in Fig. 2, where it is represented the obtained approximation in the 17 SAT formulas solved254

by both algorithms in the given timeout. In the rest of our experimental analysis, we will only use the BND255

algorithm, given that the shapes of both approximations are very similar and that the MEMB algorithm is much256

slower.257

We also emphasize that the MEMB algorithm is slightly more accurate in some cases. This explains why a258

few upper bounds of NC(r) that BND calculates are above the ones calculated by MEMB. The exact values of259

NC(r) are probably even lower, especially for high values of r (where the approximation is less accurate).260

The VIG model that represent a random 2-SAT instance is exactly an Erdős-Rényi graphs. These formulas261

have a satisfiability threshold at m/n = 1, commonly known as the phase transition point. This means that all262

formula below (resp. above) this ratio are satisfiable (resp. unsatisfiable). It is also known that at m/n = 0.5263

there is a percolation threshold. This means that the VIG of formulas above this ratio have a major connected264

component, whereas below this threshold the VIG graph breaks into many connected components. In the265

percolation point the formula is self-similar with a fractal dimension d = 2. Above this ratio, the function NV(r)266

decays exponentially. To the best of our knowledge, there is no known result of this kind for random 3-CNF267

formulas.268

In Fig. 3 we represent the functions NV(r) and NC(r), approximated by the BND algorithm, for families269

of random 3-CNF instances with different clause/variable ratios. Although it is not showed in this figure, we270

observed that these functions does not depend on the number of variables of the family; they only depend on271

their ratio of clause-to-variable m/n.272

In the phase transition point m/n = 4.25, the function NV(r) exhibit an exponential decay with β = 2.3,273

i.e., NV(r) ∼ e−2.3 r. Hence, rmax =
log n
2.3 + 1. For example, with n = 105 variables random SAT formulas274

have a radius rmax ≈ 6. The decay factor is even higher for higher values of m/n. The same phenomenon is275

observed in the CVIG model. However, the exponential decay is β = 1.16 ≈ 2.3/2 in the family of formulas at276

the phase transition point. Hence, the decay in the VIG model is approximately double of the decay in the CVIG,277

as expected by Lemma 11. A percolation threshold is experimentally found at m/n ≈ 0.17, where the main278

connected component also exhibits a fractal dimension d = 2.279

In Fig. 4 we represent the function NC(r) for some application or industrial families of SAT instances. It280

can be observed that most of these families exhibit self-similar structure, with most fractal dimensions ranging281

between 2 and 4. All the formulas of the same family exhibit the same fractal dimension in many of the families,282

where this dimension seems to be a characteristic feature of the family. In many of the industrial families, all283

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 9 of 16

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 15

N
b
(r

)

r

CRYPTO-AES

MEMB
BND

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 15

N
b
(r

)

r

CRYPTO-GOS

MEMB
BND

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 15

N
b
(r

)

r

HARDWARE-CEC

MEMB
BND

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 15

N
b
(r

)

r

TERMINATION

MEMB
BND

Figure 2. Upper bounds for Nb(r) obtained with MEMB and BND algorithms, for the 17 industrial instances
that MEMB is able to compute in 30 minutes, grouped by families.

instances have the same fractal dimension, being this dimension a particular property of the family. See, for284

instance, families crypto-sha or diagnosis. It is interesting to see that the formula size does not alter the value of285

the fractal dimension (in our representation in logarithmic scale, they all share the same function shape).286

In general, we observe that for small values of r, the polynomial decay is clearer, with an almost identical287

slope for all the formulas of the family.288

On the other hand, for big values of r, we must make some remarks.289

First, the upper bound on NC(r) that we compute may be inaccurate. Second, we identify two events. First,290

in some cases although the whole function can not be approximated by an exponential function, there is an abrupt291

decay (see some hardware-cec or termination instances, for example). This can be due to a small set of edges292

that connect distant part of the graph. Notice they may drastically reduce the number of circles required to cover293

the graph when the value of r is high, but they would have no effect for smaller values. Second, there is a long294

tail in some other cases (see hardware-bmc-ibm, for instance). This is due to the existence of (small) unconnected295

components in the graph. However, this tail disappears if we compute N(r) only for the major component.7296

Finally, there are some families where the N(r) function decays exponentially, i.e., they are not self-similar.297

This is the case, for instance, of the hardware-velev family. However, we emphasize that this kind of families are298

rare, since most of the industrial formulas and families of our analysis do have self-similar structure, i.e., with a299

N(r) function decaying polynomially.300

7 We can subtract from N(r) the number of unconnected components, as an approximation, since most are covered with a few circles.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 10 of 16

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 15

N
(r

)

r

RANDOM 3-CNF VIG

m/n = 0.18
m/n = 1
m/n = 2
m/n = 3
m/n = 4

m/n = 4.25
m/n = 5

m/n = 7.5
m/n = 10

y = exp(-2.3 * x)
y = pow(x,-2)

 1 2 3 4 5 6 7 8 9 10 15
 1

 10

 100

 1000

 10000

 100000

 1e+06

N
b
(r

)

r

RANDOM 3-CNF CVIG

m/n = 0.18
m/n = 1
m/n = 2
m/n = 3
m/n = 4

m/n = 4.25
m/n = 5

m/n = 7.5
m/n = 10

y = exp(-1.16 * x)
y = pow(x,-2)

Figure 3. Functions NV(r) for VIG (left), and NC(r) for CVIG (right), for 3-CNF random formulas with distinct
values of m/n. Formulas are generated using n = 105 variables and taking the major connected component,
except for m/n = 0.18, where n = 106.

4.1. Fractal Dimension at Fine-Grained Scale301

If a graph exhibits self-similar structure, the same structure can be observed at all scales. This means that302

we could group a subset of nodes covered (i.e., the ones covered by a circle) into a single node, without altering303

the same structure in the resulting graph. In our evaluation, we observe that this happens when r is small (the304

function behavior is N(r) ≈ C r−d when r is small). However, this does not always happen for big values of305

r. This can be because the self-similar structure disappears at a coarse-grained scale, or because the function306

N(r) is not well approximated. When a SAT instance has a small unsatisfiability proof, a small cycle can be307

observed in the graph models representing the formula (e.g., VIG and CVIG), suggesting that the fine-grained308

scale of the fractal dimension is more relevant. In other words, we conjecture that is more important the value of309

the fractal dimension at fine-grained scale, i.e. the slope of the function N(r) for small values of r, rather than310

the existence of a self-similar structure. Therefore, in our evaluation, we note these fine-grained dimensions as311

dV and dC for the VIG and CVIG, respectively. We compute them as the interpolation, by linear regression, of312

log N(r) vs. log r. We use the values of NV(r) and NC(r), for r = 1, . . . , 6. Experimentally, we see that these313

approximations are accurate enough.314

5. The Self-Similar Structure during SAT Solver Search315

CDCL SAT solvers add during their execution new clauses learned from the conflicts the solver finds. A316

conflict represents a (partial) assignment of the variables which leads to a contradiction (i.e., an unsatisfied317

clause). These conflicts can be learned in order to prevent the solver to find them in the future. When a learned318

clause is unary (i.e., it only has one literal), this literal can be propagated (i.e., assigned), and this results in a319

simplification of the given formula. Given a unary clause x, clauses with literal x are completely removed (i.e.,320

they are satisfied by x), and literals ¬x are removed from the formula. On the other hand, learned clauses of321

bigger length may create new relations between variables, i.e., new edges in the graph representations of the322

formula.323

Both, the simplification caused by learning unary clauses, and the addition of longer learned clauses, can324

alter the fractal dimension of the SAT instance. In general graphs, the addition of edges (preserving the nodes)325

can only increase its dimension, because existing circles may cover more nodes (due to the new edges), and326

thus the number N(r) of circles required to cover the graph may decrease, whereas N(1) (the number of nodes)327

remains unchanged. As a consequence, this can only increase the fractal dimension since the slope of N(r)328

increases. In the VIG model, learning non-unary clauses only introduces new edges, thus as we argued the fractal329

dimension can only increase. On the contrary, this argument is more complicated in the CVIG model. Let N(r)330

be the original number of circles and N′(r) the minimum number of circles needed after adding L learned clauses.331

We have N′(1) = N(1) + L, since we add L new nodes. For r > 1, the whole graph can be covered with the332

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 11 of 16

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 10 20 30 40

N
b
(r

)

r

CRYPTO-GOS

crypto-gos
y=pow(x,-3.00)

 1 2 3 4 5 10 20 30 40

r

CRYPTO-SHA

crypto-sha
y=pow(x,-3.91)

 1 2 3 4 5 10 20 30 40 50

r

SCHEDULING-PESP

scheduling-pesp
y=pow(x,-2.65)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 10 20 30 40

N
b
(r

)

r

HARDWARE-BMC-IBM

hardware-bmc-ibm
y=pow(x,-2.18)

 1 2 3 4 5 10 20 30 40

r

HARDWARE-CEC

hardware-cec
y=pow(x,-2.25)

y=exp(-0.80 * x)

 1 2 3 4 5 10 20 30 40 50

r

TERMINATION

termination
y=pow(x,-2.37)

y=exp(-0.27 * x)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 10 20 30 40

N
b
(r

)

r

DIAGNOSIS

diagnosis
y=pow(x,-2.84)

 1 2 3 4 5 10 20 30 40

r

HARDWARE-BMC

hardware-bmc
y=pow(x,-2.39)

 1 2 3 4 5 10 20 30 40 50

r

HARDWARE-VELEV

hardware-velev
y=exp(-1.92 * x)

Figure 4. Function NC(r) for some industrial SAT formulas grouped by families.

former circles and using L new circles, used to cover the new nodes, thus N′(r) ≤ N(r) + L in the worst case.333

Therefore, the dimension could only increase. However, CDCL SAT solvers do not add unary clauses to the334

formula, but propagate them. And this decreases the value of N(1) in both models, while increasing the value of335

N(r) (with r > 1) because of the elimination and/or simplification of the clauses after the propagation(s). As a336

result, the fractal dimension can only decrease. In the previous argument, we assume that log N(r) is perfectly337

lineal on log r, and N(r) is computed exactly. In practice, we compute an approximation of N(r). Moreover, we338

compute the dimension by linear regression, since points are not aligned. Hence, the variation in the dimension339

due to learning is rather unpredictable.340

In order to study the evolution of the fractal dimension during SAT solver search, we have conducted341

the following experiments. First, we analyze this phenomenon in random 3-CNF instances with 105 variables342

and distinct clause/variable ratios. It is very unlikely that solving these formulas produces any unary learned343

clauses, hence neither nodes nor edges are removed. In Fig. 5, we compare the original dimension dC
orig of the344

formulas and its the fractal dimension dC
learned after adding learned clauses. It can be observed that learning345

new clauses increases the dimension of the formula, as expected theoretically, being is bigger for formulas with346

higher clause/variable ratio. This increase can be quantified repeating the same experiment and replacing the347

clauses learned by the solver by randomly generated clauses of the same length, and computing the new fractal348

dimension dC
random; the results are also shown in Fig. 5. In this second experiment it can be observed that the349

increase in the dimension is bigger when learning random clauses: dC
random ≥ dC

learned ≥ dC
orig. This means that350

actual learned clauses, even in random k-CNF formulas, tend to connect variables that were already close in the351

graph representation of the formula.352

In application SAT formulas, in contrast, the solver usually learns some unary clauses. In Fig. 6, we353

represent separately the effects of simplifying the formula after learning unary clauses (left), and the effect of354

learning longer clauses (right), after 103 conflicts.355

In most of the application benchmarks, simplifying the formulas with unary clauses slightly in general356

decreases its fractal dimension, as expected. This dimension is represented as dC
simp. In fact, in some instances357

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 12 of 16

1

2

3

4

5

1 2 3 4

d
b

le
a

rn
t
/
d

b
ra

n
d

o
m

d
b

orig

d
b

learnt
d

b
random
f(x)=x

Figure 5. Relation between the original fractal dimension dC
orig, and the dimension dC

learned after adding learned

clauses, or after adding random clauses dC
rand, in random 3-CNF formulas. learned clauses are computed after

103 conflicts.

2

3

4

5

6

7

8

2 3 4 5 6 7 8

d
b

s
im

p

d
b

orig

simplification
f(x)=x

2

3

4

5

6

7

8

2 3 4 5 6 7 8

d
b

le
a

rn
t

d
b

simp

learnt clauses
f(x)=x

Figure 6. Relation between the original fractal dimension dC
orig and the fractal dimension dC

simp after simplifying

the formula with the unary learned clauses (left), and relation between the fractal dimension dC
simp and the fractal

dimension dC
learned after simplification and adding learned clauses (right), for all industrial formulas. learned

clauses are the result of 103 conflicts.

there is a huge difference between dC
simp and dC

orig. This is the case of families crypto-md5 and crypto-sha.358

In these benchmarks, propagating unary clauses is more important, and produces more changes in the fractal359

dimension. Nevertheless, in a few instances the fractal dimension dC
simp slightly increases. Analyzing the effects360

of learning longer clauses, it can be observed in most of the instances that the dimension dC
learned after adding361

such learned clauses slightly increases the fractal dimension w.r.t. dC
simp, as expected.362

This increase is particularly remarkable in the families crypto-aes, crypto-gos and crypto-vmpc. This363

suggests that learned clauses connect distant part of the formula, hence NC(r) drops off. Again, we also observe364

some cases where the dimension dC
learned decreases due to clause learning.365

In Fig. 7, we represent the variations in the fractal dimension after 103, 104 and 105 conflicts. It can be366

observed that fractal dimensions can increase or decrease slightly after 103 conflicts, depending on the impact367

of simplifications caused by unary clauses (producing a lower fractal dimension) or adding learned clauses368

(producing a higher the fractal dimension). Nevertheless, after a longer number of conflicts (e.g., 105 conflicts),369

there is a more clear tendency: the fractal dimension increases in most of the cases. This results matches the370

expected behavior of the solver, where most of the unary clauses are learned in the early stages of the search, and371

explains that the dimensions tends to increase.372

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 13 of 16

2

3

4

5

6

7
8
9

10
11

2 3 4 5 6 7 8

d
b

le
a
rn

t

d
b

orig

after 10
3
 conf

after 10
4
 conf

after 10
5
 conf

f(x)=x

Figure 7. Relation between the original fractal dimension dC
orig and the fractal dimensions after learning clauses

dC
learned, in industrial formulas.

2

3

4

5

6
7
8
9

10
11
12
13
1415

2 3 4 5 6 7 8

d
b

le
a

rn
t
/
d

b
ra

n
d

o
m

d
b

orig

After 10
3
 conflicts

Adding learnt clauses
Adding random clauses

f(x)=x

2 3 4 5 6 7 8

d
b

orig

After 10
4
 conflicts

Adding learnt clauses
Adding random clauses

f(x)=x

2 3 4 5 6 7 8

d
b

orig

After 10
5
 conflicts

Adding learnt clauses
Adding random clauses

f(x)=x

Figure 8. Relation between the original fractal dimension dC
orig and the fractal dimensions after adding learned

clauses dC
learned, or after adding random clauses dC

random, in industrial formulas.

Finally, we analyze whether learned clauses (tend to) connect distant part of the formula in these applications373

benchmarks. For this purpose, we compare the fractal dimension dC
learned of the formulas after adding learned374

clauses and the dimension dC
random where the previous learned clauses are replaced by randomly generated375

clauses of the same length. In Fig. 8, we represent these two dimensions. It can be observed that dC
random is376

considerably higher than dC
learned.377

This means that the clauses learned by the solver do not contribute to decrease N(r), i.e., the number of378

circles required to cover the graph is similar. On the contrary, these random clauses would significantly decrease379

N(r). Therefore, learned clauses mainly connect variables (nodes) that were already covered by the same circles,380

i.e., nodes already connected or close in the graph, and thus, clause learning acts quite locally in the formula.381

6. Related Work382

In the last ten years, there have been many works on the analysis of real-world SAT instances, seen as383

graphs [22–24,29–33]. The main aim of these studies is to better understand the success of CDCL techniques384

and help to improve them. They can also help develop new benchmarks generation models with more realistic385

properties [34–40]. This problem has been identified as an important challenge in the SAT community [41–43].386

The definition of fractal dimension for graphs is based on the notion of box covering [26].387

In [27] it is described a box-covering algorithm particularly suitable for complex networks, called388

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 14 of 16

Maximum-Excluded-Mass-Burning (MEMB). They have used it to demonstrate the existence of self-similarity389

in many real-world networks [44,45]. There are other definitions of dimension for complex networks, like the390

one based on the mass (average number of vertices in a box) of the clusters [46]. The algorithm we propose391

in this paper is a variation of the MEMB algorithm, with the addition of a heuristic that allows us to process392

huge graphs, like the ones obtained from industrial SAT benchmarks. There are several models for generating393

scale-free graphs with fractal dimension [47–49].394

7. Conclusions395

The community on complex networks have developed methods and models to better understand the structure396

of real-world graphs. The classical Erdős-Rényi model, the first model in graph theory, cannot be used for397

the study of real-world networks, since this model does not generate the structural features these networks398

exhibit. Similarly, classical random SAT formulas cannot be used to better understand the underlying structure399

of industrial SAT instances and its relation to SAT solver performance. These instances are characterized by a400

particular structure, which may explain their distinct nature with respect to random formulas.401

In this work, we have analyzed the self-similarity (or fractal dimension) of industrial SAT formulas, and402

how this structure evolves during the SAT solver search. We have found that most of industrial formulas show a403

self-similar structure, while random formulas do not. Their fractal dimension ranges, in general, between 2 and 4.404

Fractal dimension, typical distances and graph diameter are related (small dimension implies big distance and405

big diameter). Hence, industrial SAT instances have a big diameter. Intuitively, that means that we need long406

chains of implications to propagate a variable instantiation to others. Moreover, we have observed that fractal407

dimension increases due to learned clauses. However, this increase is bigger if we substitute learned clauses by408

random clauses of the same size. Therefore, learning does not contribute to connect distant parts of the formula409

very much. In other words, it works locally.410

We think that the present study provides a step towards a practical explanation of why some SAT solvers411

perform better on industrial instances, and they do not on random formulas.412

Funding: This work is partially supported by the EU H2020 Research and Innovation Programme under the LOGISTAR413

project (Grant Agreement No. 769142), MINECO-FEDER projects RASO (TIN2015-71799-C2-1-P) and TASSAT3414

(TIN2016-76573-C2-2-P), the Spanish Ministerio de Economía y Competitividad under the EXASOCO project (ref.415

PGC2018-101216-B-I00), including European Regional Development Funds (ERDF). The third author is also supported by a416

MICINN Juan de la Cierva fellowship (ref. FJCI-2017-32420).417

Abbreviations418

The following abbreviations are used in this manuscript:419

420

SAT the Boolean satisfiability problem
CDCL Conflict-Driven Clause Learning
DPLL Davis-Putnam-Logemann-Loveland algorithm
VSIDS Variable State Independent Decaying Sum heuristics
VIG Variable Incidence Graph
CVIG Clause-Variable Incidence Graph
MEMB Maximum-Excluded-Mass-Burning algorithm
BND Burning by Node Degree algorithm

421

422

1. Biere, A. Bounded Model Checking. In Handbook of Satisfiability; IOS Press, 2009; pp. 457–481.423

2. Rintanen, J. Planning and SAT. In Handbook of Satisfiability; IOS Press, 2009; pp. 483–504.424

3. Kroening, D. Software Verification. In Handbook of Satisfiability; IOS Press, 2009; pp. 505–532.425

4. Silva, J.P.M.; Lynce, I.; Malik, S. Conflict-Driven Clause Learning SAT Solvers. In Handbook of Satisfiability; IOS426

Press, 2009; pp. 131–153.427

5. Davis, M.; Putnam, H. A Computing Procedure for Quantification Theory. J. ACM 1960, 7, 201–215.428

doi:10.1145/321033.321034.429

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.1145/321033.321034
https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 15 of 16

6. Davis, M.; Logemann, G.; Loveland, D.W. A machine program for theorem-proving. Commun. ACM 1962,430

5, 394–397. doi:10.1145/368273.368557.431

7. Silva, J.P.M.; Sakallah, K.A. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. Computers432

1999, 48, 506–521. doi:10.1109/12.769433.433

8. Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an Efficient SAT Solver. Proc.434

of the 38th Design Automation Conf. (DAC’01), 2001, pp. 530–535.435

9. Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. Proc. of the 21st Int. Joint436

Conf. on Artificial Intelligence (IJCAI’09), 2009, pp. 399–404.437

10. Gomes, C.P.; Selman, B.; Kautz, H.A. Boosting Combinatorial Search Through Randomization. Proc. of the 15th438

Nat. Conf. on Artificial Intelligence (AAAI’98), 1998, pp. 431–437.439

11. Eén, N.; Biere, A. Effective Preprocessing in SAT Through Variable and Clause Elimination. Proc. of the 8th Int.440

Conf. on Theory and Applications of Satisfiability Testing (SAT’05), 2005, pp. 61–75.441

12. Sakallah, K.A.; Marques-Silva, J. Anatomy and Empirical Evaluation of Modern SAT Solvers. Bulletin of the EATCS442

2011, 103, 96–121.443

13. Elffers, J.; Giráldez-Cru, J.; Gocht, S.; Nordström, J.; Simon, L. Seeking Practical CDCL Insights from Theoretical444

SAT Benchmarks. Proc. of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI’18), 2018, pp. 1300–1308.445

doi:10.24963/ijcai.2018/181.446

14. Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. Proc.447

of the 19th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’16), 2016, pp. 123–140.448

15. Biere, A. CaDiCaL at the SAT Race 2019. Proceedings of SAT Race 2019 : Solver and Benchmark Descriptions,449

2019, pp. 8–9.450

16. Williams, R.; Gomes, C.P.; Selman, B. Backdoors To Typical Case Complexity. Proc. of the 18th Int. Joint Conf. on451

Artificial Intelligence (IJCAI’01), 2003, pp. 1173–1178.452

17. Gomes, C.P.; Selman, B. Problem Structure in the Presence of Perturbations. Proc. of the 14th Nat. Conf. on453

Artificial Intelligence (AAAI’97), 1997, pp. 221–226.454

18. Hogg, T. Refining the Phase Transition in Combinatorial Search. Artif. Intell. 1996, 81, 127–154.455

19. Gent, I.P.; Hoos, H.H.; Prosser, P.; Walsh, T. Morphing: Combining Structure and Randomness. Proc. of the 16th456

Nat. Conf. on Artificial Intelligence (AAAI’99), 1999, pp. 654–660.457

20. Järvisalo, M.; Niemelä, I. The effect of structural branching on the efficiency of clause learning SAT solving: An458

experimental study. J. Algorithms 2008, 63, 90–113.459

21. Erdós, P.; Rényi, A. On Random Graphs. Publicationes Mathematicae 1959, 6, 290–297.460

22. Ansótegui, C.; Giráldez-Cru, J.; Levy, J. The Community Structure of SAT Formulas. Proc. of the 15th Int. Conf. on461

Theory and Applications of Satisfiability Testing (SAT’12), 2012, pp. 410–423.462

23. Ansótegui, C.; Bonet, M.L.; Levy, J. On the Structure of Industrial SAT Instances. Proc. of the 15th Int. Conf. on463

Principles and Practice of Constraint Programming (CP’09), 2009, pp. 127–141.464

24. Ansótegui, C.; Bonet, M.L.; Giráldez-Cru, J.; Levy, J. The Fractal Dimension of SAT Formulas. Proc. of the 7th Int.465

Joint Conf. on Automated Reasoning (IJCAR’14), 2014, pp. 107–121.466

25. Giráldez-Cru, J. Beyond the Structure of SAT Formulas. PhD thesis, Universitat Autónoma de Barcelona, 2016.467

26. Mandelbrot, B.B. The fractal geometry of nature; Macmillan, 1983.468

27. Song, C.; Gallos, L.K.; Havlin, S.; Makse, H.A. How to calculate the fractal dimension of a complex network: the469

box covering algorithm. Journal of Statistical Mechanics: Theory and Experiment 2007, 2007, P03006.470

28. Walsh, T. Search in a Small World. Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99), 1999, pp.471

1172–1177.472

29. Katsirelos, G.; Simon, L. Eigenvector Centrality in Industrial SAT Instances. Proc. of the 19th Int. Conf. on473

Principles and Practice of Constraint Programming (CP’12), 2012, pp. 348–356.474

30. Ansótegui, C.; Giráldez-Cru, J.; Levy, J.; Simon, L. Using community structure to detect relevant learnt clauses. Proc.475

of the 18th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’15), 2015, pp. 238–254.476

31. Ansótegui, C.; Bonet, M.L.; Giráldez-Cru, J.; Levy, J. On the Classification of Industrial SAT Families.477

Proc. of the 18th Int. Conf. of the Catalan Association for AI (CCIA’15), 2015, pp. 163–172.478

doi:10.3233/978-1-61499-578-4-163.479

32. Baud-Berthier, G.; Giráldez-Cru, J.; Simon, L. On the Community Structure of Bounded Model Checking SAT480

Problems. Proc. of the 20th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’17), 2017, pp.481

65–82. doi:10.1007/978-3-319-66263-3_5.482

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.1145/368273.368557
https://doi.org/10.1109/12.769433
https://doi.org/10.24963/ijcai.2018/181
https://doi.org/10.3233/978-1-61499-578-4-163
https://doi.org/10.1007/978-3-319-66263-3_5
https://doi.org/10.20944/preprints202010.0560.v1

Version October 26, 2020 submitted to Mathematics 16 of 16

33. Ansótegui, C.; Bonet, M.L.; Giráldez-Cru, J.; Levy, J. Structure features for SAT instances classification. J. Applied483

Logic 2017, 23, 27–39. doi:10.1016/j.jal.2016.11.004.484

34. Slater, A. Modelling More Realistic SAT Problems. Proc. of the 15th Australian Joint Conf. on Artificial Intelligence485

(AJCAI’02), 2002, pp. 591–602.486

35. Ansótegui, C.; Bonet, M.L.; Levy, J. Towards Industrial-Like Random SAT Instances. Proc. of the 21st Int. Joint487

Conf. on Artificial Intelligence (IJCAI’09), 2009, pp. 387–392.488

36. Burg, S.; Kaufmann, M.; Kottler, S. Creating Industrial-Like SAT Instances by clustering and reconstruction. Proc.489

of the 15th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’12), 2012, pp. 471–472.490

37. Järvisalo, M.; Kaski, P.; Koivisto, M.; Korhonen, J.H. Finding Efficient Circuits for Ensemble Computation. Proc. of491

the 15th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’12), 2012, pp. 369–382.492

38. Giráldez-Cru, J.; Levy, J. A modularity-based random SAT instances generator. Proc. of the 24th Int. Joint Conf. on493

Artificial Intelligence (IJCAI’15), 2015, pp. 1952–1958.494

39. Giráldez-Cru, J.; Levy, J. Generating SAT instances with community structure. Artif. Intell. 2016, 238, 119–134.495

40. Giráldez-Cru, J.; Levy, J. Locality in Random SAT Instances. Proc. of the 26th Int. Joint Conf. on Artificial496

Intelligence (IJCAI’17), 2017, pp. 638–644.497

41. Selman, B.; Kautz, H.A.; McAllester, D.A. Ten Challenges in Propositional Reasoning and Search. Proc. of the 15th498

Int. Joint Conf. on Artificial Intelligence (IJCAI’97), 1997, pp. 50–54.499

42. Kautz, H.A.; Selman, B. Ten Challenges Redux: Recent Progress in Propositional Reasoning and Search. Proc. of500

the 9th Int. Conf. on Principles and Practice of Constraint Programming (CP’03), 2003, pp. 1–18.501

43. Dechter, R. Constraint Processing; Morgan Kaufmann, 2003.502

44. Song, C.; Havlin, S.; Makse, H.A. Self-similarity of complex networks. Nature 2005, 433, 392–395.503

45. Song, C.; Havlin, S.; Makse, H.A. Origins of fractality in the growth of complex networks. Nature Physics 2006,504

275, 275.505

46. Shanker, O. Defining Dimension of a Complex Network. Modern Physics Letters B 2007, 21, 321–326.506

47. Dorogovtsev, S.N.; Goltsev, A.V.; Mendes, J.F.F. Pseudofractal scale-free web. Physical Review E 2002, 65, 066122.507

48. Ravasz, E.; Barabási, A.L. Hierarchical organization in complex networks. Phys. Rev. E 2003, 67, 026112.508

doi:10.1103/PhysRevE.67.026112.509

49. Jung, S.; Kim, S.; Kahng, B. Geometric fractal growth model for scale-free networks. Phys. Rev. E 2002, 65, 056101.510

doi:10.1103/PhysRevE.65.056101.511

c© 2020 by the authors. Submitted to Mathematics for possible open access publication under the terms and conditions of512

the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).513

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2020 doi:10.20944/preprints202010.0560.v1

https://doi.org/10.1016/j.jal.2016.11.004
https://doi.org/10.1103/PhysRevE.67.026112
https://doi.org/10.1103/PhysRevE.65.056101
http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202010.0560.v1

