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Abstract

In this work we scrutinize the reliability of multilooked interferograms for deformation analysis. Designing a simple
approach in the evaluation of the accuracy of the estimated deformation signals, we reveal a prominent bias in the defor-
mation velocity maps. The bias is the result of propagation of small phase error of multilooked interferograms through
the time series and can sum up to 6.5 mm/yr in case of using the error prone short temporal baseline interferograms. We
further discuss the role of the phase estimation algorithms in significant reduction of the bias and put forward the idea of
a unified intermediate InSAR product for achieving high-precision deformation monitoring.
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1 Introduction

Through extensive analysis of Sentinel-1 data, we observe
a systematic, yet temporally inconsistent, error source in
the multilooked interferograms which especially compro-
mises the reliability of Interferometric Synthetic Aperture
Radar (InSAR)-derived deformation velocity maps. The
observed error is attributed to the systematic variation in
the scattering properties of the sub resolution scatterers [1].
The phenomenon can be explained, for instance, by mois-
ture variation, vegetation growth etc. A relevant research
direction is on-going to interpret the physical source and
model the interferometric phase of such systematic signals
[2]. Complementary to the latter, this work sheds light on
other aspects of the problem. Here we demonstrate:

e the presence of the systematic effects in interfero-
grams;

e the propagated error to the deformation velocity
maps;

o the effect of processing algorithms on mitigating the
error.

In these demonstrations, we distinguish between two types
of observations in InSAR: single-look versus the multilook
interferometric phases. The former is for instance related
to the Persistent Scatterers (PS), where the single complex
valued pixels are exploited within the time series. The lat-
ter multilooked observations are the result of spatial aver-
aging (i.e. multilooking). Spatial averaging is the corner-
stone of many advanced InSAR time series analysis tech-
niques, with [3] and [4] setting the two overarching trends
in this regard. Although effective in improving the Signal
to Noise Ratio (SNR) of the natural land covers, known
as Distributed Scatterers (DS), multilooking changes the
statistical properties of the interferograms and introduces

peculiar physical signal. Therefore, a phase bias is ob-
served between the single-look and multilooked observa-
tions. The study of the impact of this phase bias on Earth
surface deformation retrieval is the focus of this paper.
For scrutinizing the presence and effect of the phase bi-
ases on deformation estimates, we resort to the compar-
ison of the single-look and multilooked observations. In
the following section, we firstly expand on our comparison
approach. The result of the comparisons is provided in sec-
tion 3. Our conclusions and recommendations finalize the
paper.

This paper does not include our in-depth analysis for re-
vealing the systematic phase biases of the multilooked in-
terferograms, instead it highlights the consequence of such
biases for the deformation estimation.

2  Methodology

We design an experiment to reveal the propagation of the
phase bias of multilooked interferograms to the deforma-
tion estimates. As the benchmark of the experiment, we
perform Persistent Scatterer Interferometry (PSI) to allow
the deformation estimation based on pure single-look ob-
servations. Should inconsistent systematic effects exist
within the multilooked interferograms, the deformation es-
timates vary depending on which interferograms are em-
ployed for their retrieval. We perform multiple processing
rounds to corroborate this proposition.

In the first processing round, we exploit all possible inter-
ferograms within the time series to retrieve the deforma-
tion signal as explained in section 2.1. In the following
processing rounds, we test the ingestion of different sub-
sets of the interferograms for deformation estimation; the
corresponding estimator for this processing is introduced
in section 2.2.

The resulting deformation estimates from the different ex-
periments are evaluated against the benchmark PSI result
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to reveal the presence of bias in deformation, as explained
in section 2.3.

This section expands on the theory of the comparison
schemes, the result of the comparison is reported in sec-
tion 3.

2.1 Phase linking on all interferograms

After its pioneering authors, we define phase linking as
the estimator which retrieves n — 1 consistent common-
master interferograms from all possible n(n — 1)/2 inter-
ferogram combinations within a stack of n acquisitions [5].
The estimated interferograms are the input for deformation
retrieval. Here we shortly review the idea of phase linking.
Without loss of generality, we concentrate on one DS re-
gion (see [4, 6] for algorithmic details of the DS region
selection). The DS is comprised of an ensemble of spa-
tially homogeneous region of p pixels in a time series of
n Synthetic Aperture Radar (SAR) images, arranged in a
matrix Z € C™*P, Based on the central limit theorem, Z
follows the zero-mean n-variate Complex Circular Gaus-
sian (CCQ) distribution [7]. Under the validity of this dis-
tribution, the sample covariance matrix, or its normalized
version Sample Correlation Matrix (SCM), suffices for the
full description of the DS. The SCM, hereafter denoted by
C, is a Hermitian matrix whose off diagonal elements per-
tain to all possible multilooked interferograms I3 within
the SAR time series and its temporal coherence I';y, i.e:

LC, = Iy = Ay (D
|ICik| = Tir 2

The difference in phase linking techniques may be formu-
lated as the difference in modeling the SCM [8, 9]. In an
earlier work [8], we proposed a computationally efficient
approach to phase linking called Eigen-decomposition-
based Maximum-likelihood-estimator of Interferometric
phase (EMI). This proposal decreases the computational
cost by reformulating phase estimation into the following
Eigen-decomposition problem [8]:

¢ =Z(argmin, {v] (CoT M vi}); (3

H

subject to v;

H .
and v v, = 0;

’Ui:1

where v; is an arbitrary complex vector of size n x 1 and
o is the Hadamard product. Note that, as common in In-
SAR, the estimation of absolute phase is ambiguous. An
arbitrary image in the time series is selected as the mas-
ter, its phase is set to zero and the remaining phases are
measured relative to this arbitrary datum. c} is a vector of
n wrapped phase values relative to the selected master. It
contains the consistent interferometric phase component
within the exploited interferograms. This phase informa-
tion is used for the retrieval of the deformation signal.

2.2 Phase linking on interferogram subsets

To allow the ingestion of different subsets of interfero-
grams and evaluate path-dependency of the deformation
estimates, we designed a variation of the Small BAseline
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Figure 1 Different levels of data exploitation for deformation analysis.
Top sketch mimics SAR images with dots and the exploited interfero-
grams with arcs; the sketch below shows the corresponding SCM where
diagonal elements refer to the images and the filled off-diagonals repre-
sent the employed interferograms. Images are assumed to be temporally
sorted. (a) partial exploitation of the data with short temporal baseline
interferograms of up to band bw, and (b) the full exploitation of the
interferograms with full SCM.

Subset approach (SBAS) technique of [3]. The difference
with respect to the conventional SBAS is two-fold:

e The baseline constrain is only imposed on the tempo-
ral separation between the acquisition pairs.

e Phase linking is performed on the chosen interfero-
gram subset. Deformation estimation follows based
on these estimated phases.

Performing phase linking on the interferogram subsets, the
designed approach is less prone to the propagation of phase
unwrapping errors. Hereafter this approach is referred to
as Enhanced Short temporal BAseline Subset approach (E-
StBAS).
The chosen subset is comprised of bw number of short-
est temporal baseline interferograms per acquisition in the
time series. The total number of the employed interfero-
grams in E-StBAS of bandwidth bw follows from:
m=b7w(2n—bw—l) 4)
Compared to the conventional phase linking, here a band
matrix will replace the full SCM (see Fig. 1). The band-
width of the matrix is defined by the parameter bw. The
consistent phase based on these interferograms is recon-
structed following the below iterative optimization:

. 1 bw ’ p—1
¢, =2 (bw > Tiirkexp(jAGiipk — J¢f+k)> ®)
k=1

The iterations can be initialized by the largest eigenvector
of the band matrix C*, i.e.:

¢A>O = /(argmax, {v'C"v;});  (6)
subjectto  vHwv; =1,

and vy, =0.
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Figure 2 Deformation velocity maps retrieved by three different DS processing schemes of (a) E-StBASS with bw = 5 (b) E-StBAS10 with bw =
10 (c) EMI using full SCM; as compared to (d) the benchmark PSI processing. The reference point is identical in all maps.

In practice (6) provides a sufficient approximation such
that the iteration by (5) is unnecessary. As in section 2.1,
g?) contains the consistent interferometric phase component
within the exploited subset. This phase information is used
for the retrieval of the deformation signal.

2.3 Evaluation of Deformation Bias

Retrieving the consistent phase series for DS using ei-
ther EMI or E-StBAS, the deformation signal is esti-
mated following a 3D phase unwrapping and decomposi-
tion of signal to deformation and atmospheric components
[10, 11, 4]. Two products may be retrieved from the defor-
mation signal, namely the relative displacement time series
of size n — 1 per DS, and more concisely the modeled de-
formation velocity as a single parameter per DS.

The intention is to evaluate the accuracy of both DS-
derived products. The conventional approach to valida-
tion is to use independent geodetic measurements; pro-
vided for instance by Global Navigation Satellite Systems
(GNSS). However, being interested in detailed evaluation
of the DS behavior over different land cover, the available
sparse GNSS networks would not suffice for our analysis.
We instead opt for the PS-derived deformation signal as the
benchmark for validation. Being single-look observations,
the PS are exempt of phase inconsistencies. Therefore, the
associated deformation shall be free of systematic biases.
Furthermore, the spatial distribution of PS is by far denser
than the available GNSS measurements.

The performance evaluation is conducted as following:
spatial grids of size 1 km? is chosen for down-sampling
both displacement time series and deformation velocity
maps. For all PS and DS within the defined reference grid
cells, a weighted average of the deformation signal substi-
tutes the sparse estimates. The weighting is based on the a
posteriori coherence of PS [11] and DS [4]. For the latter
scatterers, the clutter is disregarded using a constant false
alarm rate detector. Following this approach the down-
sampled DS and PS deformations are directly comparable.
From this point on, the calculation of the estimation bias in
deformation products is straight-forward:

ea(r,y) = E{dps(w,y)} — E{dps(z,y)} (7

where E is the mentioned weighted averaging operator,

Table 1 Summary of the compared approaches for the estimation of
deformation velocity. PSI is used for bias and dispersion.

Defo. Defo.
Phase SCM L Bias Variance
Estimation ~ Bandwidth  Ifgrms. [mm/yr] [mm/yr]
bw m
E-StBASS 5 905 —6.50 2.58
E-StBAS10 10 1785 —-3.05 1.55
EMI full SCM 16836 —0.24 0.70

x,y are the spatial coordinates of the down-sampled grid
and ¢, is the evaluated bias. d can represent either the dis-
placement values in the time series or the deformation ve-
locity.

This evaluation will result in a time series of displacement
biases as well as the overall deformation velocity bias for
the entire time series. Both biases are calculated over the
down-sampled spatial grid.

3 Results

For the study of the biases, a test site is chosen in the is-
land of Sicily-Italy. The test site is regularly monitored by
Sentinel-1 A and B, with abundant data. The land cover
is heterogeneous to observe the behavior of different DS
types. The area is investigated by different studies, e.g,
[12, 13], and potentially allows independent performance
comparison.

The data set is comprised of 184 acquisitions from Octo-
ber 2014 to September 2018 of descending track. It covers
approximately 15000 km?.

Following the introduced methods in section 3, the biases
in deformation velocity and displacement time series is
studied in this section. Our evaluation of the phase bi-
ases in the multilooked interferograms is not provided here;
however, it will be presented in the conference.

3.1 The comparison scenarios

The intention is to define a scientifically credible experi-
ment which can isolate the impact of multilooked phases



on deformation estimation.

We perform a unified processing chain for deformation re-
trieval. All steps of the processing and the corresponding
latent parameters are kept identical, with the exception of
phase estimation. With reference to section 2, three differ-
ent schemes are compared in phase estimation:

e E-StBAS with bandwidth of five;
e E-StBAS with bandwidth of ten;
e EMI performing phase linking on full SCM.

The defined experiment is summarized in table 1.
Identical to the three cases, Interferometric Wide Area Pro-
cessing (IWAP) chain [14] is used for deformation es-
timation, with phase estimation integrated in the chain.
The topographic induced phase is removed using the Shut-
tle Radar Topographic Mission (SRTM) Digital Elevation
Model (DEM) to improve spatial stationarity in short dis-
tances. As the first step toward DS processing, the statisti-
cally homogeneous ensembles surrounding each pixel are
detected. The amplitude-based Anderson-Darling statisti-
cal similarity test [6] with false alarm rate of 5% is chosen
as the detection method. The search window for the test
comprises of 25 and 7 looks in range and azimuth direc-
tion, respectively. The effective number of look is however
approximately half in each direction. The homogeneous
ensembles are exploited for adaptive multilooking of the
direct interferograms as well as estimation of the SCM at
DS region. A constant false alarm rate detector is further
used to detect the signal bearing DS and exclude the low
quality regions from the deformation analysis [16]. The
latter regions pertain to fast decorrelating scatterers such
as water bodies and dense vegetation.

Beside the three DS comparison cases, we perform a con-
ventional PSI and treat the result as the benchmark for
our analysis to follow. Note that in all four, the master
scene and reference point are identical. Moreover, the la-
tent latent parameters are kept identical or chosen in an
data-driven fashion, to ensure the credibility of the com-
parisons.

Fig. 2 shows the retrieved deformation velocity map of
these four described schemes. In the following sections,
the results are quantitatively analyzed.

3.2 Bias in deformation velocity

We are interested in the quantitative error of the deforma-
tion velocity maps reported in Fig. 2. Following the de-
scribed method in section 2.3, the PS scheme is taken as the
benchmark. According to (7), the discrepancy between the
velocity estimated by each three DS schemes are evaluated
against this benchmark over a down-sampled grid. Fig. 3
depicts the probability density function (PDF) of the accu-
mulated discrepancies over the entire test site. The first and
second order moment of these PDFs provide a measure for
the overall bias and dispersion of each method in the es-
timation of the deformation velocity. These performance
indicators are summarized in table 1.

As revealed by the comparisons, both the bias and disper-
sion decrease when more interferograms are exploited for
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Figure 3 PDF of deformation velocity bias evaluated by (7), reported
for the three DS processing schemes. The first ;1 and second o order
moments of these PDFs indicate the overall bias and dispersion of the
velocity estimates, respectively. The increase in the number of exploited
interferograms improves the overall accuracy of deformation estimation.
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Figure 4 Temporal trends of the average bias in displacement estima-
tion for the three compared DS schemes. top: the overall trend, bottom:
the periodic behavior resulted from the removal of the linear trends. The
linear variation of the displacement bias prevails the periodic changes.
This implies the negligible effect of seasonal variations of the phase
which may be attributed to the moisture variation.

phase and consequently deformation estimation.

3.3 Bias in displacements

We further extend the bias analysis to the temporal domain
by evaluating the discrepancy in the displacement time se-
ries. The latter time series is the outcome of spatiotempo-
ral phase unwrapping and the removal of topographic and
atmospheric signal components. In practice the nonlinear
displacements may leak to the atmospheric signal estima-
tion and be removed from the time series, however, the is-
sue is irrelevant to the purpose of the current study.

Similar to the previous section and following the method
of section 2.3, the displacement bias between each DS
scheme and the benchmark PSI result is evaluated for each
single acquisition. The displacement bias is therefore eval-



uated per acquisition and over the down-sampled grid via
).
The average displacement bias of each acquisition is pro-
vided in Fig. 4. The following are observed from this fig-
ure:

e Both the bias and dispersion of the displacement esti-
mates increase with the temporal baseline. The error
propagation is more severe where less interferograms
are exploited.

e A prevailing linear trend is observed for E-StBASS5
and 10, implying the persistent presence of physical
source of bias in the DS over the entire time series.

e A negligible periodic trend is observed which may be
attributed to the moisture variations [1, 2].

e Using the data-adaptive solution and exploiting the
full time series in EMI significantly helps in the ro-
bust estimation of displacement.

3.4 Tracking the observed bias to multi-
looked interferograms

In the attempt to find the source of deformation bias, we
performed an in-depth analysis of the multilooked inter-
ferograms within the data stack and corroborated the pres-
ence of a systematic but inconsistent physical signal within
the data stack. The magnitude of the signal decreases with
temporal baseline, rendering the short temporal baseline
interferograms more prone to the perturbing effects.

4 Discussion and Recommendation

From the various analysis of the previous section, the fol-
lowing conclusions are drawn:

e multilooked interferograms reveal a persistent sys-
tematic phase component which cannot be attributed
to atmospheric or surface topography variations;

o this systematic phase component is absent in single-
look phase observations;

e cxploiting the temporal data redundancy in large time
series renders the robustness of the phase retrieval al-
gorithms to such phase errors;

e the major role in the gained robustness is played by
the inclusion of the long temporal baseline interfero-
grams in phase retrieval;

e phase biases are larger for shorter temporal baseline,
albeit more coherent and therefore high SNR, inter-
ferograms;

e the propagation of even small phase biases in long
time series compromises the accuracy of deforma-
tion velocity maps from the otherwise achievable sub-
millimeter per year precision;

o the systematic phases comprise of a prominent linear
and a much lower magnitude periodic signal;
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The presence of phase biases have consequences for the
accuracy of InSAR in deformation analysis. The problem
is highly exacerbated for Big Data processing. Common
practice in processing large time series is to mostly exploit
the short temporal baseline interferograms; similar to the
designed E-StBAS scheme. The reason is that short base-
line interferograms are less affected by temporal decorre-
lation and believed to be more reliable for deformation es-
timation. However, the analysis of this paper proves that
these interferograms are the most affected by the inconsis-
tent systematic signals and most prone to propagate sys-
tematic errors through the time series.

In principle one could increase the number of interfero-
grams to achieve a reliable deformation estimate. How-
ever, according to our experiments, the choice of opti-
mum number of interferograms for reliable deformation es-
timates is test site and land cover dependent. Therefore, we
advocate data-adaptive phase retrieval using all the possi-
ble interferograms, through sufficient modeling of the full
SCM. According to our extensive wide area processing ex-
perience, partially reported in [17, 18], EMI provides a
computationally efficient solution for phase estimation and
does not pose a challenge for Big Data processing. Is a
more efficient phase retrieval with minimum storage and
input/output requirements desired for Big Data processing,
we recommend the sequential estimator for reconstruction
of consistent phase [19]. The accuracy of the sequential al-
gorithm is studied and proven to retain the millimeter level
target [17].

Our final recommendation is to introduce a new intermedi-
ate product level for InSAR, namely the reconstructed con-
sistent interferometric phase series. The envisioned prod-
uct would:

e contain the time-consistent physical signals such as,
but not limited to, atmospheric variations and surface
displacements;

significantly reduce the interferometric phase bias and
variance;

reduce the amount of interferometric data from the
original pairwise interferograms within the data stack
to a time series of higher quality and, optionally,
down-sampled interferograms;

e provide a unified product for deformation monitoring;

enhance the reliability of InSAR for displacement
analysis specifically for the retrieval of deformation
velocity maps.
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