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Abstract 
Expectation maximization (EM) algorithm is a powerful mathematical tool for estimating 

statistical parameter when data sample contains hidden part and observed part. EM is applied 

to learn finite mixture model in which the whole distribution of observed variable is average 

sum of partial distributions. Coverage ratio of every partial distribution is specified by the 

probability of hidden variable. An application of mixture model is soft clustering in which 

cluster is modeled by hidden variable whereas each data point can be assigned to more than 

one cluster and degree of such assignment is represented by the probability of hidden variable. 

However, such probability in traditional mixture model is simplified as a parameter, which can 

cause loss of valuable information. Therefore, in this research I propose a so-called conditional 

mixture model (CMM) in which the probability of hidden variable is modeled as a full 

probabilistic density function (PDF) that owns individual parameter. CMM aims to extend 

mixture model. I also propose an application of CMM which is called adaptive regression 

model (ARM). Traditional regression model is effective when data sample is scattered equally. 

If data points are grouped into clusters, regression model tries to learn a unified regression 

function which goes through all data points. Obviously, such unified function is not effective 

to evaluate response variable based on grouped data points. The concept “adaptive” of ARM 

means that ARM solves the ineffectiveness problem by selecting the best cluster of data points 

firstly and then evaluating response variable within such best cluster. In order words, ARM 

reduces estimation space of regression model so as to gain high accuracy in calculation. 

Keywords: expectation maximization (EM) algorithm, finite mixture model, conditional 

mixture model, regression model, adaptive regression model (ARM). 

 

1. Introduction 
Suppose data has two parts such as hidden part X and observed part Y and we only know Y. A 

relationship between random variable X and random variable Y is specified by the joint 

probabilistic density function (PDF) denoted f(X, Y | Θ) where Θ is parameter. Given sample 

𝒴 = {Y1, Y2,…, YN} whose all Yi (s) are mutually independent and identically distributed (iid), 

it is required to estimate Θ based on 𝒴 whereas X is unknown. Expectation maximization (EM) 

algorithm is applied to solve this problem when only 𝒴 is observed. EM has many iterations 

and each iteration has two steps such as expectation step (E-step) and maximization step (M-

step). At some tth iteration, given current parameter Θ(t), the two steps are described as follows: 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current parameter Θ(t), according to 

equation 1.1 (Nguyen, Tutorial on EM tutorial, 2020, p. 50). 

𝑄(Θ|Θ(𝑡)) =∑∫𝑓(𝑋|𝑌𝑖, Θ)log(𝑓(𝑋, 𝑌𝑖|Θ
′))d𝑋

𝑋

𝑁

𝑖=1

 (1.1) 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) with subject to Θ. Note that Θ(t+1) 

will become current parameter at the next iteration (the (t+1)th iteration). 
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EM algorithm will converge after some iterations, at that time we have the estimate Θ(t) = Θ(t+1) 

= Θ*. Note, the estimate Θ* is result of EM. 

Especially, the random variable X represents latent class or latent component of random 

variable Y. Suppose X is discrete and ranges in {1, 2,…, K}. As a convention, let k=X. Note, 

because all Yi (s) are iid, let random variable Y represent every Yi. The so-called probabilistic 

finite mixture model is represented by the PDF of Y, as follows: 

𝑓(𝑌|Θ) = ∑𝛼𝑘𝑓𝑘(𝑌|𝜃𝑘)

𝐾

𝑘=1

 (1.2) 

Where, 

Θ = (𝛼1, 𝛼2, … , 𝛼𝐾 , 𝜃1, 𝜃2, … , 𝜃𝐾)
𝑇

∑𝛼𝑘

𝐾

𝑘=1

= 1
 

Note, the superscript “T” denotes transpose operator for vector and matrix. The Q(Θ | Θ(t)) is 

re-defined for finite mixture model as follows (Nguyen, Tutorial on EM tutorial, 2020, p. 79): 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))log(𝛼𝑘𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

 (1.3) 

Where, 

𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 (1.4) 

If every fk(Y|θk) distributes normally with mean μk and covariance matrix Σk such that θk = (μk, 

Σk)
T, the next parameter Θ(t+1) is calculated at M-step of such tth iteration given current 

parameter Θ(t) as follows (Nguyen, Tutorial on EM tutorial, 2020, p. 85): 

𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑌𝑖

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

Σ𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

 (1.5) 

Note, the conditional probability P(k | Yi, Θ
(t)) is calculated at E-step. 

In the traditional finite mixture model, the parameter αk is essentially the parameter of 

hidden random variable X when X is discrete, αk = P(X=k). In other words, P(X) is “reduced” 

at most. There is a problem of how to define and learn finite mixture model when P(X) is still 

a full PDF which owns individual parameter. Such problem is solved by the definition of 

conditional mixture model (CMM) in the next section.  

 

2. Conditional mixture model 
Now let W and Y be two random variables and both of them are observed. I define the 

conditional PDF of Y given W as follows: 

𝑓(𝑌|𝑊, Θ) = ∑
𝑔𝑘(𝑊|𝜑𝑘)

∑ 𝑔𝑙(𝑊|𝜑𝑙)
𝐾
𝑙=1

𝑓𝑘(𝑌|𝑊, 𝜃𝑘)

𝐾

𝑘=1

 (2.1) 
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Where gk(W|φk) is the kth PDF of W which can be considered PDF of X for the kth component. 

Equation 2.1 specifies the so-call conditional mixture model (CMM) when random variable Y 

is dependent on another random variable W. It is possible to consider that the parameter αk in 

the traditional mixture model specified by equation 1.2 is: 

𝛼𝑘 =
𝑔𝑘(𝑊|𝜑𝑘)

∑ 𝑔𝑙(𝑊|𝜑𝑙)
𝐾
𝑙=1

 

It is deduced that hidden variable X=k in CMM is represented by gk(W|φk) with a full of 

necessary parameters φk. When the sum ∑ 𝑔𝑙(𝑊|𝜑𝑙)
𝐾
𝑙=1  is considered as constant, we have: 

𝑓(𝑌|𝑊,Θ) =
1

∑ 𝑔𝑙(𝑊|𝜑𝑙)
𝐾
𝑙=1

∑𝑔𝑘(𝑊|𝜑𝑘)𝑓𝑘(𝑌|𝑊, 𝜃𝑘)

𝐾

𝑘=1

∝∑𝑔𝑘(𝑊|𝜑𝑘)𝑓𝑘(𝑌|𝑊, 𝜃𝑘)

𝐾

𝑘=1

 

Where the sign “∝” indicates proportion. The quasi-conditional PDF of Y given W is defined 

to be proportional to the conditional PDF of Y given W as follows: 

𝑓(𝑌|𝑊,Θ) = ∑𝑔𝑘(𝑊|𝜑𝑘)𝑓𝑘(𝑌|𝑊, 𝜃𝑘)

𝐾

𝑘=1

 (2.2) 

Where the parameter of CMM is Θ = (φ1, φ2,…, φK, θ1, θ2,…, θK)T. Of course, we have: 

𝑓(𝑌|𝑊, Θ) ∝ 𝑓(𝑌|𝑊,Θ) 
Given sample 𝒵 = {Z1 = {W1, Y1}, Z2 = {W2, Y2},…, }, ZN = {WN, YN})} of size N in which all 

Xi (s) are iid and all yi (s) are iid, we need to learn CMM. Let W and Y represent every Wi and 

every Yi, respectively. When applying EM along with the quasi-conditional PDF 𝑓(𝑌|𝑊,Θ) to 

estimate Θ, the Q(Θ | Θ(t)) is re-defined as follows: 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ
(𝑡))log(𝑔𝑘(𝑊𝑖|𝜑𝑘)𝑓𝑘(𝑌𝑖|𝑊𝑖, 𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

 (2.3) 

Where P(k | Wi, Yi) is determined according to Bayes’ rule, 

𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ
(𝑡)) =

𝑔𝑘(𝑊𝑖|𝜑𝑘
(𝑡))𝑓𝑘(𝑌𝑖|𝑊𝑖, 𝜃𝑘

(𝑡))

∑ 𝑔𝑙(𝑊𝑖|𝜑𝑙
(𝑡)
)𝑓𝑙(𝑌𝑖|𝑊𝑖, 𝜃𝑙

(𝑡)
)𝐾

𝑙=1

 (2.4) 

We need to maximize Q(Θ | Θ(t)) at M-step of some tth iteration given current parameter Θ(t). 

Expectedly, the next parameter Θ(t+1) is solution of the equation created by setting the first-

order derivative of Q(Θ | Θ(t)) with regard to Θ to be zero. The first-order partial derivatives of 

Q(Θ | Θ(t)) with regard to φk and θk are: 

𝜕𝑄(Θ|Θ(𝑡))

𝜕𝜑𝑘
=∑𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ

(𝑡))
𝜕log(𝑔𝑘(𝑊𝑖|𝜑𝑘))

𝜕𝜑𝑘

𝑁

𝑖=1

 

𝜕𝑄(Θ|Θ(𝑡))

𝜕𝜃𝑘
=∑𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ

(𝑡))
𝜕log(𝑓𝑘(𝑌𝑖|𝑊𝑖, 𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

 

Thus, the next parameter Θ(t+1) is solution of the following equation: 

{
 
 

 
 ∑𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ

(𝑡))
𝜕log(𝑔𝑘(𝑊𝑖|𝜑𝑘))

𝜕𝜑𝑘

𝑁

𝑖=1

= 𝟎𝑇

∑𝑃(𝑘|𝑊𝑖, 𝑌𝑖 , Θ
(𝑡))

𝜕log(𝑓𝑘(𝑌𝑖|𝑊𝑖, 𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

= 𝟎𝑇

 (2.5) 

How to solve the equation 2.5 depends on individual applications. The next section describes 

an application of CMM. 
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3. Adaptive regression model 
Traditional regression model is effective when data sample is scattered equally. If data points 

are grouped into clusters with their nature, regression model tries to learn a unified regression 

function which goes through all data points. Obviously, such unified function is not effective 

to evaluate response variable based on grouped data points. Alternately, if it is possible to select 

a right cluster for evaluating response variable, the value of response variable will be more 

precise. Therefore, selective evaluation is the main idea of adaptive regression model (ARM). 

The main ideology of ARM to group sample into clusters and build respective regression 

functions for clusters in parallel. CMM is applied to solve this problem, in other words, ARM 

is an application of CMM. There may be other applications of CMM but here I focus on ARM. 

Given a n-dimension random variable W = (w1, w2,…, wn)
T which is called regressors, a 

linear regression function is defined as 

𝑦 = 𝛽0 +∑𝛽𝑗𝑤𝑗

𝑛

𝑗=1

 (3.1) 

Where y is the random variable called response variable and each βj is called regressive 

coefficient. According to linear regression model, y conforms multinormal distribution, as 

follows: 

𝑓(𝑦|𝑊, 𝜃) = 𝑓(𝑦|𝑊, 𝛼, 𝜎2) =
1

√2𝜋𝜎2
exp (−

(𝑦 − 𝛽𝑇𝑊)2

2𝜎2
) (3.2) 

Where β = (β0, β1,…, βn)
T is called regressive parameter of f(y | W, β, σ2). Therefore, mean and 

variance of f(y | W, β, σ2) are βTX and σ2, respectively. Note, f(y | W, β, σ2) is called regressive 

PDF of y. As a convention, we denote: 

𝛽𝑇𝑊 = 𝛽0 +∑𝛽𝑗𝑤𝑗

𝑛

𝑗=1

 

Given sample 𝒵 = {Z1 = {W1, y1}, Z2 = {W2, y2},…, }, ZN = {WN, yN})} of size N in which all 

Xi (s) are iid and all yi (s) are iid. Let W = (w1, w2,…, wn)
T and y represent every Wi = (wi1, 

wi2,…, win) and every yi, respectively. Let W and y be a matrix and a vector extracted from 𝒵 

as follows: 

𝑾 = (

1 𝑤11 𝑤12 ⋯ 𝑤1𝑛
1 𝑤21 𝑤22 ⋯ 𝑤2𝑛
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑤𝑁1 𝑤𝑁2 ⋯ 𝑤𝑁𝑛

) 

𝒚 = (

𝑦1
𝑦2
⋮
𝑦𝑁

) 

(3.3) 

When applying EM to estimate Θ, by following equation 2.3, the Q(Θ | Θ(t)) for ARM is re-

defined as follows: 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ
(𝑡))log(𝑔𝑘(𝑊𝑖|𝜑𝑘)𝑓𝑘(𝑦𝑖|𝑊𝑖, 𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

 (3.4) 

Where, 

𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡)) =

𝑔𝑘(𝑊𝑖|𝜑𝑘
(𝑡))𝑓𝑘(𝑦𝑖|𝑊𝑖, 𝜃𝑘

(𝑡))

∑ 𝑔𝑙(𝑊𝑖|𝜑𝑙
(𝑡))𝑓𝑙(𝑦𝑖|𝑊𝑖, 𝜃𝑙

(𝑡))𝐾
𝑙=1

 (3.5) 

Where the parameter of ARM is Θ = (φ1, φ2,…, φK, θ1, θ2,…, θK)T but each φk and each θk are 

resolved more complexly. The definition of Q(Θ | Θ(t)) implies that sample 𝒵 can be grouped 

into K clusters. 
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The function fk(y | W, θk) is the kth regressive PDF of y. 

𝑓𝑘(𝑦|𝑊, 𝜃𝑘) = 𝑓𝑘(𝑦|𝑊, 𝛽𝑘, 𝜎𝑘
2) =

1

√2𝜋𝜎𝑘
2
exp (−

(𝑦 − 𝛽𝑘
𝑇𝑊)2

2𝜎𝑘
2 ) (3.6) 

Obviously, we have: 

𝜃𝑘 = (𝛽𝑘, 𝜎𝑘
2)𝑇

𝛽𝑘 = (𝛽𝑘0, 𝛽𝑘1, … , 𝛽𝑘𝑛)
𝑇

𝛽𝑇𝑊 = 𝛽0 +∑𝛽𝑗𝑤𝑗

𝑛

𝑗=1

 (3.7) 

For convenience, suppose the kth PDF of W denoted gk(W|φk) is multinormal PDF as follows: 

𝑔𝑘(𝑊|𝜑𝑘) = 𝑔𝑘(𝑊|𝜇𝑘, Σ𝑘) = (2𝜋)−
𝑛
2|Σ𝑘|

−
1
2exp (−

1

2
(𝑊 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑊 − 𝜇𝑘)) (3.8) 

Where, 

𝜑𝑘 = (𝜇𝑘, Σ𝑘)
𝑇 

We need to maximize Q(Θ | Θ(t)) at M-step of some tth iteration given current parameter Θ(t). 

Expectedly, the next parameter Θ(t+1) is solution of the equation created by setting the first-

order derivative of Q(Θ | Θ(t)) with regard to Θ to be zero. 

The first-order partial derivative of Q(Θ | Θ(t)) with regard to βk is: 

𝜕𝑄(Θ|Θ(𝑡))

𝜕𝛽𝑘
=∑𝑃(𝑘|𝑋𝑖, 𝑦𝑖, Θ

(𝑡))
𝜕log(𝑓𝑘(𝑦𝑖|𝑊𝑖, 𝜃𝑘))

𝜕𝛽𝑘

𝑁

𝑖=1

=∑𝑃(𝑘|𝑊𝑖, 𝑦𝑖 , Θ
(𝑡)) (𝑦𝑖 − (𝛽𝑘

(𝑡))
𝑇

𝑊𝑖)𝑊𝑖
𝑇

𝑁

𝑖=1

 

By referring (Nguyen & Shafiq, Mixture Regression Model for Incomplete Data, 2018, pp. 11-

13), the next parameter βk
(t+1) is solution of the equation 

𝜕𝑄(Θ|Θ(𝑡))

𝜕𝛽𝑘
= 𝟎𝑇 where 0 is zero vector, 

as follows: 

𝛽𝑘
(𝑡+1) = (𝑾𝑇𝑼𝑘

(𝑡))
−1

𝑾𝑇𝑉𝑘
(𝑡) (3.9) 

Where, 

𝑼𝑘
(𝑡) =

(

 
 

𝑢10
(𝑡)(𝑘) 𝑢11

(𝑡)(𝑘) ⋯ 𝑢1𝑛
(𝑡)(𝑘)

𝑢20
(𝑡)(𝑘) 𝑢21

(𝑡)(𝑘) ⋯ 𝑢2𝑛
(𝑡)(𝑘)

⋮ ⋮ ⋱ ⋮

𝑢𝑁0
(𝑡)(𝑘) 𝑢𝑁1

(𝑡)(𝑘) ⋯ 𝑢𝑁𝑛
(𝑡)(𝑘))

 
 

𝑢𝑖𝑗
(𝑡)(𝑘) = 𝑤𝑖𝑗𝑃(𝑘|𝑊𝑖 , 𝑦𝑖, 𝛽𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

 (3.10) 

And, 

𝑉𝑘
(𝑡) =

(

 
 

𝑣0
(𝑡)(𝑘)

𝑣1
(𝑡)(𝑘)

⋮

𝑣𝑛
(𝑡)(𝑘))

 
 

𝑣𝑖
(𝑡)(𝑘) = 𝑦𝑖𝑃(𝑘|𝑊𝑖, 𝑦𝑖, 𝛽𝑘

(𝑡), (𝜎𝑘
2)(𝑡))

 (3.11) 

The first-order partial derivative of Q(Θ | Θ(t)) with regard to σk
2 is: 
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𝜕𝑄(Θ|Θ(𝑡))

𝜕𝜎𝑘
2 =∑𝑃(𝑘|𝑋𝑖, 𝑦𝑖, Θ

(𝑡))
𝜕log(𝑓𝑘(𝑦𝑖|𝑊𝑖, 𝜃𝑘))

𝜕𝜎𝑘
2

𝑁

𝑖=1

=∑𝑃(𝑘|𝑊𝑖, 𝑦𝑖 , Θ
(𝑡))(𝑦𝑖 − 𝛽𝑘

𝑇𝑊𝑖)
2

𝑁

𝑖=1

− (∑𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡))

𝑁

𝑖=1

)𝜎𝑘
2 

The next parameter (σk
2)(t+1) which is solution of the equation 

𝜕𝑄(Θ|Θ(𝑡))

𝜕𝜎𝑘
2 = 0 is: 

(𝜎𝑘
2)(𝑡+1) =

∑ 𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡)) (𝑦𝑖 − (𝛽𝑘

(𝑡+1))
𝑇

𝑊𝑖)
2

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑊𝑖, 𝑦𝑖 , Θ
(𝑡))𝑁

𝑖=1

 
(3.12) 

Where βk
(t+1) is specified in equation 3.9. 

The first-order partial derivative of Q(Θ | Θ(t)) with regard to μk is: 

𝜕𝑄(Θ|Θ(𝑡))

𝜕𝜇𝑘
=∑𝑃(𝑘|𝑊𝑖 , 𝑦𝑖, Θ

(𝑡))
𝜕log(𝑔𝑘(𝑊𝑖|𝜃𝑘))

𝜕𝜇𝑘

𝑁

𝑖=1

= (∑𝑃(𝑘|𝑊𝑖, 𝑦𝑖 , Θ
(𝑡))(𝑊𝑖 − 𝜇𝑘)

𝑇

𝑁

𝑖=1

)∑𝑘
−1 

The next parameter μk
(t+1) which is solution of the equation 

𝜕𝑄(Θ|Θ(𝑡))

𝜕𝜇𝑘
= 𝟎𝑇 is: 

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ
(𝑡))𝑊𝑖

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑊𝑖, 𝑌𝑖 , Θ
(𝑡))𝑁

𝑖=1

 (3.13) 

The first-order partial derivative of Q(Θ | Θ(t)) with regard to Σk is (Nguyen, Tutorial on EM 

tutorial, 2020, pp. 83-84): 

𝜕𝑄(Θ|Θ(𝑡))

𝜕Σ𝑘
=∑𝑃(𝑘|𝑊𝑖, 𝑦𝑖 , Θ

(𝑡))
𝜕log(𝑔𝑘(𝑊𝑖|𝜃𝑘))

𝜕Σ𝑘

𝑁

𝑖=1

=∑𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡))((𝑊𝑖 − 𝜇𝑘)(𝑊𝑖 − 𝜇𝑘)

𝑇)

𝑁

𝑖=1

− (∑𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡))

𝑁

𝑖=1

)Σ𝑘 

The next parameter Σk
(t+1) which is solution of the equation 

𝜕𝑄(Θ|Θ(𝑡))

𝜕Σ𝑘
= (𝟎) where (0) is zero 

matrix is: 

Σ𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡)) ((𝑊𝑖 − 𝜇𝑘

(𝑡+1))(𝑊𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡))𝑁

𝑖=1

 
(3.14) 

Where μk
(t+1) is specified in equation 3.13. 

In general, at some tth iteration, given current parameter Θ(t), the two steps of EM for ARM 

are described as follows: 

E-step: 

The conditional probability P(k | Yi, Θ
(t)) is calculated based on current parameter Θ(t) = 

(φ1
(t), φ2

(t),…, φK
(t), θ1

(t), θ2
(t),…, θK

(t))T, according to equation 3.5. 

𝑃(𝑘|𝑊𝑖, 𝑦𝑖 , Θ
(𝑡)) =

𝑔𝑘(𝑊𝑖|𝜑𝑘
(𝑡))𝑓𝑘(𝑦𝑖|𝑊𝑖, 𝜃𝑘

(𝑡))

∑ 𝑔𝑙(𝑊𝑖|𝜑𝑙
(𝑡))𝑓𝑙(𝑦𝑖|𝑊𝑖, 𝜃𝑙

(𝑡))𝐾
𝑙=1

 

Where, 

𝜃𝑘 = (𝛽𝑘, 𝜎𝑘
2)𝑇 
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𝜑𝑘 = (𝜇𝑘, Σ𝑘)
𝑇 

M-step: 

The next parameter Θ(t+1) = (φ1
(t+1), φ2

(t+1),…, φK
(t+1), θ1

(t+1), θ2
(t+1),…, θK

(t+1))T, which is a 

maximizer of Q(Θ | Θ(t)) with subject to Θ, is calculated by equation 3.19, equation 3.12, , 

equation 3.13, and equation 3.14 with current parameter Θ(t). 

𝛽𝑘
(𝑡+1) = (𝑾𝑇𝑼𝑘

(𝑡))
−1

𝑾𝑇𝑉𝑘
(𝑡)

 

(𝜎𝑘
2)(𝑡+1) =

∑ 𝑃(𝑘|𝑊𝑖, 𝑦𝑖 , Θ
(𝑡)) (𝑦𝑖 − (𝛽𝑘

(𝑡+1))
𝑇

𝑊𝑖)
2

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑊𝑖, 𝑦𝑖, Θ
(𝑡))𝑁

𝑖=1

 

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑊𝑖, 𝑌𝑖 , Θ
(𝑡))𝑊𝑖

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑊𝑖, 𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

 

Σ𝑘
(𝑡+1)

=

∑ 𝑃(𝑘|𝑊𝑖 , 𝑦𝑖, Θ
(𝑡)) ((𝑊𝑖 − 𝜇𝑘

(𝑡+1))(𝑊𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘|𝑊𝑖 , 𝑦𝑖, Θ
(𝑡))𝑁

𝑖=1

 

Where Uk
(t) and Vk

(t) are specified by equation 3.10 and equation 3.11, respectively. 

EM algorithm will converge after some iterations, at that time we have the estimate Θ(t) = Θ(t+1) 

= Θ* = (φ1
*, φ2

*,…, φK
*, θ1

*, θ2
*,…, θK

*)T. As a result, ARM is specified by the estimate Θ*. It 

can be said that Θ* is ARM. Given any data point W, ARM select the best cluster v whose PDF 

gv(W | φv
*) is maximal, as follows: 

𝑣 = argmax
𝑘

𝑔𝑘(𝑊|𝜑𝑘
∗) (3.15) 

Then ARM evaluates the response variable Y given regressor W with regard to such best cluster 

v as follows: 

𝑌 = (𝛽𝑣
∗)𝑇𝑊 = 𝛽𝑣0

∗ +∑𝛽𝑣𝑗
∗ 𝑤𝑗

𝑛

𝑗=1

 (3.16) 

Instead of selecting the best cluster for evaluation, ARM can make an average over K clusters 

for evaluating Y as follows: 

𝑌 =
1

∑ 𝑔𝑙(𝑊|𝜑𝑙)
𝐾
𝑙=1

∑𝑔𝑘(𝑊|𝜑𝑘)((𝛽𝑘
∗)𝑇𝑊)

𝐾

𝑘=1

=
1

∑ 𝑔𝑙(𝑊|𝜑𝑙)
𝐾
𝑙=1

∑𝑔𝑘(𝑊|𝜑𝑘) (𝛽𝑘0
∗ +∑𝛽𝑘𝑗

∗ 𝑤𝑗

𝑛

𝑗=1

)

𝐾

𝑘=1

 

(3.17) 

In general, equation 3.16 is the main one used to evaluate the regression function because the 

concept “adaptive” implies that ARM selects the best cluster (adaptive cluster) for evaluation. 

 

4. Conclusions 
The main ideology of CMM is to improve competence of mixture model, in which the 

probability of hidden variable is turned back its original form of PDF with full of parameters. 

As a result, its application ARM takes advantages of such hidden parameters in order to select 

best group or best cluster for making prediction of response value. In order words, ARM 

reduces estimation space of regression model so as to gain high accuracy in calculation. 

However, a new problem raised for CMM as well as ARM is how to pre-define the number K 

of clusters or components when CMM currently set fixed K. In the future, I will research some 

methods (Hoshikawa, 2013, p. 5) to pre-define K. Alternately, CMM can be improved or 

modified so that the number of clusters is updated in runtime (Nguyen & Shafiq, Mixture 
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Regression Model for Incomplete Data, 2018, p. 16); in other words, there is no pre-definition 

of K and so K is determined dynamically. 
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