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Abstract: This article provides a Robust Optimization framework with original concepts and fundamentals 

that combine ideals from relative regret models and static robust optimization. The algorithm uses a fine-

tuning strategy to attain both robustness and ideality with a specified preset tradeoff risk. The framework 

comprises original concepts, a mathematical approach, and an algorithm. Statistical treatment based on the 

original framework concepts supports short, middle, or long-term decision-making settings. The framework 

is highly tractable as the algorithm forces the creation of a setting for a robust optimization in light of the 

specified risk. The framework can be applied in linear and nonlinear mathematical models as the objective 

function is monotonic in the domain of the active convex region. Several examples have been solved to gain 

a better understanding of the framework, and all results have showed high tractability and performance. The 

range of applications is wide. This manuscript provides an in-depth discussion of its philosophy, objective, 

original concepts, fields of application, as well as statistical and probabilistic fundamentals. 
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HIGHLIGHTS 

 

1- The framework is highly tractable; the algorithm forces fine-tuning to grant feasible and tractable 

solutions with preset tradeoff risk. 

2- The solution naturally approaches an ideal target while attaining robustness. 

3- Decision making does not ignore the standard, nor the recent trend, increasing the feasibility of put it 

to practice. 

4- The framework performs short, middle or long-term settings for decision making, which leads to 

outstanding long-run average performance. 

5- Risk aversion is not always the best option for decision making when choosing uncertain values close 

to the mean. 
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1. Introduction 

 

A classical concern in mathematical programming is the fact that some constraint of a model may be 

violated if the input data vary, thereby producing an infeasible solution. Robust Optimization (RO) was first 

developed to address this concern and generate feasible solutions. Over the past years, RO has been used to 

handle optimization problems containing uncertainties in a model’s input parameters, because it is practical 

and powerful to apply to real applications. Different concepts have been developed independently in this field, 

all of which cope with variation in the values of a model’s input data, albeit with different RO objectives.  

On account of the need to arise models that are immune to perturbations in the input data, Soyster 

(1973) was the first to provide an RO method containing the ideals of conservatism and robustness through 

the concept of robust counterpart. In this approach, static RO is applied to linear programming (LP) problems 

with j constraints and parameters represented as hyperspheres with center 𝑎𝑖𝑗 and radius 𝜌𝑖 in the Euclidean 

space. 𝒆 is the vector of all-ones, and 𝒃 is the right-hand side. This RO method makes an ultraconservative 

adaptation to the convex feasible region to protect the solution from infeasibility (Eq. 1) for any perturbation 

in the interval [𝑎𝑖𝑗 − 𝜌𝑖 ,𝑎𝑖𝑗 + 𝜌𝑖].  

 

min 𝒄𝑻𝒙 , 𝑠. 𝑡. 𝒙1(𝒂1 + 𝜌1. 𝒆) + ⋯ + 𝒙𝑛(𝒂𝑛 + 𝜌𝑛 . 𝒆) ≤ 𝒃 (1) 

 

Conservatism-based RO aims to improve the performance of a deterministic model by changing the 

convex feasible region of the original model so that it can provide feasible optimal solutions. Generally, this 

methodology does not use scenarios nor probability distributions. The main challenge of this methodology is 

to balance conservatism and robustness: as robustness increases, so does conservatism, and the solution 

becomes more deviated from a nominal solution by the deterministic model. Based on this challenge, studies 

based on different approaches have been developed over the past years, including El Ghaoui & Lebret (1997), 

El Ghaoui et al. (1998), Ben-Tal & Nemirovski (1998, 1999, 2000), and Bertsimas & Sim (2004).  

To avoid over-conservatism, these approaches have changed the way the parameters are represented 

in the Euclidean space and solved the problem as either conic or quadratic. El Ghaoui & Lebret (1997) focused 

on least-squares problems to minimize worst-case residuals considering unknown-but-bounded uncertainties. 

El Ghaoui & Lebret (1998) developed an approach with uniform distributions for the uncertainties to quantify 

the effect of unknown-but-bounded deterministic perturbation of problem data in solutions from uncertain 

semidefinite programs. Constituting data as ellipsoidal in the Euclidian space, Ben-Tal & Nemirovski (1998) 

developed an RO approach to convex problems with unknown-but-bounded data immunized for all 

perturbations. Ben-Tal & Nemirovski (1999) replaced an LP problem by its robust counterpart (Eq. 2) to solve 

all hard constraints, and to make a tractable approach they contemplated the data as an ellipsoidal uncertainty 

set 𝜉 to facilitate the optimization. Despite being convex, all these approaches considering either conic or 

quadratic problems lead to nonlinear models, adding complexity; therefore, increasing computational efforts 

and requiring more time to solve. 
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min{ 𝒄𝑻𝒙|𝑨𝒙 ≥ 𝒃 ∀(𝑨,𝒃) ∈ 𝜉 (2) 

 

Ben-Tal & Nemirovski (2000) solved over 90 LPs with RO methods such as those developed by El 

Ghaoui & Lebret (1997), El Ghaoui et al. (1998), Ben-Tal & Nemirovski (1998, 1999). They showed the 

importance of RO for optimality, but pointed to the fact that small data perturbations can lead to infeasible 

solutions. The approaches provided by Ben-Tal & Nemirovski (1998, 1999, 2000) cannot be directly applied 

to discrete optimization (Assavapokee et al. 2008). All these cited approaches neglect probability distributions.  

Bertsimas & Sim (2004) proposed an RO approach to control the degree of conservatism in the solution 

by terms of probabilistic bounds of constraint violation. To adjust the model’s robustness, this approach also 

admits introducing a prespecified number Гi in the ith probabilistic constraint. The cumulative distribution 

function is a function of Гi. The role of Гi is to adjust the robustness. The probabilistic bounds of constraints 

are also function of Г𝑖. First, to make a linear optimization, the approach solves the linear equivalent 

formulation of the nonlinear original model. The problem considers an uncertainty 𝑎𝑖𝑗 ∈ 𝐽𝑖, 𝐽𝑖 as the 

uncertainty set,  generated by a symmetric distribution with mean 𝑎𝑖𝑗 in the interval [𝑎𝑖𝑗 − 𝑎𝑖𝑗, 𝑎𝑖𝑗 + 𝑎𝑖𝑗]. 𝑎𝑖𝑗 

can change up to Г̂𝑖, and a coefficient 𝑎𝑖𝑡  changes by (Г𝑖 − Г̂𝑖)𝑎̂𝑖𝑡. This approach considers different protection 

levels as part of its robust counterpart and as a function of a vector of variables, coefficients, and Г.  

Unlike the notion of robust counterpart first approached by Soyster (1973), Kouvelis & Yu (1997) 

considered robustness based on the notion of relative regret model. They admitted that a solution 𝑧(𝑥𝜉 , 𝜉) is 

robust as closer as it gets to an ideal solution 𝑧(𝒙, 𝝃). This method solved all scenarios ∀𝜉 ∈ 𝐸 one by one by 

minimizing the maximum regret 𝑓∗ (Eq. 3). 

 

min𝜉  𝑓∗, 𝑠. 𝑡. 𝑧(𝒙, 𝝃) −  𝑧(𝑥𝜉 , 𝜉) ≤ 𝑓∗  ; 𝑓∗ ≥ 0;  𝜉 ∈ 𝐸 (3) 

  

Relative regret models-based RO aims to find an optimal solution for a model that considers the 

maximum regret as an objective function, i.e., to minimize the maximum regret, which is the difference 

between the optimal nominal solution and the solution of a scenario. The main challenge of this methodology 

is the high computational effort required as the number of scenarios increases. Research on different 

approaches has been explored over the past years to tackle this challenge, including Assavapokee et al. (2008), 

Baohua & Shiwei (2009), Jiang et al. (2013), Chen et al. (2014), and Xidonas et al. (2017).  

Assavapokee et al. (2008) report on an approach to LP focusing on solving large-scale min-max regret 

and min-max relative regret RO problems under ambiguity for two-stage decision making. The first-stage 

problem must be a MILP model, and the second-stage problem must be an LP model. The methodology is 

intended to consider a finite scenario set by searching the best scenario among all possible realizations.  

Xidonas et al. (2017) developed a min-max regret approach. The idea was to extend the min-max regret 

criterion to multiobjective robust portfolio optimization focusing on its application to portfolio management. 
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The regret-based robustness can be applied to Pareto solutions and has managerial usability to investment 

practitioners. In addition, other researchers have extended specific adaptations of regret models to related 

fields of engineering, including Baohua & Shiwei (2009), Jiang et al. (2013), Chen et al. (2014). 

New concerns have emerged from the ideal of RO. Distributional RO, a class of approaches designed 

to cope with ambiguous probability distributions, generally considers chance-constraints and is usually applied 

in stochastic programs. Adaptive RO is a class of approaches designed to balance conservatism and robustness 

through multiple decision-making stages by adjusting some wait and see variables and adapting the robust 

counterpart of the problem. All these models are not related to the present framework, which is a static RO 

aiming at a maximization or minimization problem. This new approach may be called fine-tuned robust 

optimization.  

Optimization under uncertainty and lack of information on probability distribution (e.g., RO without 

historical data) is deprived from historical trends to support decisions for the long run. The first steps in the 

present framework are aimed at a statistical treatment of the data with the original concepts of the framework, 

essential for performing since the short-term, the middle-term, and long-term setting for decision making 

which leads to outstanding long-run average performance. 

No static RO framework has merged regret models, conservatism, and robustness. However, such a 

merger supports both a robust decision making and a target ideality. Two mutual benefits that reduce 

conservatism naturally by approaching a target ideality. In addition, if this decision making takes the most 

recent events as a starting point, a solution closer to ideality is achieved without ignoring the current 

tractability of operation, which is another basis for the present framework. 

Based on the notions of conservatism and robustness, robust solutions deviate from a nominal solution, 

but if a regret model is added to the framework, the solution naturally approaches an ideal target at the same 

time that the balance of robustness is attained (as shown in section 3). Decisions based on events far from the 

present reality may not be feasible; therefore, when there are robust solutions based on recent trends, there is 

a greater chance of consistency in taking action because they are the occurrences that can be repeated or 

slightly modified, i.e., the decision making does not ignore the standard, which increases the feasibility of 

putting it into practice. To this end, it is necessary to consider some original concepts, statistical and 

probabilistic fundamentals of this framework, as well as probability distributions. These are the pillars of the 

present framework, which incorporates disjoint probability distributions. 

The proposed framework is composed of a mathematical approach and an algorithm to make RO based 

on recent historical data and original concepts. Its concepts combine conservatism and robustness and are 

aimed to find a solution that draws near to a target solution (an ideal solution/perfect information), two 

concepts of RO in one. Balance between conservatism and robustness is achieved by adding a penalty factor 

that multiplies the expectance of an uncertainty. To perform this methodology, it is necessary to have at least 

one uncertainty that follows a normal distribution because the algorithm finds the best standard deviation 

values for each normal uncertainty; after that, static RO can be carried out in the final step of the algorithm to 
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find the best solution. This final robust solution is used for decision making based on a stochastic procedure 

to avoid exhaustive computational effort in the final algorithm step. 

In this approach, epistemic uncertainties are also considered to have a normal distribution as it is 

subjective and naturally endowed by the central limit theorem. The framework serves for linear and nonlinear 

models under certain axioms, but the objective function (OF) must be monotonic in the domain of the convex 

feasible region (DCFR). The OF can be non-monotonic out of the DCFR. This framework can be applied to 

discrete and continuous optimization and to semidefinite programming (SDP) as all LP can be expressed as 

SDPs. 

The framework of this present paper does not include probabilistic constraints, making it an easier 

resolution without needing to solve integrals or creating nonlinear constraints by introduction of cumulative 

distribution functions. Eventually, this increases the robustness of the problem by avoiding nonlinearity if 

there is none. 

The present framework is highly tractable since the algorithm always forces fine-tuning to ensure 

feasible and tractable solutions with a specified risk. It embeds conservatism and robustness according to the 

risk specification to avoid using only the worst cases or cases generally delimited by some hyperplane 

geometry. Section 2 profoundly discusses the framework. Section 3 provides several linear and nonlinear 

examples that were solved using the framework. Section 4 concludes this paper.  

 

2. Framework  

 

This section discusses the framework, namely its philosophy, objective, original concepts, fields of 

application, statistical and probabilistic fundamentals, mathematical approach, and algorithm. Before 

discussing why and how the procedures were performed, it provides their fundamentals and definitions in 

section 2.1. The general procedure consists of first performing a statistical treatment of data (section 2.1), then 

transforming (adapting) the original model into another (section 2.2), and finally running the algorithm to fine-

tune the model and reach robust optimization.  

 

2.1. Objective, philosophy, and first remarks 

 

To carry out an RO through this new approach that balances robustness and conservatism, the present 

framework incorporates an algorithm, a regret model with its own definitions and concepts that decrease the 

relative regret, and a mathematical formulation that makes the deterministic model more robust to parametric 

variations. To perform the RO, it is necessary to transform the original model into another, a robust model 

with penalty factors, through the mathematical formulation of the framework; finally, it is necessary to fine-

tune the values of all penalty factors and standard deviations of normal uncertainties through an algorithm. 

The philosophy of the framework is based on performing an RO which disregards discrete scenarios 

or a tree of scenarios and which is based on both the representation of random uncertainties by disjoint 
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probability distributions and the normal distribution for normal uncertainties or for epistemic uncertainties, if 

any.  

In this framework, data are statistically treated to provide a tractable and flexible problem that 

considers the decision making from the short-term to the middle and long run because a data timeline is 

chosen. The following definitions for data treatment also increase tractability because it avoids the use of 

scenarios in the mathematical modeling and because the resulted decision making does not ignore the standard, 

nor the recent trend, increasing the feasibility of put it into practice. This also makes it possible to work with 

a relative regret model without the need to generate tree scenarios for the set of problem parameters or to aim 

at an exhaustive resolution of all of them as generally done in relative regret models. First , it is necessary to 

understand the general deterministic optimization of reference (GDOR1) and the recent reference timeline 

(RRT2), because they provide the overall limitation of the problem, i.e., the decision making will be built on 

the mean of historical data in the short, middle or long run as chosen by the decision maker. It must be chosen 

by the decision maker because it is necessary to decide whether it is going to be an RO based on the short, 

middle, or long run. The definitions and concepts used in the framework are as follows: 

 

i) GDOR: It is an optimization guide to determine the target ideal solution if it is not specified. 

Following this guide is important if the decision maker does not have in mind what the target ideal 

solution is like. The GDOR is based on a nominal value for each parameter, in such a way that this 

nominal value is an average of the nominal values that have already been used in optimizations 

carried out in the past. Historical GDOR data are the historical data chosen for each parameter by 

the decision maker; they are available in the timeline desired by the decision maker – e.g., the 

general reference timeline chosen may be the historical data of optimizations performed in the last 

2 years or all data available on the total timeline. The objective function (OF) of the GDOR is the 

target ideal solution (𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 ) for the optimization problem.  

ii) RRT: It is the timeline considering a nominal value for each parameter, in such a way that this 

nominal value is an average of the nominal values that have been used in optimizations carried out 

in the most recent past. It refers to the most recent historical data as chosen by the decision maker. 

Historical RRT data are a subset of historical data from the GDOR timeline; they have a more 

recent timeline and were used in optimizations carried out during that RRT – e.g., historical 

optimization data from the last monthly planning or those used in the last two monthly planning 

optimizations in a given industry. The nominal value of each parameter that is not an uncertainty 

are, in the RRT, those that are actually used in the RO.  

 

As the RRT embeds the most recent historical trend, this is the most likely or feasible standard to be 

repeated or slightly modified to happen. As such, it is reasonable that the decision making starts from this 

 
1 GDOR: General Deterministic Optimization of Reference – an optimization guide. 
2 RRT: Recent Reference Timeline: a recent part of GDOR’s timeline 
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reference, i.e., from the average of these recent historical data rather than from imaginable, unpredictable, or 

subjective scenarios. The robust model fine-tuned by the framework will thus provide robustness to both the 

model and the optimization problem under uncertainty, while establishing optimal decision making based on 

recent conditions (RRT). Thus, one can reach as close as possible to an ideal solution when having normal 

uncertainties in the model, as illustrated by the arrow in Fig. 1. The red line in Fig. 1 refers to the hypothetical 

ideal solution 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 . 

 

Fig.1. The red arrow points to where the solutions of the framework will lie, i.e., close to the target ideal 

solution 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 . 

 

Let us take a simple example to show the use of the GDOR and the RRT. Let us assume that one 

uncertainty is the market price of something. Therefore, this uncertainty in the GDOR would be the price that 

would lead to the ideal target solution 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 . However, as the closest period of time is the RRT, it may not 

be feasible to use the GDOR price for the period of the process. One occurrence is the inflation price of any 

product that generally increases along the timeline; hence, it is more feasible to use the price of the RRT and 

determine decisions that lead to the ideal target solution considering recent conditions based on recent trends.  

 

iii) Relative regret (RR (%)): How much the OF value of a performed optimization with RRT data 

(𝑓
𝑜𝑏𝑗

𝑟𝑜𝑏 (𝑅𝑅𝑇 )
) distances in absolute value from the OF value of the ideal target solution (𝑓𝑜𝑏𝑗

𝐺𝐷𝑂𝑅 ). 

Relative regret is calculated in terms of percentage deviation according to Eq. (4): 

  

𝑅𝑅 (%) =
|𝑓𝑜𝑏𝑗

𝐺𝐷𝑂𝑅 − 𝑓𝑜𝑏𝑗
𝑟𝑜𝑏 (𝑅𝑅𝑇)

|

𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅  100    (4) 

 

iv) Average relative regret (%) (ARR): It is the arithmetic mean of the relative regrets. The ARR value 

is used in the criterion for choosing the fine-tuned standard deviation value of an uncertainty that 

follows a normal distribution, as will be seen in the algorithm (section 2.4). 
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2.2. Statistical and probabilistic fundamentals of the framework 

 

Among all possible values for a normal uncertainty, there will always be a specific value for a normal 

uncertainty that makes the solution as close as possible to the ideal solution. This value is defined as 𝑋𝑆𝑃𝑂𝑇 . 

Because monotonic OF preserves the order relation, the values closer to the 𝑋𝑆𝑃𝑂𝑇  value will always provide 

the values that are the closest possible to the ideal solution. Additionally, monotonic objective functions 

incorporate the principle of superposition; thus, each normal uncertainty will have an independent individual 

contribution to the problem, i.e., an already fine-tuned standard deviation value will not affect the fine-tuning 

of another standard deviation. Even for nonlinear models, the OF is monotonic in the DCFR. Therefore, fine-

tuning a standard deviation will not affect the fine-tuning of another. 

The best standard deviation for a normal uncertainty is the one that provides the greatest chance (best 

chance on average) for the random value of the normal uncertainty to be generated as close as possible to 

𝑋𝑆𝑃𝑂𝑇 . In Fig. 2, the value of uncertainty X – which, once substituted in the mathematical model, would cause 

𝑓
𝑜𝑏𝑗

𝑟𝑜𝑏 (𝑅𝑅𝑇)
 to draw as near as possible to 𝑓𝑜𝑏𝑗

𝐺𝐷𝑂𝑅  – is 𝑋𝑆𝑃𝑂𝑇 , and the fine-tuned bell curve would be the one with 

the highest probability of this value being generated randomly, which in this case would be σ = √3.5 (orange 

curve). Because it is a Monte Carlo simulation, the greater the number of samples, the more statistically 

accurate the final results will be, due to the law of large numbers. 

 

Fig. 2. Graph illustrating the probability density function (PDF) of a normal distribution for different values 

of standard deviation and nominal mean equal to 𝜇𝑅𝑅𝑇 , where a 𝑋𝑆𝑃𝑂𝑇value is assumed for observance in the 

abscissa. 

 

If the uncertain parameter with normal PDF were transformed into a variable in the optimization matrix 

to determine the optimal value for 𝑋𝑆𝑃𝑂𝑇 , to which it minimizes RR, the major consequences are an increase 

in the model’s complexity and a decrease of robustness; hence, the model would become frequently and 

probably nonlinear or more nonlinear if it already were nonlinear. In calculating 𝑋𝑆𝑃𝑂𝑇  analytically, if the 
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optimization provided an infeasible solution, 𝑋𝑆𝑃𝑂𝑇  would not be determined and the entire analytical 

methodology would go wrong, and all effort would have been in vain. Another positive point for not 

analytically calculating 𝑋𝑆𝑃𝑂𝑇  is that the parameters aimed to assemble the mathematical model (i.e., the 

parameter that does not appear on the left or right-hand side of the model’s constraints, but influence their 

activation) can also be fine-tuned through this framework. Thus, the conclusion is that 𝑋𝑆𝑃𝑂𝑇  cannot be 

analytically calculated. 

In this framework, OF that are monotonic along the DCFR will have more stability (statistical 

confidence) in the ARR value associated with each different standard deviation value, because this type of 

functions do not show oscillation or changes in the order relation. When the OF is not monotonic in the DCFR, 

for each different fine-tuning the ARR may not converge to the same value if the OF in the problem is too 

sensitive to variations and if the number of optimizations made for fine-tuning is too low (see section 3). 

Monotonic OF is a non-oscillatory function that tends to be more stable, dispensing a very large number of 

Monte Carlo simulations to satisfy the framework objective (section 3).  

While monotonic functions have just one 𝑋𝑆𝑃𝑂𝑇, non-monotonic functions can have more than one 

𝑋𝑆𝑃𝑂𝑇 if it is out of the DCFR as shown in Fig. 3. They can also be very sensitive to variations – e.g., the bigger 

the sensitivity of the OF, the bigger the difficulty to fine-tune the standard deviation value of uncertainty X. 

This difficulty exists because there would be several values for the uncertainty X that would cause the OF of 

(X) to achieve the value of the ideal solution 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅. In other words, there would be several values of standard 

deviation that would lead to an uncertainty value that would make OF achieve 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅, but these different 

standard deviations could achieve this less frequently. To circumvent this and to infer a reliable decision-

making criterion for choosing the best standard deviation, it would be necessary to perform a very large 

number of Monte Carlo simulations. That is why this problem can be avoided and such a large number of 

Monte Carlo simulations is unnecessary when the function is monotonic in the DCFR. 

 

 

Fig. 3. Example of a non-monotonic function that oscillates and makes it difficult for the framework 

to work if the number of performed optimizations is small during the fine-tuning. 
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Note that 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 is reachable by the function in Fig. 3, but generally this ideal target does not need to 

be reachable by the function since it is a goal and the objective is to draw as near to it as possible. This 

framework can be applied to fields such as Engineering (e.g., production and/or distribution planning and 

scheduling, project and production design), Economics (e.g., portfolio optimization), Operational Research, 

Artificial Intelligence, Process Control and Automation, and Theory and Simulation, i.e., fields with 

monotonic objective functions in the DCFR. In the case of Process Control and Automation, an example is an 

MPC project to which OF is the setpoint of a controlled variable, 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 can be the reference setpoint value 

that maximizes the process profit, 𝑓𝑜𝑏𝑗
𝑟𝑜𝑏(𝑅𝑅𝑇)

 is the most feasible recent setpoint to reach due to recent special 

causes in the plant, 𝑋𝑆𝑃𝑂𝑇 would be the value of the manipulated variable that would draw 𝑓𝑜𝑏𝑗
𝑟𝑜𝑏(𝑅𝑅𝑇)

 closer to 

𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅, and 𝜇𝐿𝑇𝑅𝑅 would be the recent average value used for the manipulated variable. 

 

2.3. Mathematical formulation  

 

This section presents the schematic of the framework’s mathematical formulation. It includes 

transforming the original deterministic model into a robust deterministic model that is then fine-tuned by an 

algorithm (section 2.4) aiming at robustness and targeting ideality. It also provides the axioms underlying the 

functioning of the framework. Any deterministic linear or nonlinear model in the problem domain with at least 

one parameter that can be considered as an uncertainty following a normal distribution can be mathematically 

written in the way herein proposed. The problem to be optimized (Eq. 5) is either a maximization problem or 

a minimization problem where the objective function and the constraints are mathematical combinations of 

𝒙, 𝜺, 𝜽, 𝜶, 𝝃:  

 

       min𝒙   𝑓(𝒙, 𝜺, 𝜽, 𝜶, 𝝃)   (5) 

ou 

max𝒙    𝑓(𝒙,𝜺, 𝜽,𝜶, 𝝃) 

𝑠. 𝑡.    𝒉(𝒙,𝜺, 𝜽, 𝜶, 𝝃) ≤ 0 

𝒈(𝒙,𝜺, 𝜽, 𝜶,𝝃) ≥ 0 

𝒘(𝒙,𝜺, 𝜽,𝜶, 𝝃) = 0 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈 

𝜀𝑗
𝐿 ≤ 𝜀𝑗 ≤ 𝜀𝑗

𝑈 

𝑥𝑖 ∈ 𝒙;  𝒙 ∈ 𝚇; 𝜀𝒋 ∈ 𝜺; 𝜀𝑗 ∈ 𝐴𝑗; 𝜃𝑘 ∈ 𝜽; 𝜃𝑘 ∈ 𝐵𝑘 ;  𝛼𝑙 ∈ 𝜶; 𝜶 ∈ ℝ+;  𝚇,𝐴𝑗, 𝐵𝑘 ∈ ℝ 

𝒙 = [

𝑥1

⋮
𝑥𝑖=𝑖𝑁

] ; 𝜺 = [𝜀𝑗]; 𝜽 = [𝜃1 … 𝜃𝑘=𝑘𝑁]; 𝜶 = [𝛼1 … 𝛼𝑙=𝑙𝑁]; 

𝝃 = [𝐸{𝜉1} … 𝐸{𝜉𝑚=𝑚𝑁 }] 
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𝑓(𝒙, 𝜺,𝜽, 𝜶, 𝝃) is the OF (monotonic in DCFR) to be optimized. 𝒙 is the vector of decision variables. 

𝜺 is the vector containing the uncertain parameters that follows a normal distribution and have values randomly 

generated according to Monte Carlo sampling before solving the optimization problem (therefore having a 

deterministic nature in the optimization problem). 𝜽 is the vector of exact and deterministically defined 

parameters for the optimization problem. 𝜶 is the vector of penalty factors. 𝝃 is the vector containing the 

expected values 𝐸{𝜉𝑚} of each uncertainty m that is represented by a non-normal probability distribution (in 

this framework, uncertainties of type 𝜉𝑚  are not mandatory). 𝒉(𝒙, 𝜺, 𝜽, 𝜶, 𝝃) is the vector of constraints that 

are equal to or lower than zero. 𝒈(𝒙, 𝜺, 𝜽, 𝜶, 𝝃) is the vector of constraints greater than or equal to zero. 

𝒘(𝒙,𝜺, 𝜽, 𝜶,𝝃) is the vector of equations equal to zero, where the optimization problem must have at least one 

of these three vectors. 𝑥𝑖
𝐿 is the minimum limit value for the decision variable i. 𝑥𝑖

𝑈 is the maximum limit 

value for the decision variable i. 𝜀𝑗
𝐿 is the minimum limit value for the uncertain parameter 𝜀𝑗. 𝜀𝑗

𝑈 is the 

maximum limit value for the uncertain parameter 𝜀𝑗. 𝚇 is the set of possible values for 𝑥𝑖 in the real domain 

ℝ. 𝐴𝑗 is the set of possible values for 𝜀𝑗 in the real domain ℝ. 𝐵𝑘  is the set of possible values for 𝜃𝑘  in the real 

domain ℝ. iN, kN, lN and mN, respectively, are the number of elements in the vectors 𝒙 , 𝜽, 𝜶, and 𝝃. Note: 

there can be no division by zero. The probability distributions in this framework are disjoint, which makes 

estimation easier regardless of the problem dimensionality. 

The framework can be used for problems with linear programming (LP), nonlinear programming 

(NLP), mixed integer linear programming (MILP), mixed integer nonlinear programming (MINLP), or 

semidefinite programming (SDP) formulation. The axioms are as follows: 

 

• Axiom i): The OF must have increasing only or decreasing only monotonic behavior along the 

DCFR; therefore, the OF partial derivatives in relation to the normal uncertainty(ies) and  to 𝑥𝑖 

must have the same mathematical signs in the DCFR. When the OF is monotonic in the DCFR, the 

order relation is preserved and the problem becomes either convex or strictly convex, or concave 

or strictly concave. Thus, for different amounts of performed optimizations (𝑁𝐵𝐼𝐺 ), the solution 

concentrations in the average relative regret (ARR) graph vs each 𝑁𝐵𝐼𝐺  realization remains with 

preserved order ranges (Figs. 5 to 27). This favors the stimulus of a standard deviation value over 

the OF to have and maintain characteristics inherent to each different value. 

• Axiom ii): There must be at least one normal uncertainty (𝜀𝑗) in the problem, and the framework 

can only be used if the stimulus action of each normal uncertainty over the OF value (i.e., the 

influence caused by a normal uncertainty in the OF value) is independent of the stimulus of any 

other normal uncertainty. 

 

If the term(s) linked to a normal uncertainty is linearly independent (LI) of the other terms linked to 

other normal uncertainties in the model, then the framework can be used, because the stimulus in the OF will 

be exclusive (uninfluenced by other terms of other normal uncertainties) and independent (independent of the 
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existence of other terms of other normal uncertainties) of the other stimuli. So it is only necessary to check 

whether a normal uncertainty satisfy this axiom ii) if it is an uncertainty that is multiplying/dividing some 

decision variable of the optimization problem, or forming a power term with the variable, i.e. a multiplicative 

uncertainty. Any other case will satisfy this axiom without the need to run this check, e.g. additive 

uncertainties in the model (OF and / or constraints). In addition, if the problem has just one normal uncertainty, 

there is no need to check axiom ii).  

Uncertainties can appear anywhere in the model, i.e., in OF and/or constraints, but there can be no 

multiplication/division/potentiation between different normal uncertainties (e.g., 𝜀1𝜀2). Non-multiplication 

between normal uncertainties prevents the possibility of changing the behavior of the OF from increasing to 

decreasing or vice versa (thus satisfying axiom i) and ii)). If the 𝜀𝑗 stimuli are independent, the OF has a unique 

behavior for each 𝜀𝑗 stimulus, and there may be superposition of independent stimuli to the behavior of the 

OF in relation to the normal uncertainties 𝜀𝑗∀𝑗. Eq. (6) shows an example of testing a deterministic model to 

find out whether the terms of the multiplicative uncertainties are exclusive and independent, which 𝜀1 and 𝜀2 

are because 𝜉1𝑥4, 𝜀2𝑥3, 𝑥3 and 𝑥4 are unlinked to 𝜀1𝑥1, 𝑥1 and 𝑥2. As such, the framework can be used to this 

model. As the term 𝜀3 is an additive uncertainty in the model, its stimulus over the OF is exclusive and 

independent, i.e., 𝜀3 is impartial in relation to 𝜀1𝑥1 and 𝜀2 𝑥3, as well as its stimulus over the OF is independent 

of the influence of 𝜀1𝑥1 and 𝜀2𝑥3, which are the terms linked to the other normal uncertainties. If an uncertainty 

is independent, the values of the terms linked to it do not depend on the values of other terms unlinked to it. 

 

 min𝑥 𝑓 = 𝑥1𝑥2 + 𝜀1𝑥1 + 𝜀2 𝑥3 + 𝜀3 + 𝜉1𝑥4 (6) 

s.t. 𝑥1𝑥2 ≤ 𝐴 

𝑥3 + 𝑥4  ≤ 𝐵 

 

• Axiom iii): Uncertainties that fit well to some non-normal probability distribution (𝜉𝑚 ) must be 

represented by their expected values in the robust model (𝐸{𝜉𝑚 }) and have an 𝛼𝑙 linked 

(multiplying) to each expected value (𝛼𝑙𝐸{𝜉𝑚 }) of this uncertainty in the robust model. There will 

be an 𝛼𝑙 for each non-normal uncertainty (𝜉𝑚 ), which is important to regulate the conservatism 

and robustness of the model. If having two or more expected values that represent different 

uncertainties (e.g., 𝐸{𝜉1}𝐸{𝜉2}) which are multiplied in an inequality or equation term, there will 

be a new and exclusive 𝛼𝑙 linked to this combined term (e.g. 𝛼3𝐸{𝜉1}𝐸{𝜉2 }). It is possible to have 

a multiplication between a normal uncertainty and some expected value of another uncertainty or 

with some term containing expected values of other uncertainties (e.g., 

𝜀1𝛼1𝐸{𝜉1} 𝑜𝑟 𝜀1𝛼3𝐸{𝜉1}𝐸{𝜉2 }). 

• Axiom iv): It is optional to introduce 𝛼𝑙 into the model that refers to general deterministic 

optimization of reference (GDOR), since its ideal solution must be feasible. In addition, there is 
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no insertion of 𝐸{𝜉𝑚 } or randomness in GDOR; hence, if there is 𝛼𝑙 in it, there would be a 

multiplication 𝛼𝑙𝜉𝑚 instead of 𝛼𝑙𝐸{𝜉𝑚 }. 

• Axiom v): A non-normal uncertainty (𝜉𝑚 ) is not mandatory in the mathematical model used for 

the optimization problem of the present framework; however, at least one normal uncertainty (𝜀1) 

is necessary to follow the steps of the framework’s algorithm. 

• Axiom vi): It is reasonable to place values for 𝛼𝑙 that are not very different from the numerical 

value 1, so that the OF is not penalized too much (in the sense of having its value modified upwards 

or downwards). It is also reasonable to admit a value for 𝛼𝑙 whose multiplication with the expected 

value of an uncertainty (𝛼𝑙𝐸{𝜉𝑚}) results in a numerical value within the lower and upper limits 

of values available for this uncertainty in historical data, thus giving reasonableness in statistical 

inference of uncertainties. 

• Axiom vii): If the uncertainty is epistemic or has historical data that did not fit well with some 

probability distribution, it is considered to have a normal distribution, that is, the uncertainty will 

be of type 𝜀𝑗. The greater the amount of historical data of an uncertainty, the more this is true, due 

to the central limit theorem. 

 

The constraints of the present framework are not reformulated because as both the expected value and 

𝛼𝑙 are numbers, the only mathematical role that 𝛼𝑙 plays is to modify the absolute value of the expected value 

(or the multiplication between expected values, if any) in order to protect the model against the violation of 

constraints. In other words, multiplying 𝛼𝑙 with the expected value will only generate a new number that will 

represent the variability of a given uncertainty (as well as the role played by the expected value), leaving the 

physical meaning of the terms of the constraints unchanged. 

The present framework’s mathematical formulation does not explicitly include the equation of the 

probability density function of a normal distribution to calculate the expected value of an uncertainty. If it 

were included, the expected value would be its own average, i.e., the mean of the uncertainty values, thus not 

computing the possible variability of each uncertainty with normal distribution in the process because of the 

symmetry of the normal distribution. In addition, the analytical inclusion of standard deviations would 

probably make the model nonlinear if it were a decision variable in the model instead of being specified, 

making it harder to solve and unnecessarily increasing the optimization time. If the model were linear, 

considering the standard deviation as a decision variable would only make it unnecessarily nonlinear, 

increasing the optimization processing time and making it difficult to converge to a feasible solution, 

especially in mathematical models that use integrals (e.g., chance-constrained optimization). 

Including a probability density function of a normal distribution in the model and not following the 

steps of the framework’s algorithm would prevent the chance of an uncertainty with normal distribution to 

have its value generated close to 𝑋𝑆𝑃𝑂𝑇  (hypothetically shown in Fig. 2). If the expected value of the 

probability density function for an uncertainty with normal distribution were considered, the “uncertain” value 

of the uncertainty would be the average value 𝜇𝐿𝑇𝑅𝑅  in the curve, and hence the problem would not be flexible 
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enough to allow the choice of the behavior of the uncertainty to draw 𝑓
𝑜𝑏𝑗

𝑟𝑜𝑏(𝑅𝑅𝑇 )
 as close as possible to 𝑓𝑜𝑏𝑗

𝐺𝐷𝑂𝑅 . 

For this reason, a normal distribution is considered for the random generation of the uncertainty value by 

Monte Carlo sampling before optimization is performed, instead of analytically including the probability 

density function in the model. In addition, this methodology allows the model to have a deterministic nature 

without having to solve integrals. Since it is not an analytical methodology, this Monte Carlo strategy allows 

the OF to be discontinuous in relation to 𝜀𝑗 and 𝜀𝑗 to be linear or nonlinear in nature. 

 

The framework’s mathematical properties for protection against violation of constraints are: 

 

i) When any 𝛼𝑙 appears in constraints of type 𝒉(𝒙,𝜺, 𝜽,𝜶, 𝝃) ≤ 0, and the term linked to 𝛼𝑙 on the 

left-hand side (LHS) of the present constraint is mathematically positive, decreasing the value of 

𝛼𝑙 will increase the model’s robustness. 

ii) When any 𝛼𝑙 appears in constraints of type 𝒉(𝒙,𝜺, 𝜽,𝜶, 𝝃) ≤ 0, and the term linked to 𝛼𝑙 on the 

LHS of the present constraint is mathematically negative, increasing the value of 𝛼𝑙 will increase 

the model’s robustness. 

iii) When any 𝛼𝑙 appears in constraints of type 𝒈(𝒙, 𝜺, 𝜽, 𝜶, 𝝃) ≥ 0, and the term involving the 𝛼𝑙 on 

the LHS of the present constraint is mathematically positive, increasing the value of 𝛼𝑙 will 

increase the model’s robustness. 

iv) When any 𝛼𝑙 appears in constraints of type 𝒈(𝒙, 𝜺, 𝜽, 𝜶, 𝝃) ≥ 0, and the term surrounding the 𝛼𝑙 

on the LHS of the present constraint is mathematically negative, decreasing the value of 𝛼𝑙 will 

increase the model’s robustness.  

 

The values for the penalty factors ∀ 𝛼𝑙 ∈ 𝜶 are specified to change inside a loop in the algorithm of 

the framework or the decision maker can specify it by trial and error according to the properties above. In both 

cases, the value of 𝛼𝑙 must follow axiom vi). 

 

2.4. Algorithm  

 

Fine-tuning is carried out so that the final robust solution approaches as close as possible an ideal 

solution 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 . Once the original deterministic model is transcribed to the framework’s mathematical 

formulation, the step-by-step procedure of the framework’s algorithm will fine-tune the robust model to 

determine the best value for the standard deviation of a normal uncertainty. The model’s conservatism and 

robustness are regulated by choosing or determining (through a loop) the values of the penalty factors 𝛼𝑙. In 

this framework, it is not necessary to control the risk of undesirable values being generated for uncertainties, 

as the framework fine-tunes the model so that decision making does not depend on the risk aversion of unusual 
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values generated for normal uncertainties to be undesirable, because uncertainties with higher values far from 

the average can generate better results. 

Unlike the variability models, this framework does not control the variability of the solution, but rather 

finds an operating bell curve that is the best one to achieve the framework’s objective. At the end of the robust 

model fine-tuning following the algorithm steps, the objective is not to find a solution with better or worse 

objective function (OF), but rather to fine-tune the model to find a robust result (𝑓
𝑜𝑏𝑗

𝑟𝑜𝑏(𝑅𝑅𝑇 )
) that is as close as 

possible to the ideal solution itself (𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 ).  

The algorithm is presented below focusing on how to fine-tune the value of the standard deviation of 

a normal uncertainty (𝜀1), in line with the regulation of the model’s conservatism and robustness. In case the 

optimization problem has more than one normal uncertainty, according to axiom ii) the algorithm’s 

functioning would be the same, but first it would be fine-tuned as 𝜀1 and then as 𝜀2 and so on. This shows that 

when fine-tuning a normal uncertainty (𝜀𝑗), the others remain with their fixed and constant values, each 

equivalent to their mean in the recent reference timeline (RRT) data. The algorithm consists of the following 

steps: 

 

i) Step i): Perform a general deterministic optimization of reference (GDOR) that has a feasible 

solution and store 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅  to calculate the relative regret (RR) (%) according to Eq. (4), or simply 

specify 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 . 

ii) Step ii): Apply the mathematical formulation to the deterministic model in use according to the 

axioms. Specify values for each existing 𝛼𝑙, if there are non-normal uncertainties (𝜉𝑚 ). If the 

decision maker changes their mind and wants to modify some value of 𝛼𝑙 at any time (or even if 

𝛼𝑙 is in a loop), it is necessary to perform a new fine-tuning of the optimization problem from Step 

iii). 

iii) Step iii): Define fixed nominal values for each uncertain parameter (𝜉𝑚 ) and other parameters that 

are not uncertainties, as being their RRT nominal values, fixing their values, even for all normal 

uncertainties except one of them. The normal uncertainty value being fine-tuned (𝜀1), in which the 

value has not been fixed, will be randomly generated by sampling via Monte Carlo simulation (in 

the optimizations of Step iv), which will enter the model as input data, and that the nominal average 

of 𝜀1, is the RRT 𝜇𝑅𝑅𝑇  and the standard deviation is a percentage of 𝜇𝑅𝑅𝑇 , as shown in Fig. 2. The 

fixed nominal values of deterministic parameters and other normal uncertainties are their averages 

from the RRT historical data. Uncertainties of 𝜉𝑚  type will have as fixed values their expected 

values (𝐸{𝜉𝑚 }) of their historical data in the RRT. 

iv) Step iv): Assume different values for the standard deviation (𝜎) of uncertainty 𝜀1 and perform a 

large subjective quantity 𝑁𝐵𝐼𝐺  (depending on the case, 50 is enough, as shown in Fig. 24) of 

optimizations for each of the standard deviation values assumed. At the end of each performed 

optimization, the RR (%) is calculated according to Eq. (4) and stored. If the set of performed 
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optimizations were not satisfactorily robust according to the subjectivity of the decision maker 

(offline analysis of the algorithm), i.e., according to what the decision maker judges/accepts to be 

robust, or according to a preset tradeoff risk Г (conditional statement within the algorithm), return 

to Step ii) and specify a new 𝛼𝑙. Г and 𝛼𝑙 are specified according to the decision maker’s will, but 

𝛼𝑙 can be looped if not specified (as stated in Step ii)). Г is the percentage ratio between the number 

of optimizations that provided feasible solutions and the number of performed optimizations. 

v) Step v): Calculate, according to Eq. (7), the average relative regret (ARR) (%) for each of the 

assumed standard deviation values (𝐴𝑅𝑅𝜎) for the uncertainty 𝜀1, and store the calculated values 

for future comparison in Step vi). 𝑁𝐵𝐼𝐺  is the quantity of performed optimizations for each standard 

deviation value 𝜎 assumed for the uncertainty 𝜀1, and 𝑅𝑅𝑛
𝜎 is the value of the RR (%) of the 

optimization of the n realization for an assumed value for the standard deviation 𝜎, to which 𝑅𝑅𝑛
𝜎 

is calculated in Step iv) according to Eq. (4). 

 

𝐴𝑅𝑅𝜎  (%) = ∑ 𝑅𝑅𝑛
𝜎

𝑁

𝑛=1

 ∙
1

𝑁𝐵𝐼𝐺
 (7) 

 

vi) Step vi): The standard deviation 𝜎, which is linked to the lowest value of 𝐴𝑅𝑅𝜎, will correspond 

to the standard deviation value 𝜎 fine-tuned for the uncertainty 𝜀1, which will lead to a robust 

average solution that most closely reach 𝑓𝑜𝑏𝑗
𝑂𝐷𝐺𝑅 . 

vii) Step vii): Fine-tuning for 𝜀1 is complete. Choose another normal uncertainty 𝜀𝑗 and perform the 

procedure again from step iii), under the same fine-tuning parameter conditions as the past normal 

uncertainties, until all 𝜎𝑗 of 𝜀𝑗∀𝑗 are fine-tuned. When all 𝜀𝑗∀𝑗 are fine-tuned, just perform the RO 

a few times as the decision maker wishes, randomly generating values for all 𝜀𝑗∀𝑗 with their fine-

tuned 𝜎𝑗 before a realization is done and choose the performed optimization that grants the lowest 

RR value (%) according to the Eq. (4). This chosen RO will describe the best decision making to 

approach the ideal solution 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 . 

 

The fine-tuning adjusts the individual influence of each normal uncertainty in the model to determine 

the standard deviation value of each normal uncertainty which this value has to imply in an average of 

solutions that comes closest to the ideal solution value. These steps are summarized in Fig. 4: 
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Fig. 4. Algorithm of the framework. 

 

In fine-tuning, the risk of an optimization being infeasible (1- Г) is already a conditional parameter 

specified by the decision maker instead of being calculated. In this new framework, it is unusual to do the 

cost-risk analysis because the risk is already imbued as a target condition in the algorithm (the fine-tuning is 

performed, and the chosen condition is satisfied). 

Since step v) calculates an average, the higher the 𝑁𝐵𝐼𝐺 , the more precise the fine-tuning is. 

Stochasticity in step vii) avoids the need for an exhaustive brute-force search to choose the best result. The 

final decision making stems from the best case of step vii) (the one with the lowest RR (%)). 

 

Important comprehensions of the framework are: 

 

i) The algorithm fine-tunes the standard deviations and the penalty factors to lead to feasible solutions 

matching the specified Г, which is a highly tractable form to solve the optimization problem, as it 

adapts the model. 

ii) The preset tradeoff risk Г is appropriate when the decision maker wants to align with standardized 

metrics of optimization quality according to a business plan. 
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iii) If 𝛼𝑙 is equal to 1, the model may tend to get closer to reality, since the estimated expected value 

𝐸{𝜉𝑚} will not change; therefore, it is recommended that the default value for 𝛼𝑙 of non-normal 

uncertainties be equal to 1 first, i.e., this value must be included in the loop. 

iv) The framework is consistent with the central limit theorem, given that epistemic uncertainties are 

well suited to the normal distribution. For example, demand is a great candidate to be an epistemic 

uncertainty when: i) production or consumption levels do not follow a constant pattern, or ii) there 

is no production or consumption trend to be followed, and even if there is historical data available 

for demand, turbulence in the data values caused by these two items will make it difficult to reliably 

adjust the data to a probability distribution. 

v) Standard deviations with close values can compete as the best fine-tuning value (e.g. Fig. 14), as 

the solutions will come out similar in the calculation of the ARR (considering that the behaviors 

of the normal curves will be similar). In linear problems, this competition is not significant, but for 

nonlinear problems, increasing 𝑁𝐵𝐼𝐺 provides more statistical confidence to the fine-tuning. In all 

examples in section 3, only 4 different values were assumed for the standard deviation, to show 

the behavior of the trends more clearly from low to high range values for the standard deviation. 

Fig. 14 shows that the objective function is smooth at intervals of standard deviation between 2 

and 5% for the normal uncertainty of the problem. It is not recommended that the standard 

deviation value exceeds 20% of the average to avoid the risk of randomly generating values that 

have no physical meaning (possibly negative values). 

vi) The value of the RR (%) also varies from model to model, with cases in which the RR has large, 

medium or low sensitivity to the different values of standard deviations for an uncertainty. This is 

natural because as the mathematical models differ, so do the results.  

vii) The 𝛼𝑙 values also influence the ARR value and therefore the fine-tuning of the standard deviation. 

viii) If the variation between values of 𝐴𝑅𝑅𝜎 is small, it means that the OF must have relevant levels 

(smooth in relation to the variables) for some ranges of the variables. However, if the variation 

between values of 𝐴𝑅𝑅𝜎 is high, it means that there is exponential or high order relation behavior 

for the OF (non-smooth) in other intervals of the feasible region (of the optimization problem). 

ix) If 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 is close to a smooth region of the OF, then there will be little variation in the values of 

𝐴𝑅𝑅𝜎, but if 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅 is close to a non-smooth region of the OF, there will be considerable variations 

between the values of 𝐴𝑅𝑅𝜎. 

 

3. Application and computational results 

 

This section aims to provide a better understanding of the framework by applying it to simple examples 

that abide by the axioms. First it is applied to a linear model and then it to two different nonlinear models 

derived from the linear one. In all cases, Г was specified as 100%. The sample problem refers to a mechanical 

part seller who leaves the house with two different types of parts to sell from door to door. He works for a 
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company and earns as much as he sells as through sales commission. The example is the application of the 

framework to fine-tune the normal uncertainty 𝜀1 of a planning problem to maximize the daily profit 

𝑓(𝒙, 𝜺, 𝜽, 𝜶, 𝝃), knowing that there are limits to the gain from selling type 1 and type 2 parts due to production 

limitations on the part of the company and that the sale prices of the different types are uncertainties. The 

selling price for type 1 follows a normal distribution, while the selling price for type 2 follows an exponential 

distribution. The mathematical formulation of the example is described in Eq. (8): 

 

                        max𝒙 𝑓(𝒙, 𝜺, 𝜽, 𝜶, 𝝃) = 𝑥1𝜀1 + 𝑥2𝛼2𝐸{𝜉2} + 𝑥1𝜃1 + 𝑥2𝜃2 − 𝜃3                   (8) 

𝑠. 𝑡.     𝑥1 + 𝑥2 − 𝑈𝐵 ≤ 0 

𝑥1 + 𝑥2 − 𝐿𝐵 ≥ 0 

𝑥2𝛼2𝐸{𝜉2 } − 𝜃4 ≤ 0 

𝑥1𝜀1 − 𝜃5 ≤ 0 

𝑥1 − 20 ≥ 0;  𝑥2 − 20 ≥ 0; 𝑥1,𝑥2 ∈ 𝕀 

0,5 ≤ 𝜀1 ≤ 3,5 

𝒙 = [
𝑥1

𝑥2
] ; 𝜺 = [𝜀1]; 𝜽 = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5];   𝜶 = [𝛼2];  𝝃 = [𝐸{𝜉2 }] 

 

Where: 𝑥1 is the quantity of type-1 parts sold, 𝜀1 is the selling price per type-1 part, 𝑥2 is the quantity 

of type-2 parts sold, 𝛼2 is the penalty factor of the term that appears 𝐸{𝜉2 }, 𝐸{𝜉2} is the expected value of the 

sale price for type-2 part, 𝜃1 is the commission gain for selling type-1 part, 𝜃2 is the commission gain for 

selling type-2 part, 𝜃3 is the cost due to the use of a transportation vehicle, LB is the lower limit value for the 

sum (𝑥1 + 𝑥2), UB is the upper limit value for the sum (𝑥1 + 𝑥2), 𝜃4 is the gain limit value per sale of type-2 

parts, 𝜃5 is the gain limit value per sale of type-1 parts. This example do not use a loop to fine-tune the penalty 

factor 𝛼2. 

Following the algorithm steps: it is first necessary to perform a GDOR, so that a comparison can be 

made as a criterion for fine-tuning the problem (since 𝑓𝑜𝑏𝑗
𝐺𝐷𝑂𝑅  is not being specified in the example, but is 

calculated); and to perform the GDOR, uncertain parameters become deterministic. In the example, 8 different 

GDORs were performed for two different cases (4 instances for each case) to run the algorithm for different 

situations and thus show the behavior of the RR and consequently the ARR and the selection of the best 

standard deviation value for each situation. For both the GDOR and the RRT, the first case takes into account 

𝛼2 = 1 and 𝜃4 = 100, while the second case takes into account 𝛼2 = 0.85 and 𝜃4 = 70. Both cases are 

feasible, but when the value of 𝜃4 is changed from 100 to 70, the model becomes infeasible for 𝛼2 = 1; 

therefore, it was necessary to change the value of the penalty factor according to the properties. The value 

adopted was 𝛼2 = 0.85 to make the model more robust according to the mathematical property i). The values 

of the parameters used in all the GDORs are shown in Table 1. 
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Table 1 

The values of the parameters used in all GDORs in the linear example. 

 

Deterministic 
parameters of 

the GDOR 

Values for GDOR considering the pair of cases (1st case: [𝛼2 = 1 and 

𝜃4 = 100] and 2nd case: [𝛼2 = 0.85 and 𝜃4 = 70])‡ 

First pair of 
instances 

Second pair of 
instances 

Third pair of 
instances 

Fourth pair of 
instances 

𝜀1 1.9 $/type 1 1.95 $/ type 1 2.1 $/ type 1 2.5 $/ type 1 

𝜉2 1.9 $/ type 2 1.95 $/ type 2 2.1 $/ type 2 2.5 $/ type 2 
𝜃1 3 $/ type 1 3 $/ type 1 3 $/ type 1 3 $/ type 1 
𝜃2  2.5 $/ type 2 2.5 $/ type 2 2.5 $/ type 2 2.5 $/ type 2 

𝜃3  100 $ 100 $ 100 $ 100 $ 

𝜃5  100 $/ type 1 100 $/ type 1 100 $/ type 1 100 $/ type 1 
𝐿𝐵 70 parts 70 parts 70 parts 70 parts 
𝑈𝐵 100 parts 100 parts 100 parts 100 parts 

‡: Pair of cases: GDOR for both the 1st case (𝛼2 = 1 and 𝜃4 = 100) and the 2nd case (𝛼2 = 0.85 and 𝜃4 = 70). 

 

For the linear problem, 8 fine-tuning problems are solved, 4 for each case. In all fine-tuning 

occurrences, the ARR value means an average deviation of the robust solution from the ideal solution. The 

nominal values of the parameters in the hypothetical RRT timeline of the example are as in Table 2. Please 

notice that 𝜀1 is randomly generated according to a normal distribution. 

 

Table 2 

Nominal values of parameters in the hypothetical RRT timeline for all instances of the exemplary linear 
problem solved. 

Parameters Nominal value 

𝜀1 (𝜇 = 2 $; ±𝜎 = 𝑍%𝜇)‡ 

𝐸{𝜉2} 2 $ 

𝜃1 3 $/type 1 
𝜃2  2.5 $/type 2 
𝜃3  100 $ 

𝜃4 The same value as 
𝜃4 of GDOR for the respective instance 

𝜃5  100 $/type 1 

𝐿𝐵 70 parts 

𝑈𝐵 100 parts 
‡: In the example, it was assumed that Z can have values equal to 2, 5, 10 or 20% 𝜇. 

 

All examples were solved in MATLAB® software (R2019b, Mathworks, Natick, MA, USA). All the 

graphs for the first case (RRT timeline with 𝛼2= 1, 𝜃4= 100, 𝜇(𝜀1) = 2) are shown in Figs. 5 to 12. The graphs 

of the second case (RRT with 𝛼2 = 0.85,𝜃4 = 70, 𝜇(𝜀1) = 2) are provided in Figs. 13 to 20. Some figures 

refer to the value of the relative regret (%) for each performed RO, while others refer to the value of the ARR 

(%) linked to the different standard deviation values used in the fine-tuning.  

The statistical trend of Monte Carlo Sampling in the RR graphs is important to see the statistical and 

probabilistic fundamentals of the framework in action. In the practical application of the methodology, making 

graphs for RR or ARR is not necessary. In this paper, their intent is to show the stochastic behavior trend in 

the fine-tuning, matching the fundamentals provided in section 2.2.  
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Fig. 5. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2,5,10, 20%𝑜𝑓𝜇(𝜀1), where the RRT for 

the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.9. 

 

 

Fig. 6. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to which 

GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.9. 
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Fig. 7. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2,5,10, 20%𝑜𝑓𝜇(𝜀1), where the 

RRT for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 = 100, 𝜀1 =

1.95. 

 

 

Fig. 8. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.95. 
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Fig. 9. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2, 5, 10,  20 % 𝑜𝑓 𝜇(𝜀1), where the 

RRT for the RO considers 𝛼2 = 1,𝜃4 = 100,𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 =

100, 𝜀1 = 2.1. 

 

 

Fig. 10. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 100, 𝜀1 = 2.1. 
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Fig. 11. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2, 5, 10,20 % 𝑜𝑓 𝜇(𝜀1), where the 

RRT for the RO considers 𝛼2 = 1,𝜃4 = 100,𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 =

100, 𝜀1 = 2.5. 

 

 

Fig. 12. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 100, 𝜀1 = 2.5. 
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Fig. 13. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2, 5, 10,20 % 𝑜𝑓 𝜇(𝜀1), where the 

RRT for the RO considers 𝛼2 = 0.85,𝜃4 = 70,𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 =

70, 𝜀1 = 1.9. 

 

 

Fig. 14. ARR (%)vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 0.85, 𝜃4 = 70, 𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 70, 𝜀1 = 1.9. 
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Fig. 15. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2, 5, 10, 20 % 𝑜𝑓 𝜇(𝜀1), where the 

RRT for the RO considers 𝛼2 = 0.85,𝜃4 = 70,𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 =

70, 𝜀1 = 1.95. 

 

 

Fig. 16. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 0.85,𝜃4 = 70,𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 70,𝜀1 = 1.95. 
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Fig. 17. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2,5, 10, 20 % 𝑜𝑓 𝜇(𝜀

1
), where the 

RRT for the RO considers 𝛼2 = 0.85, 𝜃4 = 70,𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 =

70, 𝜀1 = 2.1. 

 

 

Fig. 18. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 0.85,𝜃4 = 70,𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 70,𝜀1 = 2.1. 
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Fig. 19. Graphs of the relative regret (%) vs performed ROs for 𝜎𝜀1
= 2,5, 10, 20 % 𝑜𝑓 𝜇(𝜀

1
), where the 

RRT for the RO considers 𝛼2 = 0.85, 𝜃4 = 70,𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 =

70, 𝜀1 = 2.5. 

 

Fig. 20. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 0.85,𝜃4 = 70,𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 70,𝜀1 = 2.5. 
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The results from the graphs in Figs. 5 to 12, and shown in Table 3, indicate the best values for all fine-

tuned standard deviations, for each GDOR situation, for the price of type-1 part (𝜀1), when 𝛼2 = 1 and 𝜃4 =

100, so that the optimal sales planning under uncertainty can achieve the best RO, i.e., get closer to GDOR. 

Table 4 shows the best values for all fine-tuned standard deviations when 𝛼2 = 0.85 and 𝜃4 = 70. The 

criterion for choosing each best value for a standard deviation is the one with the lowest ARR as established 

in algorithm’s step vi). 

 

Table 3 

Best standard deviation values 𝜎𝜀1
 (final fine-tuning values) for each GDOR situation of all instances of the 

first case. 

Situation of GDOR 𝜇(𝜀1)𝐿𝑇𝑅𝑅 Tuned 𝜎𝜀1
 

𝜀1 = 1.9 2 5% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 6) 

𝜀1 = 1.95 2 2% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 8) 

𝜀1 = 2.1 2 10% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 10) 
𝜀1 = 2.5 2 20% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 12) 

 

Table 4 

Best standard deviation values 𝜎𝜀1
 (final fine-tuning values) for each GDOR situation of all instances of the 

second case. 

Situation of GDOR 𝜇(𝜀1)𝐿𝑇𝑅𝑅 Tuned 𝜎𝜀1
 

𝜀1 = 1.9 2 2% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 14) 

𝜀1 = 1.95 2 2% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 16) 

𝜀1 = 2.1 2 2% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 18) 
𝜀1 = 2.5 2 20% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 20) 

 

The tendency of each bell curve to generate more values in certain ranges inherent to each standard 

deviation can be seen in the graphs of Relative Regret (%) vs Performed ROs in Figs. 5 to 20. They show a 

higher frequency of single points generated in these bands (due to the greater area under the normal curve), 

and therefore a higher frequency of solutions obtained that are linked to these bands. As shown in these figures, 

the ranges and frequencies change for each different standard deviation value and each set of specifications of 

input parameters. 

Tables 4 and 5 show that the framework methodology can also lead to results of  fine-tuning for the 

standard deviation that prove that it is not necessary to have a risk aversion to obtain the best results for models 

of regret in RO when the GDOR and RRT philosophy is embraced. 

Two other fine-tunings were performed for the example problem when 𝛼2 = 1,𝜃4 = 100,𝜇(𝜀1) = 2 

for RRT, and 𝜃4 = 100, 𝜀1 = 1.9 for GDOR (same conditions as in Fig. 6). Figs. 21 to 24 show that the large 

subjective number mentioned in Step iv) does not necessarily need to be very large as the amount of 

optimizations performed in the fine-tuning shown by Figs. 5 to 20, when the problem is linear and the OF is 

monotonic. The results of the fine-tuning and the specifications are shown in Table 5. The number of 

optimizations performed for each standard deviation value assumed in the fine-tuning of Figs. 5 to 20 was 

10,000, while that of the fine-tuning of Figs. 21 and 22 was 100 and that in the fine-tuning of the Figs. 23 and 

24 was 50. As shown in Figs. 6, 22 and 24, the value of the fine-tuned standard deviation is the same 
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(5% 𝜇(𝜀1)𝑅𝑅𝑇), the values of 𝐴𝑅𝑅𝜎 (%) are very similar, and the trends are the same. Step v) favors that the 

large subjective number of optimizations performed does not need to be exaggeratedly large, as the decision 

making for choosing the fine-tuned standard deviation is based on an average, i.e., by calculating the 𝐴𝑅𝑅𝜎 

(%) according to Eq. 7, to which another physical meaning of 𝐴𝑅𝑅𝜎 (%) is the average distance of the 

solutions from the realizations in relation to the ideal solution. However, if the OF were not monotonic, this 

average distance would not follow an order relation, making it necessary to perform several further 

optimizations to obtain a statistically consistent fine-tuning (statistical confidence). 

 
Table 5 

Fine-tuning results for the case 𝛼2 = 1, 𝜃4 = 100,𝜇(𝜀1) = 2 for RRT, and 𝜃4 = 100,𝜀1 = 1.9 for GDOR 

(conditions of the Fig. 6) for different realizations. 

Quantity of performed optimizations‡ Tuned value of 𝜎𝜀1
 

10000 5% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 6) 

100 5% 𝜇(𝜀1)𝑅𝑅𝑇(Fig. 22) 

50 5% 𝜇(𝜀1)𝑅𝑅𝑇  (Fig. 24) 
‡: Just like the other fine-tunings, this one was performed several times for each of these quantities, and the result remains 

unchanged. All the algorithms implemented in MATLAB® are given as supplementary materials. 

 

 

Fig. 21. Graphs of the Relative Regret (%) vs Performed ROs for 𝜎𝜀1
= 2,5,10, 20%𝑜𝑓𝜇(𝜀1), where the RRT 

for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to which GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.9. 

𝑁𝐵𝐼𝐺 = 100. 
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Fig. 22. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to 

which GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.9. 𝑁𝐵𝐼𝐺 = 100. 

 

 

Fig. 23. Graphs of the Relative Regret (%) vs Performed ROs for 𝜎𝜀1
= 2,5, 10, 20 % 𝑜𝑓 𝜇(𝜀1), where the 

recent reference timeline (RRT) for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to which GDOR is 

performed with 𝜃4 = 100, 𝜀1 = 1.9. 𝑁𝐵𝐼𝐺 = 50. 
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Fig. 24. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the recent reference timeline (RRT) for the RO considers 𝛼2 =

1, 𝜃4 = 100,𝜇(𝜀1) = 2, to which GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.9. 𝑁𝐵𝐼𝐺 = 50. 

 

Generation of random numbers by Monte Carlo simulation provides two properties for the standard 

deviation of a normal uncertainty: i) range and ii) population concentration. These properties are designed by 

the shape of the normal curve. That is why few optimizations are needed to fine-tune the model, as the RR 

(%) will have exclusive ranges and exclusive high concentrations in monotonic objective functions in the 

feasible region, for different values of standard deviation. Other than that, the less horizontal the OF curve is 

(the less smooth the function in the feasible region), the less optimizations will be necessary because the 

highest concentrations of RR population (%) will have more distinct and separate ranges from each other; 

therefore, the greater is the difference between values of 𝐴𝑅𝑅𝜎 (e.g., Figs. 15 and 20). In addition, the greater 

the difference in value between the 𝐴𝑅𝑅𝜎, the smaller is the number of 𝑁𝐵𝐼𝐺  required because the more non-

smooth is the OF. 

The standard deviation value equal to 5%. 𝜇(𝜀1)𝑅𝑅𝑇  in Figs. 6, 22, and 24 represents an improvement 

of approximately 114% compared to the standard deviation value equal to 20% .𝜇(𝜀1)𝑅𝑅𝑇 , and an 

improvement of approximately 14% compared to the value equal to 2% 𝜇(𝜀1)𝑅𝑅𝑇 . Table 6 shows the 

improvement between using the best value against the worst standard deviation in Figs. 6, 8, 10, 12, 14, 16, 

18, and 20. The improvement calculation is done by subtracting, in absolute value, the ARR value of the worst 

standard deviation value by the ARR value of the best standard deviation, with the subsequent division by 

ARR of the best standard deviation value and the multiplication by 100%. 
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Table 6 

The improvement between using the best value versus the worst standard deviation value in Figs. 6, 8, 10, 

12, 14, 16, 18, and 20. 

Figures Best value of 𝜎𝜀1
  Worst value of 𝜎𝜀1

 Improvement (%) 

6 5% 𝜇(𝜀1)𝑅𝑅𝑇  20% 𝜇(𝜀1)𝑅𝑅𝑇  159 

8 2% 𝜇(𝜀1)𝑅𝑅𝑇  20% 𝜇(𝜀1)𝑅𝑅𝑇  543 

10 10% 𝜇(𝜀1)𝑅𝑅𝑇  2% 𝜇(𝜀1)𝑅𝑅𝑇  53 

12 20% 𝜇(𝜀1)𝑅𝑅𝑇  2% 𝜇(𝜀1)𝑅𝑅𝑇  417 

14 2% 𝜇(𝜀1)𝑅𝑅𝑇  20% 𝜇(𝜀1)𝑅𝑅𝑇  667 

16 2% 𝜇(𝜀1)𝑅𝑅𝑇  20% 𝜇(𝜀1)𝑅𝑅𝑇  152 

18 2% 𝜇(𝜀1)𝑅𝑅𝑇  20% 𝜇(𝜀1)𝑅𝑅𝑇  50 

20 20% 𝜇(𝜀1)𝑅𝑅𝑇  2% 𝜇(𝜀1)𝑅𝑅𝑇  6 

 

Now suppose that the mathematical model of the same example was hypothetically nonlinear as Eq. 

(9) (note: the purpose of this fine-tuning is to show the functioning for nonlinear problems in situations that 

abide by the framework’s axioms): 

 max𝒙 𝑓(𝒙, 𝜺, 𝜽, 𝜶, 𝝃) =
4𝑥1

2

𝑥2

𝜀1 + 𝑥2𝛼2𝐸{𝜉2} + 𝑥1𝜃1 + 𝑥2𝜃2 − 𝜃3  (9) 

𝑠. 𝑡. 𝑥1 + 𝑥2 − 𝑈𝐵 ≤ 0 

𝑥1 + 𝑥2 − 𝐿𝐵 ≥ 0 

𝑥2𝛼2𝐸{𝜉2 } − 𝜃4 ≤ 0 

4𝑥1
2

𝑥2

𝜀1 − 𝜃5 ≤ 0 

𝑥1 − 20 ≥ 0;  𝑥2 − 20 ≥ 0; 𝑥1,𝑥2 ∈ 𝕀 

0. 5 ≤ 𝜀1 ≤ 3.5 

𝒙 = [
𝑥1

𝑥2
] ; 𝜺 = [𝜀1]; 𝜽 = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5]; 𝜶 = [𝛼2];  𝝃 = [𝐸{𝜉2}] 

 

It is necessary to perform the monotonicity test to assess whether this nonlinear OF is monotonic in 

the feasible region of the optimization problem for each and all 𝑥𝑖 and 𝜀𝑗, so that it is not necessary to perform 

several optimizations during the fine-tuning by natural increase of statistical confidence. This test was not 

done for the linear version of this example because it was obvious that the OF was monotonic as it was linear 

and all terms containing 𝑥𝑖 and 𝜀𝑗 were mathematically positive, and there was no division of any term by any 

𝑥𝑖 and 𝜀𝑗. The partial derivatives of this nonlinear function are given by Eq. (10) to (12): 

𝜕𝑓(𝒙, 𝜺, 𝜽, 𝜶, 𝝃)

𝜕𝑥1

=
8𝑥1𝜀1

𝑥2

+ 𝜃1 (10) 

𝜕𝑓(𝒙, 𝜺, 𝜽,𝜶, 𝝃)

𝜕𝑥2

= 𝛼2𝐸{𝜉2 } + 𝜃2 −
4𝜀1𝑥1

2

𝑥2
2

 (11) 

𝜕𝑓(𝒙,𝜺, 𝜽, 𝜶,𝝃)

𝜕𝜀1

=  
4𝑥1

2

𝑥2

 (12) 
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All terms involving the variables 𝑥1 and 𝑥2 and the uncertainty 𝜀1 in Eq. (10) and (12) are positive, so 

the function is strictly increasing and consequently monotonic for 𝑥1 and 𝜀1. However, Eq. (11) has a negative 

and a positive term, so it is necessary to check whether the order relation of the function will be preserved for 

𝑥2 in the feasible region of the optimization problem. There are several ways to test monotonicity in the 

literature, and it is up to the user how to make the test. For the operational research sector, most models are 

conducive to having monotonic objective functions that naturally follow the framework’s axioms. An 

algorithm was created and executed in MATLAB® (R2019b, Mathworks, Natick, MA, USA) to check for the 

monotonicity of this function and can be found as supplementary material. The function also proved to be 

monotonic for 𝑥2 in the feasible region of the optimization problem. What this algorithm does is to check all 

the values of the partial derivatives through the DCFR; and to be monotonic, the sign of all partial derivatives 

must remain unchanged through this domain. 

By fine-tuning this problem to the same fine-tuning situation as in the case of Fig. 5 but for values of 

2, 5, 7, and 10%. 𝜇(𝜀1)𝑅𝑅𝑇 for 𝜎𝜀1
 and knowing that the OF of the GDOR is the same as Eq. (9), the results 

are shown in Figs. 25 and 26. This fine-tuning was run several times, and the behaviors of 𝜎𝜀1
 and of 𝐴𝑅𝑀𝜎  

(from Fig. 26) remained the same every time. The fine-tuned value for 𝜎𝜀1
is 10 % .𝜇(𝜀1)𝑅𝑅𝑇 . 

 

 

Fig. 25. Relative Regret (%) vs Performed ROs for 2,5,7, 10%. 𝜇(𝜀1), where the RRT for the RO considers 

𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to which GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.9 (same conditions as in Fig. 

6). 𝑁𝐵𝐼𝐺 = 10000. 
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Fig. 26. ARR (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 = 1, 𝜃4 = 100, 𝜇(𝜀1) = 2, to 

which the GDOR is performed with 𝜃4 = 100, 𝜀1 = 1.9 (same conditions as in Fig. 6). 𝑁𝐵𝐼𝐺 = 10000. 

 

Due to the low variations in RR (%) in Fig. 26, it can be inferred that this OF has some plateau for 

some ranges of the problem variables in the feasible region of the optimization problem and it proves to be a 

smooth function in the DCFR (i.e., it has a plateau in the DCFR) and in the range of 𝜀1. It entails few variations 

across all 𝐴𝑅𝑀𝜎 and requires a larger 𝑁𝐵𝐼𝐺  than if it were linear to fine-tune with statistical confidence. The 

algorithm can be found in the supplementary material. 

In the event that the value of 𝑓𝑜𝑏𝑗
𝑂𝐷𝐺𝑅 is specified to be equal to, say, 335 $ and the fine-tuning has the 

same conditions as in Fig. 26, but the OF is given by Eq.(13), there would be no low variations in the RR (%) 

(shown in Fig.27) because this new OF given by Eq.(13) is less smooth than the one given by Eq.(9), and 

therefore it needs a smaller number for 𝑁𝐵𝐼𝐺 , which in this case was equal to 200, and even if the fine-tuning 

is done several times, the fine-tuning result is the same. The algorithm can be found in the supplementary 

material. The improvement between worst value (𝜎𝜀1
= 2%𝜇(𝜀1)𝑅𝑅𝑇) and best value (𝜎𝜀1

= 10%. 𝜇(𝜀1)𝑅𝑅𝑇) 

of the standard deviation of the fine-tuning in Fig. 27 is approximately 7%. 

 

max𝒙 𝑓(𝒙, 𝜺,𝜽, 𝜶, 𝝃) =
𝑥1

2

𝑥2

𝜀1 + 𝑥2𝛼2𝐸{𝜉2} +
𝑥1

2

𝑥2

𝜃1 +
𝑥2

2

𝑥1

𝜃2 − 𝜃3  (13) 

𝑠. 𝑡. 𝑥1 + 𝑥2 − 𝑈𝐵 ≤ 0 

𝑥1 + 𝑥2 − 𝐿𝐵 ≥ 0 

𝑥2𝛼2𝐸{𝜉2 } − 𝜃4 ≤ 0 

𝑥1
2

𝑥2

𝜀1 − 𝜃5 ≤ 0 
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𝑥1 − 20 ≥ 0;  𝑥2 − 20 ≥ 0; 𝑥1,𝑥2 ∈ 𝕀 

0. 5 ≤ 𝜀1 ≤ 3.5 

𝒙 = [
𝑥1

𝑥2
] ; 𝜺 = [𝜀1]; 𝜽 = [𝜃1𝜃2𝜃3 𝜃4𝜃5 ]; 𝜶 = [𝛼2];  𝝃 = [𝐸{𝜉2}] 

 

 

Fig. 27. Graph of average relative regret (%) vs 𝜎𝜀1
(%𝜇(𝜀1)), where the RRT for the RO considers 𝛼2 =

1, 𝜃4 = 100,𝜇(𝜀1) = 2, to which the GDOR is performed with 𝜃4 = 100,𝜀1 = 1.9 (same conditions as in 

Fig.26). 𝑁𝐵𝐼𝐺 = 200. 

 

Different models will have different natural robustness, and for each parameterization, there will also 

exist a given robustness linked to the model and parameterization. The standard deviation value directly 

influences the number of solutions that are feasible, as this obviously provides the value of a parameter that 

can generate feasible solutions or not. 

The framework of the present work determines the standard deviation that makes the robust solution 

closer to ideality (𝑓𝑜𝑏𝑗
𝑂𝐷𝐺𝑅 ), while naturally reducing the penalty value of the robust solution and regulating the 

robustness of the model, rather than just depending on the worst case scenario or limited cases. In other words, 

in addition to increasing the robustness of the model by increasing conservatism, this framework also reduces 

the penalty in the OF due to its fine-tuning strategy that aims to achieve an ideal solution through the regret 

model without assigning the scenario tree. 

 

4. Conclusions 

 

RO is a field of high flexibility as to how to deal with the treatability of solutions in an optimization 

under uncertainty. Different frameworks have been developed, and this work reports on the designing of a 
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new RO framework based on original concepts with an original regret model and a stochastic and algorithmic 

numerical strategy to make the robust solution better approach an ideal solution. This methodology considers 

the uncertainties in the process, at least one of which must be normally distributed.  

In addition, the framework provides the regulation of robustness and conservatism by an algorithm 

that adjusts the penalty factor values, which are specified out or within a loop. As this is an alternative new 

avenue in RO, some aspects can be studied in-depth and changed to analyze the behaviors of the fine-tune 

methodology by changing different aspects – e.g., by changing how the penalty factor is calculated/specified. 

The results of the applied examples showed that depending on the philosophy of the RO framework 

used, risk aversion for choosing values close to the average for the uncertainties is not always the best option 

to achieve the best interest in decision making. Besides, an in-depth study can be carried out to investigate 

changes that can be made in the methodology for its applicability to non-monotonic objective functions in the 

DCFR. 

The algorithm is flexible and its steps can be reformulated for further studies in order to generate new 

tenets of how robust solutions could also be considered in decision making. On other side, the mathematical 

formulation is also flexible and can also be a target of new investigations, e.g. – either the inclusion or 

combination of new tradeoff parameters or terms aiming at the balance of conservatism and robustness 

embodied with the concept of targeting an ideal. 
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