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Abstract: In this paper, we present an extended version of the Hadi-Vencheh model for multiple
criteria ABC inventory classification. The proposed model is a nonlinear weighted product model
(WPM) which determines a common set of weights for all the items. Our proposed nonlinear WPM
incorporates multiple criteria with different measure units, without converting the performance of
each inventory item in terms of each criterion into a normalized attribute value, thereby providing
an improvement over the model proposed by Hadi-Vencheh. Our study mainly includes various
criteria for ABC classification, and demonstrates an efficient algorithm for solving nonlinear
programming problems in which the feasible solution set does not have to be convex. The algorithm
presented in this study improves the solution efficiency of the Canonical Coordinates Method
(CCM) algorithm substantially when applied to large scale, nonlinear programming problems. The
modified algorithm was tested to compare our proposed model results to the results derived using
the Hadi-Vencheh model and demonstrate the algorithm's efficacy. The practical implications of the
study are to develop an efficient nonlinear optimization solver by optimizing the quality of existing
solutions, thus improving time and space efficiency.

Keywords: non-linear programming 1; Hadi-Vencheh model 2; multiple criteria ABC inventory
classification 3; multiple criteria ABC inventory classification 4.

1. Introduction

To succeed in managing a growing number of stock-keeping units (SKU), inventory managers
have found that inventory classification systems provide an essential context for evaluating inventory
management. The ABC analysis is one of the most frequently used inventory classification
techniques. Raw materials, sub-assemblies, intermediate products, parts and end product can be
divided into three classes, including A (very important items), B (medium important items), and C
(relatively unimportant items). The ABC classification problem is solved as a ranking problem by
most current classification models [1-3] —that is, a group of inventory items is expressed according
to its overall weighted score of criteria in descending order. The idea of the ABC analysis has been
applied to inventory management by General Electric during the 1950s. This approach is based on
Pareto’s famous theory of inequality in the distribution of incomes. A conventional ABC study is
conducted on the basis of one criterion, the annual dollar usage (value of an item times its annual
usage) of SKUs.

In Pareto’s theory, all items are ranked based only on a single criterion; for inventory
management, dollar usage has been deemed as the only criterion for managers to classify items into
the A, B, and C categories. However, in reality managers sometimes want to consider more attributes
of an item when classifying goods; many item characteristics could influence inventory control policy
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and must be considered. Flores [2] noted that other vital criteria can be adopted in addition to dollar
usage, such as commonality, reparability, substitutability, lead time and commonality. For instance,
an enterprise must pursue operating in an efficient way that can both minimize total costs and
maximize satisfaction brought to their customers. If SKUs are only classified based on the single
criterion of dollar usage, an item with less dollar usage but long lead time and high criticality may be
misclassified into the C category, resulting in serious damage for the company if the item suffers from
stock out.

There are a detailed literary research on multi-choice programming (MCP) theories and
applications. MCP is a branch of multiple objective programming which descends from the multiple
criteria decision making (MCDM). MCDM tests in various areas several overlapping criteria in
decision-making [4-5]. The multiple criteria inventory classification (MCIC) can be viewed as an
application of the multiple criteria decision analysis [6-7]. To solve the MCIC problem, the joint-
criteria matrix [8] is a simple and easy-to-understand tool, but it is not practical for more than two
criteria and involves too much subjectivity. The analytic hierarchy process (AHP) is a popular
methodology but it involves subjectivity as well. Methods for solving the ABC inventory
classification problem have been systematically and thoroughly reviewed and discussed in relevant
literature [9-12]. A number of methods were suggested in order to achieve the multiple criteria
classification of SKUs. These methods contribute much to the classification of items and help improve
the efficiency and performance of a firm through better inventory management. However, these
approaches contain some shortcomings, such as involving too much subjectivity or being overly
complicated.

For better allocations of priorities of items and further classification, it is worth developing a
model that can accommodate multiple criteria to create guidelines for inventory control. The study
builds a proper model for categorizing SKUs and demonstrates an efficient algorithm for solving the
nonlinear programming model in which the feasible solution set does not have to be convex. The rest
of this paper is as follows: Section 2 provides the details of model development. The solution
algorithm and its improvement is presented in Section 3. Section 4 details the results of the model
conducted herein, with comparisons to previous studies with a benchmark data set. Conclusions and
recommendations for future research are offered in the final section.

2. The HV-model and the WPM

Hadi-Vencheh [13] proposed a multiple criteria weighted nonlinear model for ABC inventory
classification. The proposed model, hereafter referred to as the HV-model, is an extension of the Ng-
model [1]. The Ng-model transforms the inventory object to a scalar value in all parameters steps.
The grouping according to the measured values is then applied according to the ABC theory. Hadi-
Vencheh extended the Ng-model to resolve the condition in which the score is independent of the
weights from the model for each item. Despite the improvement in maintaining the influences of
weights in the final score, one notable problem remains: the HV-model calculates the scores assigned
to each item using the weight sum method (WSM) for criteria with different measure units which
therefore requires converting the performance of single inventory item in terms of every criterion
into a normalized attribute value. Triantaphyllou [14] contend that, if the problem involves criteria
with different measure units, the weighted product method (WPM) would be a more suitable tool to
calculate the scores given to each item. To avoid an erroneous extreme value leading to inventory
items misclassification, we propose the following nonlinear WPM to model the classification problem
involving criteria with different measure units. This study therefore presents an broad version of the
HV-model, taking weight values into account in the ABC inventory classification for multiple criteria
using the WPM, which applies multiplication weights and forms a nonlinear optimization problem.
To solve the nonlinear optimization problem efficiently, the canonical coordinates method (CCM)
algorithm is used to calculate the weights of the criteria for each inventory item.

Suppose that | inventory items are present, and that the items must be graded as A, B or C
based on their results according to J criteria. In particular, let the output of the | th inventory item

be referred to as Y;; with respect to each criterion. For simplicity, all parameters are beneficial; in
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other words, they are positively connected with the degree of value of an item. The goal is to combine
many performance scores in the subsequent ABC inventory classification with regard to different

parameters into a single score. In both the Ng and HV-models, a nonnegative weight W, ; is the
weight of performance contribution of the i th item under the ] th criteria to the score of the item.
The parameters are supposed to be listed in descending order such that W, 2 W, , 2---2 W, ; for

all items i. The proposed model by Hadi-Vencheh [13] is as follows:

J "
max S§;=TILy;; ™
=L

J
St ZWi,jzzl
j=1

Wi —Ww 120, j=12,..,J-1

w >0, ]j=12,...,J 1)

ij
In the HV-model, the performance in each criterion of the I th inventory item Y, is further
normalized to S ;, and the objective function of the nonlinear programming (NLP) model (1) is
found to be:

J

max ;= ZSi Wi

=1
Ng [1] indicated that the normalization scaling involves extreme measurement values and would
thus have an effect on all normalized measurements if the extremes change. To avoid an invalid

extreme value leading to inventory items misclassification, we propose the following nonlinear WPM
to model the classification problem involving criteria with different measure units:

I
max S =IIy;; ™
=L

J
St ZWi,jzzl
j=1

Wi,j_Wi,j-i-lZO’ j:112|---,\.]—1

w >0, j=12,...,J 2)

ij
3. The Solution Algorithm

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation as well as the experimental conclusions that can be
drawn.

3.1. Nomenclature

3.1.1. Notation of the weighted product method for ABC classification

e | :setof inventory items

e J:setof evaluation criteria

* Y j:the | th inventory item in terms of the j th criteria

* W j:the weight of performance contribution of the | th item under the ] th criteria

S;: score of the item 1.
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3.1.2. Notation of the CCM Algorithm

e R :the set of all real numbers

e £:decision variables

o ¢ 0. feasible initial solution
o 4 (f) : set of constraints, i =1,...,m

o f(&): the objective function

. cf* : the optimal solution.
3.2. The CCM Algorithm

This section presents the Canonical Coordinates Method (CCM) algorithm [15-16] applied to
solve nonlinear programming problems in which the feasible solution set does not have to be convex.
Convexity is a strong property that often replaces differentiability as a desirable property in most
constrained optimization problems. However, the CCM is an efficient algorithm to deal with
continuous search spaces and benefit from the low computational cost for solving constrained
optimization. A set containing nonlinear constraints may or may not be convex. This study mainly
demonstrates an efficient algorithm for solving nonlinear programming problems in which the
feasible solution set does not have to be convex. The main difference between linear and nonlinear
programming is that linear programming helps find the best solution from a set of parameters or
requirements that have a linear relationship, whereas nonlinear programming helps find the best
solution from a set of parameters or requirements that have a nonlinear relationship. The prerequisite

for applying the CCM algorithm is that the theorem of Implied Function can be used in any feasible

set. That is, at any point in the feasible set, one can find m variables, say z = (Zl, 2y ), in such a
way that the Jacobian matrix of the constraint functions ¢=(g,...,d,) with respect to Z is
nonsingular. From the Implicit Function Theorem there exist functions g¢; such that

Z;=9; (Xl,..., Xn), j=1...,m.We describe the CCM algorithm below:

Input: The nonlinear program
max{f (&)|4(£)=0,i=1...,m}

with given differentiable functions f,d : R

satisfying ¢ (50) =0,i=1,...,m.

m+n m+n

—R,i=1...,m and a feasible point £° e R

Output: A critical point & of f satisfying ¢((§*)=0.

Steps:
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1. 50 is partitioned into éo = (XO, ZO>, where x° e ®" , ¥ R™ such that

det(\] (¢.2) (x°,z°)J #0.
2. For i,j=1...m,and k=1,...,n, we calculate the following partial derivatives at point
&£° :(xo,zo): of Jox,, of joz;, od [oX, , o¢ [0z .
3. We then calculate the MXN matrix for the implicit function ¢ :
(6g/ox)=—(8¢/02) *(d4/ox), and then find the direction
D = (of /ox) = (f /ox, ..., of /ox,) and DP = (&f /ox)" +(of /éz)(g/ox).

4. We perform a line search along the ray through x® with the direction D° =D (XO) ; that is to

say, we find a one-dimensional local optimal t" of: F t)y="f (XO + tDO, z (t)), t>0.
To do so, we need to solve for z(t), which is done by solving the following system of
2(0)=2°
(0g/0x)(oF Jox)" +(0g/ez)(dz/dt)’ =0

ordinary differential equations:

Set X <—x°+t DO.

5. Wecompute Z;=0; (x*) ,i=1...,m using Taylor polynomial approximation and then apply

Newton's method to solve the system of ordinary differential equationsat t=1 above.

6. If Vf (X*, Z*) ~ 0, then we have found a local optimal point. Otherwise, we replace (XO, ZO)

with (X*, Z*) and repeat the procedure.

The CCM algorithm helps us identify the local optimal points of an NLP that the feasible set fulfills
the requirements of the Implicit Function Theorem. The problem can then be turned into an NLP

problem on a subspace R" of the original space RN

3.3. Improvement of the Algorithm Using Efficient Selection of Bases

Step 1 in the CCM algorithm is to find a subset of m variables among the (m + n) variables
so that a resulting Jacobian matrix is non-singular [8]. This is equivalent to finding a subset of column
vectors in the original mx(m+n) matrix that is linearly independent. Let @, -, ¢, be

differentiable functions in (m + n) variables:

Oh/0x  O#h[Oxy -+ OB /O
_ Oy /0%y Oy [O%y -+ Ohy [OXipin
a¢m/8X1 a¢m /6)(2 a(ém/axmm

In order to find a subset of M columnsof A thatis linearly independent, the original method

in Chang and Prabhu [15] was to choose any M subset of the (m + n) columns to check if it
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+n

qualifies. There are two drawbacks to doing so: first, there are CnT many choices of such subsets;

and second, each choice will require a calculation of the determinant of an Mx M matrix, which has
the same complexity as a Gaussian Elimination process. We will show that, by using Gaussian
Elimination on A to reach its reduced row echelon form, we can find one subset of columns of A
that is linearly independent. The process of Gaussian Elimination is to perform a sequence of row
operations to a given matrix to reach its reduced row echelon form. Each type of row operation
corresponds to a type of elementary matrix, all of which are nonsingular; each time a row operation

is performed, it is equivalent to multiplying the original matrix by an elementary matrix on the left.

We can also see thatinan m x (m + n) matrix with rank m, there is a subset of column vectors that

is linearly independent. Now let us state the proposition that yields the discovery of the desired

linearly independent subset of columns of A.

Proposition: Let m and N be positive integers, A be a mx (m + n) matrix with rank m,
and Uj,...,U,,, be the column vectors of A. Suppose B is the reduced row echelon form of A,
and that Vy,...,Vy, ., are the columns of B. Then, there exist integers 1< j; < j, <---< j, <(m+n)
so that [V iV ] =l m formsthe mxm identity matrix. Moreover, the corresponding subset

of columns of A, [u iU J is non-singular.
1 Im

Proof: Matrix B must also have rank M because it is the reduced row echelon form of A,

whose rank is M. Thus there are M columns of B that form the MxM identity matrix. That is,
there exist integers 1< j; < j, <+--< j, <(m+n) so that I:le,---,ij :' = | . - During the process
of Gaussian Elimination to obtain the reduced row echelon form of A, we can find elementary

matrices El,Ez,-n,Ep that:

B = Ep "'EzElA
Note that the K -th column of B is also obtained from performing the same row operations on the
K -th column of A. Thus:

v, =E,EEu; , k=12--m

Jk I’

and
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Since all the elementary matrices E;, E,,---, Ep and the identity matrix | are nonsingular, then
[U i Ui } must also be nonsingular. Now we can simply apply the Gaussian Elimination to the

matrix and find a linearly independent subset of column vectors that allows the Implicit Function

Theorem and the CCM algorithm to be applied.

3.4. Accuracy Improvement

A line search in Step 4, whereby a system of nonlinear ordinary differential equations with initial
values is to be resolved [15], must be carried out in the implementation of the CCM algorithm. The
desired unidimensional direction can be approximated numerically from any line search, but its
explicit functional expression can not be calculated. This drawback impedes the output of the points
found in any line search system. We present a modification of the CCM algorithm used by Chang
and Prabhu [15], which adopted the gradient method to determine the next point without any line

search.

Suppose the feasible set S = {U e R™" |¢| (u)=0,i :1,--~,m} satisfies the condition of the

Implicit Function Theorem. That is, ¢ (u) is a holomorphic function in the m+n variables if one
treats the m+n variables as complex variables such that one of its Jacobians is nonsingular.

Therefore, one can find an m subset of the m+n variables, say Z;,'**,Z; , so that the
corresponding Jacobian matrix (6¢/ 0z) is nonsingular. Furthermore there exist implicit functions

gj,j=1,~-',m in terms of the remaining N variables, say X;,***, X, such that Z; =gj(X1,...,Xn)

, J=1-,m The original NLP can now be viewed as the following induced NLP:

Maximize F(x)
Subjectto xeU

where F(x)= f (x,gl(x),---,gm(x)) and U is a neighborhood of the point x°€R" that the

Implicit Function Theorem holds. Because U contains an open subset of R " the induced NLP can

be viewed as a locally non-constrained NLP. One important benefit is that moving along the induced

gradient direction D =(0F/0x) will stay in U if the distance is small enough.

One common issue with solving an NLP using the gradient method is that it is likely to leave S
by travelling along the gradient direction of a feasible point. This causes a big problem in keeping the

NLP feasibility. Applying the CCM algorithm does not present such a problem as every iteration
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remains within the feasible region. This is because the gradient of the inducted objective function F
with regard to the selected Xy, -, X, will locally move inside the feasible set U , if we selected

carefully. When using the CCM algorithm in a small-scale NLP, one can conduct a line search along
the gradient direction of the induced objective function. The relation between the induced line search

and the movement along the original feasible set is illustrated in Figure 1.

Figure 1. The relationship between induced line search and movement along the original feasible set

Because there is a one to one mapping between U and a neighborhood of (XO, ZO) in S, thereisa

one dimensional curve C in S corresponding to the line L= {X(t)|t > 0} in U such that:
C = {x(1).2(1)x(t) e Liz(t) = g (x(1))}.

The problem can be viewed as ‘lifting’ a straight linein R " toacurvein R™".In performing a line

search, one has to find a one-dimensional local optimal point on such a curve with only the
knowledge of the projection of the curve while the other coordinates are unknown. Fortunately we

also know the explicit objective and constraint functions, so we can approximate the change of the

unknown coordinates Az with the derivatives dz/ dt . That is, we can approximate Az by:

Az ~|—|AtL.
dt

Let D° = D(X0)=(d1,w,dn).Then:
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G o %,

dt ox, dt ox, dt
and
d, N d,
G35 ()
dt OX ' 0z OX
dn n

We can now move the previous point along its gradient direction (Ax,Az), where Ax = D’At, D’ is

the exact induced gradient of the induced objective function in the projection space, and Az is the
change in z by the above approximation. We can choose At carefully to avoid any line search.
There are two reasons to avoid a line search.

First, it requires the knowledge of the ‘lifted’ curve for any z >0.When an NLP is a small scale
problem and the corresponding system of ordinary differential equations is possible to solve, the
CCM algorithm can locate or approximate the exact lifted curve C atany t>0.To do so, we may

need to apply some ODE methods such as the Euler and the Runge-Kutta methods. As t getslarger,
the feasibility of the point (x(t),z(t)) is likely disappearing.

Second, we use numerical data to approximate the partial derivatives at all the points involved.

The ODE problem in Step 4 is a ‘point-by-point’ case without an explicit global expression for the

coefficients (0¢/ox)(oF/ é’x)T and 6¢/ 0z in it. Thus, it might be impossible to solve for it in
practice. We have chosen to avoid any line search. Instead, as mentioned above, we move a point to

the next one in its gradient direction (AX,AZ) with a chosen At. This way, we have control over

staying as close to the feasible set as we need. Not only is the feasibility better kept, but the calculation

is also reduced since we are not solving for the system of ordinary differential equations globally.

4. Illustrative Example

We applied the WPM to the same problem of multiple-criteria inventory classification problem
as reported in the referenced literature [1, 6, 7, 13, 17]. Following Ng [1] and Hadi-Vencheh [13] we
considered three criteria for inventory classification: annual dollar usage (ADU), average unit cost
(AUC), and lead time (LT) and assumed the importance of the criteria to be, in descending order,
ADU, AUC, and LT. All the criteria were positive for the inventory item score

4.1. Quality of Solutions

The 47 inventory items’ optimal scores and weights are shown in Table 1. As can be seen, the
optimal scores derived by using the CCM algorithm to solve the WPM of multicriteria ABC
classification were as good as those derived using LINGO [18], the off-the-shelf optimization
software. If we look carefully at the weights derived using LINGO, it is obvious that most items’
weights for ADU and AUC are identical and that some items’ (4, 25, 27, 30) weights for LT are zero.
This is because the primary underlying technique used by LINGO's nonlinear solver is to get to a
feasible solution for nonlinear models quickly. The weight values derived by using the CCM better

fit the assumption that the criteria are graded in descending, such that Wj; 2W; , >--->Ww; ; forall
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items i. Therefore, the CCM is superior to LINGO in terms of solution quality in this illustrative

example.
Table 1. Measures of inventory items, the optimal scores and weights.
LINGO CccMm
Item Parameter Objective Objective
Decision variable Decision variable
value value
ADU AUC LT ADU AUC LT
ADU AUC LT Score Score
weight weight weight weight weight weight
1 5840.64 49.92 2 8.92 7.050E-01 7.050E-01 7.770E-02 8.92 7.050E-01 7.049E-01 7.790E-02
2 5670 210 5 10.02 6.979E-01 6.979E-01 1.606E-01 10.02 6.980E-01 6.978E-01 1.608E-01
3 5037.12 23.76 4 8.38 6.974E-01 6.974E-01 1.654E-01 8.38 6.974E-01 6.973E-01 1.658E-01
4 4769.56 27.73 1 8.34 7.071E-01 7.071E-01 0.000E+00 8.34 7.072E-01 7.071E-01 2.360E-04
5 3478.8 57.98 3 8.71 7.015E-01 7.015E-01 1.262E-01 8.71 7.015E-01 7.014E-01 1.264E-01
6 2936.67 31.24 3 8.15 7.007E-01 7.007E-01 1.347e-01 8.15 7.007E-01 7.006E-01 1.350E-01
7 2820 28.2 3 8.05 7.005E-01 7.005E-01 1.364E-01 8.05 7.005E-01 7.004E-01 1.367E-01
8 2640 55 4 8.52 6.977E-01 6.977E-01 1.627€-01 8.52 6.977E-01 6.976E-01 1.630E-01
9 2423.52 73.44 6 8.73 6.921E-01 6.921E-01 2.051E-01 8.73 6.921E-01 6.920E-01 2.053E-01
10 2407.5 160.5 4 9.20 6.990E-01 6.990E-01 1.507E-01 9.20 6.991E-01 6.989E-01 1.509E-01
11 1057.2 5.12 2 6.12 7.026E-01 7.026E-01 1.133E-01 6.12 7.025E-01 7.024E-01 1.145E-01
12 1043.5 20.87 5 7.24 6.894E-01 6.894E-01 2.222E-01 7.24 6.894E-01 6.893E-01 2.226E-01
13 1038 86.5 7 8.30 6.874E-01 6.874E-01 2.346E-01 8.30 6.875E-01 6.873E-01 2.347E-01
14 883.2 110.4 5 8.28 6.936E-01 6.936E-01 1.944E-01 8.28 6.938E-01 6.934E-01 1.945E-01
15 854.4 71.2 3 7.87 7.002E-01 7.002E-01 1.397E-01 7.87 7.003E-01 7.000E-01 1.399E-01
16 810 45 3 7.51 6.995E-01 6.995E-01 1.463E-01 7.51 6.996E-01 6.994E-01 1.465E-01
17 703.68 14.66 4 6.68 6.917E-01 6.917E-01 2.075E-01 6.68 6.917E-01 6.916E-01 2.081E-01
18 594 49.5 6 7.49 6.866E-01 6.866E-01 2.391E-01 7.49 6.867E-01 6.865E-01 2.393E-01
19 570 47.5 5 7.39 6.902E-01 6.902E-01 2.177€E-01 7.39 6.902E-01 6.900E-01 2.178E-01
20 467.6 58.45 4 7.36 6.944E-01 6.944E-01 1.885E-01 7.36 6.946E-01 6.942E-01 1.887E-01
21 463.6 24.4 4 6.74 6.920E-01 6.920E-01 2.056E-01 6.74 6.920E-01 6.919E-01 2.058E-01
22 455 65 4 7.41 6.946E-01 6.946E-01 1.871E-01 7.41 6.948E-01 6.944E-01 1.873E-01
23 432.5 86.5 4 7.57 6.952E-01 6.952E-01 1.830E-01 7.57 6.954E-01 6.949E-01 1.832E-01
24 398.4 33.2 3 6.80 6.978E-01 6.978E-01 1.616E-01 6.80 6.979E-01 6.977E-01 1.618E-01
25 370.5 37.05 1 6.74 7.071E-01 7.071E-01 0.000E+00 6.74 7.071E-01 7.071E-01 2.570E-04
26 3384 33.84 3 6.70 6.975E-01 6.975E-01 1.640E-01 6.70 6.975E-01 6.975E-01 1.642E-01
27 336.12 84.03 1 7.25 7.071E-01 7.071E-01 0.000E+00 7.25 7.071E-01 7.071E-01 2.860E-04
28 313.6 78.4 6 7.37 6.859E-01 6.859E-01 2.431E-01 7.37 6.859E-01 6.859E-01 2.433E-01
29 268.68 134.34 7 7.67 6.840E-01 6.840E-01 2.537E-01 7.67 6.840E-01 6.840E-01 2.539E-01
30 224 56 1 6.67 7.071E-01 7.071E-01 0.000E+00 6.67 7.071E-01 7.071E-01 2.880E-04
31 216 72 5 7.01 6.882E-01 6.882E-01 2.295E-01 7.01 6.882E-01 6.882E-01 2.297E-01
32 212.08 53.02 2 6.63 7.032E-01 7.032E-01 1.045E-01 6.63 7.032E-01 7.032E-01 1.048E-01
33 197.92 49.48 5 6.69 6.864E-01 6.864E-01 2.404E-01 6.69 6.864E-01 6.864E-01 2.406E-01
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34 190.89 7.07 7 5.46 6.606E-01 6.606E-01 3.567E-01 5.46 6.606E-01 6.606E-01 3.595E-01
35 181.8 60.6 3 6.67 6.975E-01 6.975E-01 1.647E-01 6.67 6.975E-01 6.975E-01 1.649E-01
36 163.28 40.82 3 6.32 6.963E-01 6.963E-01 1.738E-01 6.32 6.963E-01 6.963E-01 1.740E-01
37 150 30 5 6.16 6.826E-01 6.826E-01 2.612E-01 6.16 6.826E-01 6.826E-01 2.613E-01
38 134.8 67.4 3 6.54 6.971E-01 6.971E-01 1.680E-01 6.54 6.971E-01 6.971E-01 1.683E-01
39 119.2 59.6 5 6.47 6.849E-01 6.849E-01 2.486E-01 6.47 6.849E-01 6.849E-01 2.488E-01
40 103.36 51.68 6 6.33 6.782E-01 6.782E-01 2.831E-01 6.33 6.782E-01 6.782E-01 2.833E-01
41 79.2 19.8 2 5.25 7.009E-01 7.009E-01 1.321E-01 5.25 7.009E-01 7.009E-01 1.323E-01
42 75.4 37.7 2 5.67 7.018E-01 7.018E-01 1.223E-01 5.66 7.018E-01 7.018E-01 1.227E-01
43 59.78 29.89 5 5.53 6.765E-01 6.765E-01 2.908E-01 5.53 6.765E-01 6.765E-01 2.910E-01
44 483 48.3 3 5.59 6.933E-01 6.933E-01 1.964E-01 5.59 6.933E-01 6.933E-01 2.000E-01
45 344 344 7 5.37 6.590E-01 6.590E-01 3.625E-01 5.37 6.590E-01 6.590E-01 3.639E-01
46 28.8 28.8 3 4.88 6.889E-01 6.889E-01 2.252E-01 4.88 6.889E-01 6.889E-01 2.291E-01
47 25.38 8.46 5 4.12 6.510E-01 6.510E-01 3.903E-01 4.12 6.510E-01 6.510E-01 3.931E-01

Next, the maximal overall scores were sorted in descending order and inventory classification
was conducted based on the WPM (shown in Table 2). For comparison purposes, we maintained the
same distribution of class A, B and C items as in studies in the cited literature [1, 13, 17]; that is, 10
class A, 14 class B, and 23 class C items. The ABC analysis using the Ng [1], Hadi-Vencheh [13], and
Zhou and Fan models [17] is also shown in Table 2. Ten items (8, 29, 15, 16, 27, 33, 39, 40, 34 and 45)
did not have the same classification in the WPM model as in the Ng, HV and ZF models. The
difference in classification was due to the difference in score computation” schemes. Of the 10 class A
items identified in the WPM, only item 8 was recognized as a class B item in the Ng, ZF and HV
models. Moreover, in these models item 29 was classified as a group A item while the WPM re-
classified it as a class B item. Comparing items 29 and 8, item 8 was superior to item 29 in terms of
ADU value (>>). Although item 29 outperformed item 8 in AUC (<) and LT ( <), the differences
were not significant; therefore, based on the most important consideration of the value of annual
consumption of inventory items (ADU) in a year, the WPM provided a more reasonable classification.

In regards to the 14 class B items in the HV-model, eight items (6, 7, 23, 18, 19, 28, 12 and 31)
were retained in class B when the WPM was adopted, five of the class B items (33, 39, 40, 34 and 45)
were re-classified as C, while the remaining one (item 8) was moved up to the class A. Out of the 23
class C items, 18 items were retained as such, whereas the remaining five (15, 16, 22, 20 and 27) were
moved up to class B. Items 33, 39, 40, 34, and 45, classified as class B items in Ng, HV and ZF models
but re-classified as class C items using the WPM (see Table 3), had relatively higher LT measures
(more than 4), but lower performance in terms of AUC and ADU, the two more important criteria.
However, the maximum ADU value (197.92) of these five items was much less than the minimum
ADU value (336.12) of items 15, 16 and 27, re-classified as class C items by the WPM, while their AUC
is about even. Therefore, the WPM provided a more reasonable ranking of items.

Table 2. Comparison of ABC classification using optimal WPM, ZF-model, Ng-model and HV-
model inventory score.

Optimal WPM WPM
HV- Ng- ZF-
Item Score ADU AUC LT Model Model
model model model
(CCM) (CCM) (LINGO)
2 10.0222 5670 210 5
10 9.20134 2407.5 160.5 4
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1 8.92424 5840.64 49.92 2 |A A A A A
9 8.73406 2423.52 73.44 6 |A A A A A
5 8.70633 3478.8 57.98 3 |A A A A B
8 8.51791 2640 55 4 |A A B B B
3 8.38316 5037.12 23.76 4 |A A A A A
4 8.33829 4769.56 27.73 1 |A A A A C
13 8.29587 1038 86.5 7 |A A A A A
14 8.28055 883.2 110.4 5 |A A A B A
6 8.15406 2936.67 31.24 3 |B B B A C
7 8.05394 2820 28.2 3 |B B B B C
15 7.86615 854.4 71.2 3 |B B C C C
29 7.67051 268.68 134.34 7 B B A A A
23 7.57315 432.5 86.5 4 B B B B B
16 7.50776 810 45 3 |B B C C C
18 7.49247 594 49.5 6 |B B B B A
22 7.40991 455 65 4 B B C C B
19 7.39402 570 47.5 5 |B B B B B
28 7.36954 313.6 78.4 6 |B B B B A
20 7.35514 467.6 58.45 4 B B C C B
27 7.24598 336.12 84.03 1 |B B C C C
12 7.24393 1043.5 20.87 5 |B B B B B
31 7.01167 216 72 5 |B B B B B
24 6.79949 398.4 33.2 3 |C C C C C
21 6.74367 463.6 244 4 |C C C C C
25 6.73618 370.5 37.05 1 |C C C C C
26 6.69892 338.4 33.84 3 |C C C C C
33 6.69389 197.92 49.48 5 |C C B B B
17 6.67996 703.68 14.66 4 |C C C C C
30 6.67213 224 56 1 |C C C C C
35 6.67164 181.8 60.6 3 |C C C C C
32 6.63135 212.08 53.02 2 |C C C C C
38 6.53696 134.8 67.4 3 |C C C C C
39 6.47356 119.2 59.6 5 |C C B B B
40 6.32774 103.36 51.68 6 |C C B B B
36 6.32156 163.28 40.82 3 |C C C C C
37 6.16169 150 30 5 |C C C C B
11 6.11791 1057.2 5.12 2 |C C C C C
42 5.66488 75.4 37.7 2 |C C C C C
44 5.59151 48.3 483 3 |C C C C C
43 5.5337 59.78 29.89 5 |C C C C C
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34 5.45517 190.89 7.07 7 |C C B B B
45 5.36813 344 344 7 |C C B B B
41 5.24818 79.2 19.8 2 C C C C C
46 4.87682 28.8 28.8 3 C C C C C
47 4.12265 25.38 8.46 5 C C C C C
Table 3. The 10 items re-classified using the WPM.

Item | ADU AUC LT | WPM | HV-model | Ng-model | ZF-model

8 2640 55 4 | A B B B

29 268.68 | 134.34 | 7 B A A A

15 854.4 71.2 3 B C C C

16 810 45 3 B C C C

27 336.12 | 84.03 1 B C C C

33 197.92 | 49.48 5 C B B B

39 119.2 59.6 5 |C B B B

40 103.36 | 51.68 6 | C B B B

34 190.89 | 7.07 7 | C B B B

45 34.4 34.4 7 | C B B B

4.2. Elapsed runtime and Iterations

The efficiency of solving a problem is also an important criterion for algorithm comparisons; a
good algorithm should solve problems within acceptable time. This section compares the number of
iterations of implementing the CCM and LINGO to solve the WPM of multi criteria ABC
classification. The main difference between implementing the CCM algorithm and LINGO solver is
that we do not have to specify a starting point or moving step size. When the solution region is a
polyhedron, determine the first basic solution (the starting point) would be vital as the local optimal
solution is usually located near the basic feasible solution (BFS); the quality of solution is highly
related to the location of BFS. An unsuitable starting point would lead to a worse local optimal
solution. The search region of an algorithm is related to the step size of search and the search region
decides whether a feasible solution can be found, the step size also determines the quality of the final
solution. Large step size of line search may “jump over” the optimal solution and whereas smaller
search distances may “trap in” and require a significant amount of time to reach the local optimal. A
good starting point and step size of search can help reach acceptable solutions in less time. Table 4
illustrates the process of tuning step size in order to reach a feasible solution. The CCM algorithm
provides flexibility than other solvers of commercial package software, which means a higher
probability of finding better solutions. In this study, using CCM to solve the problem requires more
time to achieve the local optimal solution than LINGO. Because the step size of line search determines
whether the CCM can find feasible solutions. In this study, LINGO requires only seconds to find a
feasible solution, whereas CCM requires a longer time —sometimes nearly a minute.

Table 4. Tuning the step size to reach a feasible solution.

Step size i ng Step size i ng
j=1 j=1
Item 4 0.0003 1.000009 | Ttem 5 0.00045 1.000062
0.000295 0.999993 0.000448 1.000059
0.000298 1.000003 0.00044 1.000046
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0.000297 1 0.00041 0.999997
0.000413 1.000002
0.000412 1

When looking at the number of iterations each algorithm needs, CCM takes more iterations to
solve the problem, even with larger step size. As presented in Table 5, LINGO can solve most
problems in only 60 iterations whereas CCM may need approximately one thousand iterations. In
conclusion, LINGO is more efficient than CCM in this study, which contradicts the results of the
previous study that CCM can solve nonlinear problems more quickly than other software packages.
The result of the current study might stem from the fact that the problem in this study is too simple
to show the power of CCM.

Table 5. The number of iteration for LINGO and CCM to find the local optima.

1 60 1720 13 60 1505 25 35 2482 37 60 1367
2 60 1866 14 55 1852 26 60 1646 38 50 2369
3 60 1207 15 60 1911 27 35 3213 39 50 1888
4 35 1867 16 59 1673 28 55 1741 40 50 1657
5 60 1627 17 60 1090 29 50 2024 41 58 1903
6 60 1419 18 59 1377 30 35 3045 42 50 2452
7 60 1388 19 57 1456 31 55 1900 43 55 1496
8 60 1495 20 60 1729 32 55 2397 a4 75 555
9 58 1428 21 60 1287 33 55 1645 45 55 215
10 57 1995 22 55 1802 34 60 1158 46 75 492
11 60 1086 23 55 2009 35 50 2223 47 60 2712
12 60 1105 24 60 1612 36 55 1932

5. Conclusions

In this paper we have presented an extended version of the HV-model to improve multiple
criteria ABC inventory classification. Our proposed nonlinear weighted product model (WPM)
incorporates multiple criteria with different measure units, without converting the performance of
each inventory item in terms of each criterion into a normalized attribute value, an improvement over
the model proposed by Hadi-Vencheh. The WPM could also be viewed as providing a more
reasonable classification for inventory items from the illustrative example presented and used to
compare our model with the HV-model. In this paper, we also presented the improved CCM
algorithm for solving the WPM, where nonconvex nonlinearity is present in both the objective
function and the constraints. The strategy presented here consisted of greatly reducing the steps in
choosing m variables among (M+n) variables, such that the corresponding Mxm Jacobian

matrix is nonsingular. In the improved algorithm, we applied the Gaussian elimination to the original
matrix to determine which m variables to choose. Our second improvement was to remove solving
nonlinear differential equations system that occurs in the line search method of the CCM algorithm.
The paper demonstrates an efficient algorithm for solving nonlinear programming problems in
which the feasible solution set does not have to be convex. The practical implication of the study is
to further improve the efficient nonlinear optimization solver based on the CCM by optimizing the
quality of existing solutions, thus improving time and space efficiency.
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Future works must continue to investigate the feasibility to implement this proposed CCM
algorithm on discrete-domain issues for engineering applications in order to decide if the algorithm
could be superior to off-shelf software. Future studies could apply the CCM to other nonlinear
programs arisen in practice. For instance, autonomous vehicles is one of many developments that
will influence future mobility needs and planning needs. Traffic assignment models seek the same
objective as route guidance strategies and provide the turning points with information for
implementing control strategies of route guidance. Faster algorithms developed specifically for traffic
assignment can be adapted and used in vehicle route guidance systems. The minimization of total
travel time is a common goal both globally and from a traffic administration perspective. The current
road network manages more traffic by achieving system optimization. Some researchers have
focused their efforts on dynamic traffic assignment because of the unrealistic assumptions of static
traffic assignment. The difficulties encountered by the dynamic model result from the route
calculation being related to the traveling time on arc, which is also dependent on the traffic along the
route. It is difficult to solve such relationships analytically in a dynamic circumstance. In response to
the difficulties of dynamic traffic modelling, Jahn et al. [19] therefore developed model in which flow
represents the traffic patterns in a steady state and the results as the bound for the total travel time.
However, Jahn et al.’s [19] algorithm only solves problems with convex nonlinear objective functions
and linear constraints. To avoid this restriction, future studies could adopt the CCM to solve
nonlinear optimization models and provide strategies for route guidance.
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