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Abstract: In this paper, we present an extended version of the Hadi-Vencheh model for multiple 

criteria ABC inventory classification. The proposed model is a nonlinear weighted product model 

(WPM) which determines a common set of weights for all the items. Our proposed nonlinear WPM 

incorporates multiple criteria with different measure units, without converting the performance of 

each inventory item in terms of each criterion into a normalized attribute value, thereby providing 

an improvement over the model proposed by Hadi-Vencheh. Our study mainly includes various 

criteria for ABC classification, and demonstrates an efficient algorithm for solving nonlinear 

programming problems in which the feasible solution set does not have to be convex. The algorithm 

presented in this study improves the solution efficiency of the Canonical Coordinates Method 

(CCM) algorithm substantially when applied to large scale, nonlinear programming problems. The 

modified algorithm was tested to compare our proposed model results to the results derived using 

the Hadi-Vencheh model and demonstrate the algorithm's efficacy. The practical implications of the 

study are to develop an efficient nonlinear optimization solver by optimizing the quality of existing 

solutions, thus improving time and space efficiency. 

Keywords: non-linear programming 1; Hadi-Vencheh model 2; multiple criteria ABC inventory 

classification 3; multiple criteria ABC inventory classification 4. 

 

1. Introduction 

To succeed in managing a growing number of stock-keeping units (SKU), inventory managers 

have found that inventory classification systems provide an essential context for evaluating inventory 

management. The ABC analysis is one of the most frequently used inventory classification 

techniques. Raw materials, sub-assemblies, intermediate products, parts and end product can be 

divided into three classes, including A (very important items), B (medium important items), and C 

(relatively unimportant items). The ABC classification problem is solved as a ranking problem by 

most current classification models [1-3]—that is, a group of inventory items is expressed according 

to its overall weighted score of criteria in descending order. The idea of the ABC analysis has been 

applied to inventory management by General Electric during the 1950s. This approach is based on 

Pareto’s famous theory of inequality in the distribution of incomes. A conventional ABC study is 

conducted on the basis of one criterion, the annual dollar usage (value of an item times its annual 

usage) of SKUs.  

In Pareto’s theory, all items are ranked based only on a single criterion; for inventory 

management, dollar usage has been deemed as the only criterion for managers to classify items into 

the A, B, and C categories. However, in reality managers sometimes want to consider more attributes 

of an item when classifying goods; many item characteristics could influence inventory control policy 
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and must be considered. Flores [2] noted that other vital criteria can be adopted in addition to dollar 

usage, such as commonality, reparability, substitutability, lead time and commonality. For instance, 

an enterprise must pursue operating in an efficient way that can both minimize total costs and 

maximize satisfaction brought to their customers. If SKUs are only classified based on the single 

criterion of dollar usage, an item with less dollar usage but long lead time and high criticality may be 

misclassified into the C category, resulting in serious damage for the company if the item suffers from 

stock out. 

There are a detailed literary research on multi-choice programming (MCP) theories and 

applications. MCP is a branch of multiple objective programming which descends from the multiple 

criteria decision making (MCDM). MCDM tests in various areas several overlapping criteria in 

decision-making [4-5]. The multiple criteria inventory classification (MCIC) can be viewed as an 

application of the multiple criteria decision analysis [6-7]. To solve the MCIC problem, the joint-

criteria matrix [8] is a simple and easy-to-understand tool, but it is not practical for more than two 

criteria and involves too much subjectivity. The analytic hierarchy process (AHP) is a popular 

methodology but it involves subjectivity as well. Methods for solving the ABC inventory 

classification problem have been systematically and thoroughly reviewed and discussed in relevant 

literature [9-12]. A number of methods were suggested in order to achieve the multiple criteria 

classification of SKUs. These methods contribute much to the classification of items and help improve 

the efficiency and performance of a firm through better inventory management. However, these 

approaches contain some shortcomings, such as involving too much subjectivity or being overly 

complicated. 

For better allocations of priorities of items and further classification, it is worth developing a 

model that can accommodate multiple criteria to create guidelines for inventory control. The study 

builds a proper model for categorizing SKUs and demonstrates an efficient algorithm for solving the 

nonlinear programming model in which the feasible solution set does not have to be convex. The rest 

of this paper is as follows: Section 2 provides the details of model development. The solution 

algorithm and its improvement is presented in Section 3. Section 4 details the results of the model 

conducted herein, with comparisons to previous studies with a benchmark data set. Conclusions and 

recommendations for future research are offered in the final section. 

2. The HV-model and the WPM 

Hadi-Vencheh [13] proposed a multiple criteria weighted nonlinear model for ABC inventory 

classification. The proposed model, hereafter referred to as the HV-model, is an extension of the Ng-

model [1]. The Ng-model transforms the inventory object to a scalar value in all parameters steps. 

The grouping according to the measured values is then applied according to the ABC theory. Hadi-

Vencheh extended the Ng-model to resolve the condition in which the score is independent of the 

weights from the model for each item. Despite the improvement in maintaining the influences of 

weights in the final score, one notable problem remains: the HV-model calculates the scores assigned 

to each item using the weight sum method (WSM) for criteria with different measure units which 

therefore requires converting the performance of single inventory item in terms of every criterion 

into a normalized attribute value. Triantaphyllou [14] contend that, if the problem involves criteria 

with different measure units, the weighted product method (WPM) would be a more suitable tool to 

calculate the scores given to each item. To avoid an erroneous extreme value leading to inventory 

items misclassification, we propose the following nonlinear WPM to model the classification problem 

involving criteria with different measure units. This study therefore presents an broad version of the 

HV-model, taking weight values into account in the ABC inventory classification for multiple criteria 

using the WPM, which applies multiplication weights and forms a nonlinear optimization problem. 

To solve the nonlinear optimization problem efficiently, the canonical coordinates method (CCM) 

algorithm is used to calculate the weights of the criteria for each inventory item. 

Suppose that I  inventory items are present, and that the items must be graded as A, B or C 

based on their results according to J  criteria. In particular, let the output of the i th inventory item 

be referred to as 
,i j

y  with respect to each criterion. For simplicity, all parameters are beneficial; in 
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other words, they are positively connected with the degree of value of an item. The goal is to combine 

many performance scores in the subsequent ABC inventory classification with regard to different 

parameters into a single score. In both the Ng and HV-models, a nonnegative weight 
,i j

w  is the 

weight of performance contribution of the i th item under the j th criteria to the score of the item. 

The parameters are supposed to be listed in descending order such that ,1 ,2 ,i i i Jw w w    for 

all items i . The proposed model by Hadi-Vencheh [13] is as follows: 

 

,
,

1
max i j

J
w

i i j
j

S y
=

=   

2
,

1

=1s.t.
J

i j
j

w
=

  

, , 1 0, 1,2, , 1i j i jw w j J+−  = −
 

 , 0,   1,2, ,i jw j J =      (1) 

In the HV-model, the performance in each criterion of the i th inventory item 
,i j

y  is further 

normalized to 
,i j

s , and the objective function of the nonlinear programming (NLP) model (1) is 

found to be: 

1
, ,max

J

i
j

i j i jS ws
=

=   

Ng [1] indicated that the normalization scaling involves extreme measurement values and would 

thus have an effect on all normalized measurements if the extremes change. To avoid an invalid 

extreme value leading to inventory items misclassification, we propose the following nonlinear WPM 

to model the classification problem involving criteria with different measure units: 

,
,

1
max i j

J
w

i i j
j

S y
=

=   

2
,

1

=1s.t.
J

i j
j

w
=

  

, , 1 0, 1,2, , 1i j i jw w j J+−  = −  

, 0,   1,2, ,i jw j J =      (2) 

3. The Solution Algorithm 

This section may be divided by subheadings. It should provide a concise and precise description 

of the experimental results, their interpretation as well as the experimental conclusions that can be 

drawn. 

3.1. Nomenclature 

3.1.1. Notation of the weighted product method for ABC classification 

• I : set of inventory items 

• J : set of evaluation criteria 

• ,i jy : the i th inventory item in terms of the j th criteria 

• ,i jw : the weight of performance contribution of the i th item under the j th criteria 

• iS : score of the item i . 
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3.1.2. Notation of the CCM Algorithm 

•  : the set of all real numbers 

•  : decision variables 

• 
0

 : feasible initial solution 

• ( )i  : set of constraints, 1, ,i m=  

• ( )f  : the objective function 

• 
*

 : the optimal solution. 

3.2. The CCM Algorithm 

 This section presents the Canonical Coordinates Method (CCM) algorithm [15-16] applied to 

solve nonlinear programming problems in which the feasible solution set does not have to be convex. 

Convexity is a strong property that often replaces differentiability as a desirable property in most 

constrained optimization problems. However, the CCM is an efficient algorithm to deal with 

continuous search spaces and benefit from the low computational cost for solving constrained 

optimization. A set containing nonlinear constraints may or may not be convex. This study mainly 

demonstrates an efficient algorithm for solving nonlinear programming problems in which the 

feasible solution set does not have to be convex. The main difference between linear and nonlinear 

programming is that linear programming helps find the best solution from a set of parameters or 

requirements that have a linear relationship, whereas nonlinear programming helps find the best 

solution from a set of parameters or requirements that have a nonlinear relationship. The prerequisite 

for applying the CCM algorithm is that the theorem of Implied Function can be used in any feasible 

set. That is, at any point in the feasible set, one can find m  variables, say ( )1, , mz z z= , in such a 

way that the Jacobian matrix of the constraint functions ( )1, , m  =  with respect to z  is 

nonsingular. From the Implicit Function Theorem there exist functions jg  such that 

( )1, ,j j nz g x x= , 1, ,j m= . We describe the CCM algorithm below: 

Input: The nonlinear program 

( ) ( ) max 0, 1, ,if i m   = =   

with given differentiable functions , :
m n

if 
+

 → , 1, ,i m=  and a feasible point 0 m n


+
  

satisfying ( )0
0, 1, ,i i m  = = . 

Output: A critical point *
  of f  satisfying ( )*

0  = . 

Steps: 
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1. 0
  is partitioned into ( )0 0 0

,x z = , where 
0 n

x  , 
0 m

z   such that 

( ) ( )0 0
,

det , 0
x z

J z 


 
 

. 

2. For , 1, ,i j m= , and 1, ,k n= , we calculate the following partial derivatives at point 

( )0 0 0
,x z = : kf x  , jf z  , i kx  , i jz  . 

3. We then calculate the m n  matrix for the implicit function g : 

( ) ( ) ( )
1

g x z x 
−

  = −     , and then find the direction 

( ) ( )0
1: , , nD f x f x f x=   =      and ( ) ( )( )0 T

D f x f z g x=   +     . 

4. We perform a line search along the ray through 
0

x  with the direction ( )0 0
D D x= ; that is to 

say, we find a one-dimensional local optimal 
*

t  of: ( )( )0 0ˆ ( ) : , , 0F t f x tD z t t= +  . 

To do so, we need to solve for ( )z t , which is done by solving the following system of 

ordinary differential equations: 
( )

( )( ) ( )( )

0
0                                                  

0
T T

z z

x F x z dz dt 

=

    +   =





. 

Set 
* 0 * 0

x x t D + . 

5. We compute ( )* *
j jz g x= , 1, ,j m=  using Taylor polynomial approximation and then apply 

Newton's method to solve the system of ordinary differential equations at 
*

t t=  above. 

6. If ( )* *
, 0f x z  , then we have found a local optimal point. Otherwise, we replace ( )0 0

,x z  

with ( )* *
,x z  and repeat the procedure. 

The CCM algorithm helps us identify the local optimal points of an NLP that the feasible set fulfills 

the requirements of the Implicit Function Theorem. The problem can then be turned into an NLP 

problem on a subspace 
n

  of the original space 
m n+

 . 

3.3. Improvement of the Algorithm Using Efficient Selection of Bases 

Step 1 in the CCM algorithm is to find a subset of m  variables among the ( )m n+  variables 

so that a resulting Jacobian matrix is non-singular [8]. This is equivalent to finding a subset of column 

vectors in the original ( )m m n +  matrix that is linearly independent. Let 1, , m   be 

differentiable functions in ( )m n+  variables: 

1 1 1 2 1

2 1 2 2 2

1 2

m n

m n

m m m m n

x x x

x x x
A

x x x

  

  

  

+

+

+

     

     
=

     

 
 
 
 
 
 

 

In order to find a subset of m  columns of A  that is linearly independent, the original method 

in Chang and Prabhu [15] was to choose any m  subset of the ( )m n+  columns to check if it 
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qualifies. There are two drawbacks to doing so: first, there are 
m n
mC
+

 many choices of such subsets; 

and second, each choice will require a calculation of the determinant of an m m  matrix, which has 

the same complexity as a Gaussian Elimination process. We will show that, by using Gaussian 

Elimination on A  to reach its reduced row echelon form, we can find one subset of columns of A  

that is linearly independent. The process of Gaussian Elimination is to perform a sequence of row 

operations to a given matrix to reach its reduced row echelon form. Each type of row operation 

corresponds to a type of elementary matrix, all of which are nonsingular; each time a row operation 

is performed, it is equivalent to multiplying the original matrix by an elementary matrix on the left. 

We can also see that in an ( )m m n +  matrix with rank m , there is a subset of column vectors that 

is linearly independent. Now let us state the proposition that yields the discovery of the desired 

linearly independent subset of columns of A . 

Proposition: Let m  and n  be positive integers, A  be a ( )m m n +  matrix with rank m , 

and 1, , m nu u +  be the column vectors of A . Suppose B  is the reduced row echelon form of A , 

and that 1, , m nv v +  are the columns of B . Then, there exist integers ( )1 21 mj j j m n     +  

so that 
1
, ,

mj j m mv v I = 
   forms the m m  identity matrix. Moreover, the corresponding subset 

of columns of A , 
1
, ,

mj ju u 
   is non-singular. 

Proof: Matrix B  must also have rank m  because it is the reduced row echelon form of A , 

whose rank is m . Thus there are m  columns of B  that form the m m  identity matrix. That is, 

there exist integers ( )1 21 mj j j m n     +  so that 
1
, ,

mj j m mv v I = 
  . During the process 

of Gaussian Elimination to obtain the reduced row echelon form of A , we can find elementary 

matrices 1 2, , , pE E E  that: 

2 1pB E E E A=  

Note that the k -th column of B  is also obtained from performing the same row operations on the 

k -th column of A . Thus: 

2 1 , 1,2, ,
k kj p jv E E E u k m= =  

and 

1 12 1 , , , ,
m mp j j j jE E E u u v v I= =   

    . 
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Since all the elementary matrices 1 2, , , pE E E  and the identity matrix I  are nonsingular, then

1
, ,

mj ju u 
 

 must also be nonsingular. Now we can simply apply the Gaussian Elimination to the 

matrix and find a linearly independent subset of column vectors that allows the Implicit Function 

Theorem and the CCM algorithm to be applied. 

3.4. Accuracy Improvement 

A line search in Step 4, whereby a system of nonlinear ordinary differential equations with initial 

values is to be resolved [15], must be carried out in the implementation of the CCM algorithm. The 

desired unidimensional direction can be approximated numerically from any line search, but its 

explicit functional expression can not be calculated. This drawback impedes the output of the points 

found in any line search system. We present a modification of the CCM algorithm used by Chang 

and Prabhu [15], which adopted the gradient method to determine the next point without any line 

search. 

 Suppose the feasible set ( ) 0, 1, ,
m n

iS u u i m
+

=  = =R  satisfies the condition of the 

Implicit Function Theorem. That is, ( )i u  is a holomorphic function in the m n+  variables if one 

treats the m n+  variables as complex variables such that one of its Jacobians is nonsingular. 

Therefore, one can find an m  subset of the m n+  variables, say 1, , mz z , so that the 

corresponding Jacobian matrix ( )z   is nonsingular. Furthermore there exist implicit functions 

jg , 1, ,j m=  in terms of the remaining n  variables, say 1, , nx x , such that ( )1, ,j j nz g x x=

, 1, ,j m= . The original NLP can now be viewed as the following induced NLP: 

( )Maximize

Subject to

F x

x U
 

where ( ) ( ) ( )( )1, , , mF x f x g x g x=  and U  is a neighborhood of the point 
0 n

x R  that the 

Implicit Function Theorem holds. Because U  contains an open subset of 
n

R , the induced NLP can 

be viewed as a locally non-constrained NLP. One important benefit is that moving along the induced 

gradient direction ( )D F x=    will stay in U  if the distance is small enough. 

 One common issue with solving an NLP using the gradient method is that it is likely to leave S  

by travelling along the gradient direction of a feasible point. This causes a big problem in keeping the 

NLP feasibility. Applying the CCM algorithm does not present such a problem as every iteration 
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remains within the feasible region. This is because the gradient of the inducted objective function F  

with regard to the selected 1, , nx x , will locally move inside the feasible set U , if we selected 

carefully. When using the CCM algorithm in a small-scale NLP, one can conduct a line search along 

the gradient direction of the induced objective function. The relation between the induced line search 

and the movement along the original feasible set is illustrated in Figure 1. 

0 0,x z 
 
 

1 1,x z 
 
 

( ), ( )x t z t 
 
 

S

U

f

F
0x

1x ( )x t

x

g

L

C

 

Figure 1. The relationship between induced line search and movement along the original feasible set 

Because there is a one to one mapping between U  and a neighborhood of ( )0 0
,x z  in S , there is a 

one dimensional curve C  in S  corresponding to the line ( ) 0L x t t=   in U  such that:  

( ) ( ) ( ) ( ) ( )( ) , ,C x t z t x t L z t g x t=  = . 

The problem can be viewed as ‘lifting’ a straight line in 
n

R  to a curve in 
m n+

R . In performing a line 

search, one has to find a one-dimensional local optimal point on such a curve with only the 

knowledge of the projection of the curve while the other coordinates are unknown. Fortunately we 

also know the explicit objective and constraint functions, so we can approximate the change of the 

unknown coordinates z  with the derivatives dz dt . That is, we can approximate z  by: 

( )~
dz

z t
dt

  . 

Let ( ) ( )0 0

1, , nD D x d d= = . Then: 
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1

1

j j j n

n

dz g gdx dx

dt x dt x dt

 
= + +
 

 

and 

1 11

n n

d d
dz g

dt x z x
d d

 
−

  
= = −

  

  
        

                  
  

. 

We can now move the previous point along its gradient direction ( ),x z  , where 
0

x D t =  , 
0

D  is 

the exact induced gradient of the induced objective function in the projection space, and z  is the 

change in z  by the above approximation. We can choose t  carefully to avoid any line search. 

There are two reasons to avoid a line search.  

First, it requires the knowledge of the ‘lifted’ curve for any 0z  . When an NLP is a small scale 

problem and the corresponding system of ordinary differential equations is possible to solve, the 

CCM algorithm can locate or approximate the exact lifted curve C  at any 0t  . To do so, we may 

need to apply some ODE methods such as the Euler and the Runge-Kutta methods. As t  gets larger, 

the feasibility of the point ( ) ( )( ),x t z t  is likely disappearing. 

 Second, we use numerical data to approximate the partial derivatives at all the points involved. 

The ODE problem in Step 4 is a ‘point-by-point’ case without an explicit global expression for the 

coefficients ( )( )Tx F x     and z   in it. Thus, it might be impossible to solve for it in 

practice. We have chosen to avoid any line search. Instead, as mentioned above, we move a point to 

the next one in its gradient direction ( ),x z   with a chosen t . This way, we have control over 

staying as close to the feasible set as we need. Not only is the feasibility better kept, but the calculation 

is also reduced since we are not solving for the system of ordinary differential equations globally. 

4. Illustrative Example 

We applied the WPM to the same problem of multiple-criteria inventory classification problem 

as reported in the referenced literature [1, 6, 7, 13, 17]. Following Ng [1] and Hadi-Vencheh [13] we 

considered three criteria for inventory classification: annual dollar usage (ADU), average unit cost 

(AUC), and lead time (LT) and assumed the importance of the criteria to be, in descending order, 

ADU, AUC, and LT. All the criteria were positive for the inventory item score 

4.1. Quality of Solutions 

The 47 inventory items’ optimal scores and weights are shown in Table 1. As can be seen, the 

optimal scores derived by using the CCM algorithm to solve the WPM of multicriteria ABC 

classification were as good as those derived using LINGO [18], the off-the-shelf optimization 

software. If we look carefully at the weights derived using LINGO, it is obvious that most items’ 

weights for ADU and AUC are identical and that some items’ (4, 25, 27, 30) weights for LT are zero. 

This is because the primary underlying technique used by LINGO's nonlinear solver is to get to a 

feasible solution for nonlinear models quickly. The weight values derived by using the CCM better 

fit the assumption that the criteria are graded in descending, such that ,1 ,2 ,i i i Jw w w    for all 
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items i . Therefore, the CCM is superior to LINGO in terms of solution quality in this illustrative 

example. 
Table 1. Measures of inventory items, the optimal scores and weights. 

Item Parameter 

LINGO CCM 

Objective 

value 
Decision variable 

Objective 

value 
Decision variable 

 ADU AUC LT Score 
ADU 

weight 

AUC 

weight 

LT 

weight 
Score 

ADU 

weight 

AUC 

weight 

LT 

weight 

1 5840.64 49.92 2 8.92 7.050E-01 7.050E-01 7.770E-02 8.92 7.050E-01 7.049E-01 7.790E-02 

2 5670 210 5 10.02 6.979E-01 6.979E-01 1.606E-01 10.02 6.980E-01 6.978E-01 1.608E-01 

3 5037.12 23.76 4 8.38 6.974E-01 6.974E-01 1.654E-01 8.38 6.974E-01 6.973E-01 1.658E-01 

4 4769.56 27.73 1 8.34 7.071E-01 7.071E-01 0.000E+00 8.34 7.072E-01 7.071E-01 2.360E-04 

5 3478.8 57.98 3 8.71 7.015E-01 7.015E-01 1.262E-01 8.71 7.015E-01 7.014E-01 1.264E-01 

6 2936.67 31.24 3 8.15 7.007E-01 7.007E-01 1.347E-01 8.15 7.007E-01 7.006E-01 1.350E-01 

7 2820 28.2 3 8.05 7.005E-01 7.005E-01 1.364E-01 8.05 7.005E-01 7.004E-01 1.367E-01 

8 2640 55 4 8.52 6.977E-01 6.977E-01 1.627E-01 8.52 6.977E-01 6.976E-01 1.630E-01 

9 2423.52 73.44 6 8.73 6.921E-01 6.921E-01 2.051E-01 8.73 6.921E-01 6.920E-01 2.053E-01 

10 2407.5 160.5 4 9.20 6.990E-01 6.990E-01 1.507E-01 9.20 6.991E-01 6.989E-01 1.509E-01 

11 1057.2 5.12 2 6.12 7.026E-01 7.026E-01 1.133E-01 6.12 7.025E-01 7.024E-01 1.145E-01 

12 1043.5 20.87 5 7.24 6.894E-01 6.894E-01 2.222E-01 7.24 6.894E-01 6.893E-01 2.226E-01 

13 1038 86.5 7 8.30 6.874E-01 6.874E-01 2.346E-01 8.30 6.875E-01 6.873E-01 2.347E-01 

14 883.2 110.4 5 8.28 6.936E-01 6.936E-01 1.944E-01 8.28 6.938E-01 6.934E-01 1.945E-01 

15 854.4 71.2 3 7.87 7.002E-01 7.002E-01 1.397E-01 7.87 7.003E-01 7.000E-01 1.399E-01 

16 810 45 3 7.51 6.995E-01 6.995E-01 1.463E-01 7.51 6.996E-01 6.994E-01 1.465E-01 

17 703.68 14.66 4 6.68 6.917E-01 6.917E-01 2.075E-01 6.68 6.917E-01 6.916E-01 2.081E-01 

18 594 49.5 6 7.49 6.866E-01 6.866E-01 2.391E-01 7.49 6.867E-01 6.865E-01 2.393E-01 

19 570 47.5 5 7.39 6.902E-01 6.902E-01 2.177E-01 7.39 6.902E-01 6.900E-01 2.178E-01 

20 467.6 58.45 4 7.36 6.944E-01 6.944E-01 1.885E-01 7.36 6.946E-01 6.942E-01 1.887E-01 

21 463.6 24.4 4 6.74 6.920E-01 6.920E-01 2.056E-01 6.74 6.920E-01 6.919E-01 2.058E-01 

22 455 65 4 7.41 6.946E-01 6.946E-01 1.871E-01 7.41 6.948E-01 6.944E-01 1.873E-01 

23 432.5 86.5 4 7.57 6.952E-01 6.952E-01 1.830E-01 7.57 6.954E-01 6.949E-01 1.832E-01 

24 398.4 33.2 3 6.80 6.978E-01 6.978E-01 1.616E-01 6.80 6.979E-01 6.977E-01 1.618E-01 

25 370.5 37.05 1 6.74 7.071E-01 7.071E-01 0.000E+00 6.74 7.071E-01 7.071E-01 2.570E-04 

26 338.4 33.84 3 6.70 6.975E-01 6.975E-01 1.640E-01 6.70 6.975E-01 6.975E-01 1.642E-01 

27 336.12 84.03 1 7.25 7.071E-01 7.071E-01 0.000E+00 7.25 7.071E-01 7.071E-01 2.860E-04 

28 313.6 78.4 6 7.37 6.859E-01 6.859E-01 2.431E-01 7.37 6.859E-01 6.859E-01 2.433E-01 

29 268.68 134.34 7 7.67 6.840E-01 6.840E-01 2.537E-01 7.67 6.840E-01 6.840E-01 2.539E-01 

30 224 56 1 6.67 7.071E-01 7.071E-01 0.000E+00 6.67 7.071E-01 7.071E-01 2.880E-04 

31 216 72 5 7.01 6.882E-01 6.882E-01 2.295E-01 7.01 6.882E-01 6.882E-01 2.297E-01 

32 212.08 53.02 2 6.63 7.032E-01 7.032E-01 1.045E-01 6.63 7.032E-01 7.032E-01 1.048E-01 

33 197.92 49.48 5 6.69 6.864E-01 6.864E-01 2.404E-01 6.69 6.864E-01 6.864E-01 2.406E-01 
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34 190.89 7.07 7 5.46 6.606E-01 6.606E-01 3.567E-01 5.46 6.606E-01 6.606E-01 3.595E-01 

35 181.8 60.6 3 6.67 6.975E-01 6.975E-01 1.647E-01 6.67 6.975E-01 6.975E-01 1.649E-01 

36 163.28 40.82 3 6.32 6.963E-01 6.963E-01 1.738E-01 6.32 6.963E-01 6.963E-01 1.740E-01 

37 150 30 5 6.16 6.826E-01 6.826E-01 2.612E-01 6.16 6.826E-01 6.826E-01 2.613E-01 

38 134.8 67.4 3 6.54 6.971E-01 6.971E-01 1.680E-01 6.54 6.971E-01 6.971E-01 1.683E-01 

39 119.2 59.6 5 6.47 6.849E-01 6.849E-01 2.486E-01 6.47 6.849E-01 6.849E-01 2.488E-01 

40 103.36 51.68 6 6.33 6.782E-01 6.782E-01 2.831E-01 6.33 6.782E-01 6.782E-01 2.833E-01 

41 79.2 19.8 2 5.25 7.009E-01 7.009E-01 1.321E-01 5.25 7.009E-01 7.009E-01 1.323E-01 

42 75.4 37.7 2 5.67 7.018E-01 7.018E-01 1.223E-01 5.66 7.018E-01 7.018E-01 1.227E-01 

43 59.78 29.89 5 5.53 6.765E-01 6.765E-01 2.908E-01 5.53 6.765E-01 6.765E-01 2.910E-01 

44 48.3 48.3 3 5.59 6.933E-01 6.933E-01 1.964E-01 5.59 6.933E-01 6.933E-01 2.000E-01 

45 34.4 34.4 7 5.37 6.590E-01 6.590E-01 3.625E-01 5.37 6.590E-01 6.590E-01 3.639E-01 

46 28.8 28.8 3 4.88 6.889E-01 6.889E-01 2.252E-01 4.88 6.889E-01 6.889E-01 2.291E-01 

47 25.38 8.46 5 4.12 6.510E-01 6.510E-01 3.903E-01 4.12 6.510E-01 6.510E-01 3.931E-01 

 

Next, the maximal overall scores were sorted in descending order and inventory classification 

was conducted based on the WPM (shown in Table 2). For comparison purposes, we maintained the 

same distribution of class A, B and C items as in studies in the cited literature [1, 13, 17]; that is, 10 

class A, 14 class B, and 23 class C items. The ABC analysis using the Ng [1], Hadi-Vencheh [13], and 

Zhou and Fan models [17] is also shown in Table 2. Ten items (8, 29, 15, 16, 27, 33, 39, 40, 34 and 45) 

did not have the same classification in the WPM model as in the Ng, HV and ZF models. The 

difference in classification was due to the difference in score computation’ schemes. Of the 10 class A 

items identified in the WPM, only item 8 was recognized as a class B item in the Ng, ZF and HV 

models. Moreover, in these models item 29 was classified as a group A item while the WPM re-

classified it as a class B item. Comparing items 29 and 8, item 8 was superior to item 29 in terms of 

ADU value ( >> ). Although item 29 outperformed item 8 in AUC ( < ) and LT ( < ), the differences 

were not significant; therefore, based on the most important consideration of the value of annual 

consumption of inventory items (ADU) in a year, the WPM provided a more reasonable classification.  

In regards to the 14 class B items in the HV-model, eight items (6, 7, 23, 18, 19, 28, 12 and 31) 

were retained in class B when the WPM was adopted, five of the class B items (33, 39, 40, 34 and 45) 

were re-classified as C, while the remaining one (item 8) was moved up to the class A. Out of the 23 

class C items, 18 items were retained as such, whereas the remaining five (15, 16, 22, 20 and 27) were 

moved up to class B. Items 33, 39, 40, 34, and 45, classified as class B items in Ng, HV and ZF models 

but re-classified as class C items using the WPM (see Table 3), had relatively higher LT measures 

(more than 4), but lower performance in terms of AUC and ADU, the two more important criteria. 

However, the maximum ADU value (197.92) of these five items was much less than the minimum 

ADU value (336.12) of items 15, 16 and 27, re-classified as class C items by the WPM, while their AUC 

is about even. Therefore, the WPM provided a more reasonable ranking of items. 

Table 2. Comparison of ABC classification using optimal WPM, ZF-model, Ng-model and HV-

model inventory score. 

Item 

Optimal  

Score 

(CCM) 

ADU AUC LT 

WPM 

Model 

(CCM) 

WPM 

Model 

(LINGO) 

HV- 

model 

Ng- 

model 

ZF- 

model 

2 10.0222 5670 210 5 A A A A A 

10 9.20134 2407.5 160.5 4 A A A A A 
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1 8.92424 5840.64 49.92 2 A A A A A 

9 8.73406 2423.52 73.44 6 A A A A A 

5 8.70633 3478.8 57.98 3 A A A A B 

8 8.51791 2640 55 4 A A B B B 

3 8.38316 5037.12 23.76 4 A A A A A 

4 8.33829 4769.56 27.73 1 A A A A C 

13 8.29587 1038 86.5 7 A A A A A 

14 8.28055 883.2 110.4 5 A A A B A 

6 8.15406 2936.67 31.24 3 B B B A C 

7 8.05394 2820 28.2 3 B B B B C 

15 7.86615 854.4 71.2 3 B B C C C 

29 7.67051 268.68 134.34 7 B B A A A 

23 7.57315 432.5 86.5 4 B B B B B 

16 7.50776 810 45 3 B B C C C 

18 7.49247 594 49.5 6 B B B B A 

22 7.40991 455 65 4 B B C C B 

19 7.39402 570 47.5 5 B B B B B 

28 7.36954 313.6 78.4 6 B B B B A 

20 7.35514 467.6 58.45 4 B B C C B 

27 7.24598 336.12 84.03 1 B B C C C 

12 7.24393 1043.5 20.87 5 B B B B B 

31 7.01167 216 72 5 B B B B B 

24 6.79949 398.4 33.2 3 C C C C C 

21 6.74367 463.6 24.4 4 C C C C C 

25 6.73618 370.5 37.05 1 C C C C C 

26 6.69892 338.4 33.84 3 C C C C C 

33 6.69389 197.92 49.48 5 C C B B B 

17 6.67996 703.68 14.66 4 C C C C C 

30 6.67213 224 56 1 C C C C C 

35 6.67164 181.8 60.6 3 C C C C C 

32 6.63135 212.08 53.02 2 C C C C C 

38 6.53696 134.8 67.4 3 C C C C C 

39 6.47356 119.2 59.6 5 C C B B B 

40 6.32774 103.36 51.68 6 C C B B B 

36 6.32156 163.28 40.82 3 C C C C C 

37 6.16169 150 30 5 C C C C B 

11 6.11791 1057.2 5.12 2 C C C C C 

42 5.66488 75.4 37.7 2 C C C C C 

44 5.59151 48.3 48.3 3 C C C C C 

43 5.5337 59.78 29.89 5 C C C C C 
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34 5.45517 190.89 7.07 7 C C B B B 

45 5.36813 34.4 34.4 7 C C B B B 

41 5.24818 79.2 19.8 2 C C C C C 

46 4.87682 28.8 28.8 3 C C C C C 

47 4.12265 25.38 8.46 5 C C C C C 

Table 3. The 10 items re-classified using the WPM. 

Item ADU AUC LT WPM  HV-model Ng-model ZF-model 

8 2640 55 4 A B B B 

29 268.68 134.34 7 B A A A 

15 854.4 71.2 3 B C C C 

16 810 45 3 B C C C 

27 336.12 84.03 1 B C C C 

33 197.92 49.48 5 C B B B 

39 119.2 59.6 5 C B B B 

40 103.36 51.68 6 C B B B 

34 190.89 7.07 7 C B B B 

45 34.4 34.4 7 C B B B 

4.2. Elapsed runtime and Iterations 

The efficiency of solving a problem is also an important criterion for algorithm comparisons; a 

good algorithm should solve problems within acceptable time. This section compares the number of 

iterations of implementing the CCM and LINGO to solve the WPM of multi criteria ABC 

classification. The main difference between implementing the CCM algorithm and LINGO solver is 

that we do not have to specify a starting point or moving step size. When the solution region is a 

polyhedron, determine the first basic solution (the starting point) would be vital as the local optimal 

solution is usually located near the basic feasible solution (BFS); the quality of solution is highly 

related to the location of BFS. An unsuitable starting point would lead to a worse local optimal 

solution. The search region of an algorithm is related to the step size of search and the search region 

decides whether a feasible solution can be found, the step size also determines the quality of the final 

solution. Large step size of line search may “jump over” the optimal solution and whereas smaller 

search distances may “trap in” and require a significant amount of time to reach the local optimal. A 

good starting point and step size of search can help reach acceptable solutions in less time. Table 4 

illustrates the process of tuning step size in order to reach a feasible solution. The CCM algorithm 

provides flexibility than other solvers of commercial package software, which means a higher 

probability of finding better solutions. In this study, using CCM to solve the problem requires more 

time to achieve the local optimal solution than LINGO. Because the step size of line search determines 

whether the CCM can find feasible solutions. In this study, LINGO requires only seconds to find a 

feasible solution, whereas CCM requires a longer time—sometimes nearly a minute. 

Table 4. Tuning the step size to reach a feasible solution. 

Item 4 

Step size 2

1

J

j
j

w
=

  

Item 5 

Step size 2

1

J

j
j

w
=

  

0.0003 1.000009 0.00045 1.000062 

0.000295 0.999993 0.000448 1.000059 

0.000298 1.000003 0.00044 1.000046 
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0.000297 1 0.00041 0.999997 

 0.000413 1.000002 

0.000412 1 

 

When looking at the number of iterations each algorithm needs, CCM takes more iterations to 

solve the problem, even with larger step size. As presented in Table 5, LINGO can solve most 

problems in only 60 iterations whereas CCM may need approximately one thousand iterations. In 

conclusion, LINGO is more efficient than CCM in this study, which contradicts the results of the 

previous study that CCM can solve nonlinear problems more quickly than other software packages. 

The result of the current study might stem from the fact that the problem in this study is too simple 

to show the power of CCM. 

Table 5. The number of iteration for LINGO and CCM to find the local optima. 

item LINGO CCM item LINGO CCM item LINGO CCM Item LINGO CCM 

1 60 1720 13 60 1505 25 35 2482 37 60 1367 

2 60 1866 14 55 1852 26 60 1646 38 50 2369 

3 60 1207 15 60 1911 27 35 3213 39 50 1888 

4 35 1867 16 59 1673 28 55 1741 40 50 1657 

5 60 1627 17 60 1090 29 50 2024 41 58 1903 

6 60 1419 18 59 1377 30 35 3045 42 50 2452 

7 60 1388 19 57 1456 31 55 1900 43 55 1496 

8 60 1495 20 60 1729 32 55 2397 44 75 555 

9 58 1428 21 60 1287 33 55 1645 45 55 215 

10 57 1995 22 55 1802 34 60 1158 46 75 492 

11 60 1086 23 55 2009 35 50 2223 47 60 2712 

12 60 1105 24 60 1612 36 55 1932       

5. Conclusions 

In this paper we have presented an extended version of the HV-model to improve multiple 

criteria ABC inventory classification. Our proposed nonlinear weighted product model (WPM) 

incorporates multiple criteria with different measure units, without converting the performance of 

each inventory item in terms of each criterion into a normalized attribute value, an improvement over 

the model proposed by Hadi-Vencheh. The WPM could also be viewed as providing a more 

reasonable classification for inventory items from the illustrative example presented and used to 

compare our model with the HV-model. In this paper, we also presented the improved CCM 

algorithm for solving the WPM, where nonconvex nonlinearity is present in both the objective 

function and the constraints. The strategy presented here consisted of greatly reducing the steps in 

choosing m variables among ( )m n+  variables, such that the corresponding m m  Jacobian 

matrix is nonsingular. In the improved algorithm, we applied the Gaussian elimination to the original 

matrix to determine which m variables to choose. Our second improvement was to remove solving 

nonlinear differential equations system that occurs in the line search method of the CCM algorithm. 

The paper demonstrates an efficient algorithm for solving nonlinear programming problems in 

which the feasible solution set does not have to be convex. The practical implication of the study is 

to further improve the efficient nonlinear optimization solver based on the CCM by optimizing the 

quality of existing solutions, thus improving time and space efficiency. 
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Future works must continue to investigate the feasibility to implement this proposed CCM 

algorithm on discrete-domain issues for engineering applications in order to decide if the algorithm 

could be superior to off-shelf software. Future studies could apply the CCM to other nonlinear 

programs arisen in practice. For instance, autonomous vehicles is one of many developments that 

will influence future mobility needs and planning needs. Traffic assignment models seek the same 

objective as route guidance strategies and provide the turning points with information for 

implementing control strategies of route guidance. Faster algorithms developed specifically for traffic 

assignment can be adapted and used in vehicle route guidance systems. The minimization of total 

travel time is a common goal both globally and from a traffic administration perspective. The current 

road network manages more traffic by achieving system optimization. Some researchers have 

focused their efforts on dynamic traffic assignment because of the unrealistic assumptions of static 

traffic assignment. The difficulties encountered by the dynamic model result from the route 

calculation being related to the traveling time on arc, which is also dependent on the traffic along the 

route. It is difficult to solve such relationships analytically in a dynamic circumstance. In response to 

the difficulties of dynamic traffic modelling, Jahn et al. [19] therefore developed model in which flow 

represents the traffic patterns in a steady state and the results as the bound for the total travel time. 

However, Jahn et al.’s [19] algorithm only solves problems with convex nonlinear objective functions 

and linear constraints. To avoid this restriction, future studies could adopt the CCM to solve 

nonlinear optimization models and provide strategies for route guidance. 
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