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Abstract: The incorporation of wind generation introduces challenges to the operation of the power
system due to its uncertain characteristics. Therefore, the development of methods to accurately
model the uncertainty is necessary. In this paper, the spatio-temporal Kriging and analog approaches
are used to forecast wind power generation and used as input to solve an economic dispatch problem,
considering the uncertainties of wind generation. Spatio-temporal Kriging takes into account the
spatial and temporal information given by the database to enhance wind forecasts. We evaluate the
performance of using the spatio-temporal Kriging, and comparisons are carried out versus other
approaches in the framework of the economic power dispatch problem, for which simulations are
developed on the modified IEEE 3-bus and IEEE 24-bus test systems. The results show that the use
of Kriging-based spatio-temporal models in the context of economic power dispatch can provide
an opportunity for lower operating costs in the presence of uncertainty when compared to other
approaches.
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1. Introduction

Renewable generation has received interest over the last decades due to its environmentally
sustainable and cost-effective operation relative to traditional energy sources. The integration of
this intermittent energy into the power grid presents a range of challenges in the operation and
management of these systems because energy can not dispatch in the conventional sense [1–4]. The
scheduling of wind energy in power systems is a decision-making challenge due to the uncertainty
inherent in the availability of wind. Addressing the uncertainty of renewable generations is crucial to
increase economic benefits and enforce the criteria of reliability for decision-making [1].

Wind depends on several factors, such as temperature, humidity, direction, and other aspects,
which can lead to unpredictable behavior. Besides, it is non-stationary and typically has strong
diurnal and seasonal trends. It is also temporally and spatially auto-correlated and demonstrates
heteroscedasticity when the variance of the disturbances is not consistent in the observations. It is,
therefore, a physical phenomenon in which modeling is challenging due to its characteristics [2].
Consequently, there is an urgent need to develop more accurate, scalable, and realistic approaches to
modeling short-term renewable generation uncertainties in order to accommodate higher penetration
of renewable energy sources into the grid [1].

In the literature, there is a broad range of methods for forecasting wind speed and converting
these values to wind power forecasts using power curves [1,2,5]. A widely used approach to represent
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renewable energy uncertainties is the creation of a set of time-series called scenarios for forecasting the
future [2]. Scenario approach has played an essential role in several stochastic and robust optimization
problems, such as unit commitment [6,7], economic dispatch [8–10], energy trading policy [6], and
storage capacity sizing [11].

Although commonly used, generating scenarios that are capable of accurately informing system
operators of power generation uncertainties remains a challenging problem [1]. The complexity
of modeling unknown stochastic processes related to renewable energy is one of the most critical
challenges in the generation of scenarios. Researchers have performed extensive work on the use of
probabilistic and statistical models. In [12] Gaussian copula functions are used to generate statistical
scenarios that take into consideration the complete temporal dependency structure of wind speed.
[13] examines tail dependency when choosing the copula function for wind speed modeling. [4] uses
Auto-Regressive Moving Average (ARMA) time series and Monte-Carlo simulation to generate a set of
wind speed and load forecast error scenarios. A comprehensive modeling approach for multi-site wind
power generation scenarios is presented in [2]. The model uses time series and principal components
techniques, along with data preprocessing techniques to capture wind characteristics from multiple
sites.

Nevertheless, most of the methods listed above required a significant amount of site-specific
expertise for renewable resource modeling. The intermittent and time-varying nature of renewables,
the complex spatial and temporal interactions, make it difficult for most of these approaches to be
applied and challenging to implement in practice [1,14]. Consequently, the scenarios generated may
not reflect the inherent patterns and realistic time-series of actual historical observations of renewable
energy resources. Notwithstanding their computational benefits, the limited capacity of mentioned
models in capturing intricate patterns of correlations in real-world processes has encouraged the
scientist community in the last decade to develop groups of models that capture spatial-temporal
interactions.

In spatio-temporal modeling, both spatial and temporal variations of wind speed are taken into
account in one model, and the prediction is made accordingly. Table 1 highlights a summary of the
works found in the literature on the use of spatio-temporal models in power systems, in particular
for forecasting (FCST), power planning studies (PLNG), and unit commitment or economic dispatch.
Notice that there is no single method to model the spatio-temporal relationship of the variable to be
forecasted. Also, Table 1 specifies the spatial-temporal variables (ST-VAR), whether a point forecasting
is made (P-FCST) or scenarios (Scen) are generated, time frame (TF), and finally the model used. The
proposed model is included in Table 1 to observe the differences with respect to the cited literature.

In [17], for three separate weather variables, namely irradiance, ambient temperature, and wind
speed, the forecasting is performed using a Compressive Spatio-Temporal Forecasting model. Then, it
estimates the output of the PV power plant applying a power conversion model. A spatio-temporal
Markov chain model for wind power forecasting is proposed in [18]. It extends the traditional
discrete-time Markov chain and incorporates off-site reference information to improve the forecast
performance of regional wind farms. In [19], the spatial-temporal correlation between member
wind farms and aggregate wind power is modeled on a joint distribution model based on copula
theory. Inverse sampling was applied to the joint distribution conditional (CDF) to generate aggregated
probabilistic forecasts. In [20], the authors propose a probabilistic framework for predicting wind speed
from measured spatial-temporal data. The frame is based on the decomposition of spatial-temporal
covariance and simulation using this decomposition. This framework allows temporal extrapolation
and spatial interpolation. In [21], the authors proposed a probabilistic spatial-temporal model. The
model is based on the quantile regression adapted to integrate the LASSO (Least Absolute Shrinkage
and Selection Operator) variable selection process. This makes it particularly suitable for situations in
which data from a high number of PV installations is available since it is capable of dealing directly
with the resulting high dimensionality and over-fitting issues that characterize the use of such large
amounts of data.
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Table 1. Spatial-temporal methods applied to operational planning power systems.

Ref. Subject ST-VAR P-FCST Scen. TF ModelFCST PLNG UC/ED Wind Solar Demand

[15,16] * * * short
Trigonometric Direction
Diurnal Model

[17] * * * short
Compressive Spatio-Temporal
Forecasting

[18] * * * short Spatio-temporal Markov chain
[19] * * * short Copula function

[20] * * * short/long
Spatio-temporal covariance
model

[21] * * * short QR-Lasso Spatial-Temporal

[22] * * * short
Predictive deep convolutional
neural network

[23] * * * short Spatio-temporal Kriging

[24] * * * short
Low-cost spatio-temporal
adaptive filter

[25] * * * short Kernel methods

[26] * * * short
Graph-based convolution
network

[27] * * * short
Spatio-temporal model
using clusters of
meteorological conditions

[28,29] * * * * short Spatio-temporal Kriging

[30] * * * short
Universal kriging and a
Bayesian dynamic model

[31] * * * short
Finite state Markov chain
model

[32] * * * short
Bayesian spatio-temporal
model

[33] * * * short Multi-channel ARMA model

[2] * * * short
Principal component
analysis-time series

[34] * * * short Dynamic uncertainty sets

[35] * * * short
Vector autoregressive (VAR)
framework

[36] * * * short
Kriging model and
importance sampling method

[37] * * * short
Compressive sensing and
structured-sparse recovery
algorithms

[38] * * * short
A modified regime-switching
space-time diurnal (RSTD)
model

Proposed * * * short
Spatio-temporal Kriging
and Analog models

A deep convolution neural network topology for wind speed forecasting with spatio-temporal
correlation (PDCNN) is presented in [22]. The model is a unified framework, integrating convolutional
neural networks (CNNs) and a multi-layer perceptron (MLP). PDCNN generates the forecasted wind
speed by using the spatial-temporal correlations learned. In [23], the authors propose a covariance
modeling approach that considers spatial-temporal anisotropy in the spatial-temporal kriging model.
Spatial and temporal covariance functions are individually designed to generate synthetic wind power
profiles to simulate the effects of fluctuations in power. The formulation of the Wiener cyclo-stationary
filter is designed to predict wind based on its past values and the spatial-temporal correlation between
the data measured in [24]. An iterative, stochastic gradient predictor that uses a multichannel LMS
algorithm has also been suggested. The Wiener cyclo-stationary filter and the LMS provide speed and
direction predictions. Two non-linear methods for the production of short-term spatial-temporal wind
speed forecasts are presented in [25]. A kernel least mean square algorithm and a kernel least-square
recursive algorithm are introduced and used to generate wind speed forecasts at different locations. In
[26], a graph-based convolution network is proposed for spatial-temporal wind speed forecasting. The
proposed architecture is further improved by using the Rough Set Theory to capture deep wind data
interval features by incorporating upper and lower bound parameter approximations in the model. In
[27], the authors propose a spatial-temporal model that produces PV power forecasts for a power plant
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using measurements from other nearby plants. The method makes it possible to take into account local
weather conditions in the spatial-temporal model. The model also incorporates the Least Absolute
Shrinkage and Selection Operator to improve the selection of variables.

Spatio-temporal correlations of irradiance data are analyzed for forecasting irradiance in [28,29].
Spatial and spatio-temporal methods are used for model irradiation at an arbitrary point based on
a given time series irradiation at specific locations. In [30], the authors use an empiric variogram to
analyze the spatial correlation of different locations on a wind farm. They use universal kriging and a
Bayesian dynamic model for hierarchical wind farm modeling. Besides, the Gibbs sampling approach
is used to analyze the model and to develop wind speed predictions. [32] proposes two Bayesian
spatio-temporal models to obtain full probabilistic wind power forecasts. The models are based on a
stochastic partial differential equation (SPDE) approach to spatio-temporal modeling, which enables
rapid inference through integrated nested Laplace approximations (INLA) as well as dimensional
reduction. [33] proposes a multi-channel linear forecast model ARMA or MARMA for short-term
wind speed forecasting using neighboring wind speed measurements around the target location. A
comprehensive modeling methodology for multi-site wind power generation scenarios for forecasting
power generation is presented in [2]. The model uses time series and Principal Component techniques
along with pre-processing data techniques to directly capture the main wind characteristics from
multiple locations, such as distinct diurnal and seasonal trends, non-Gaussianity, and spatial and
temporal correlations.

The works mentioned above have only been used to predict or study the production of renewable
energy. The implementation of the approaches and methods used for the operational planning of
electrical systems has not been published.

The papers listed below have been identified in the literature on the use of spatio-temporal models
for operational planning, especially in ED. In [15,16] a Trigonometric Direction Diurnal Model is used,
which integrates the spatio-temporal wind information into the forecasting model. It also formulates
an ED problem incorporating the available spatio-temporal wind power forecast data for the short
term. Authors in [31] propose a finite-state Markov chain model for wind farm generation based on
spatial and temporal characteristics. The Point-forecast of wind farm generation is derived from the
Markov chains and integrated into the power system for ED. A scenario generation method based
on the Kriging model, along with the importance sampling method, is proposed in [36] to describe
the wind uncertainty in the ED of the Energy Internet. The Kriging model is used to to estimate the
objective function value of the wind energy problem corresponding to each scenario. In [34], the
authors use dynamic uncertainty sets as a modeling technique for the dynamic relationship between
uncertainties at the decision-making level. Uncertainty sets explicitly define the temporal and spatial
model correlations in wind speed. They also propose a robust two-stage adaptive optimization model
for multi-period ED. In [38], the authors propose a rotating regime-switching space-time diurnal
wind speed forecasting model (RRSTD) that allows the forecast regime to vary with the dominant
wind direction and with the seasons. Moreover, they formulate an ED model that takes into account
the information on the space-time wind forecast modeled by the RRSTD. In [39], the authors use
the Kriging approach in combination with the Vector Auto-Regressive models for wind forecasting
and apply it to dynamic line rating studies. A modified fuzzy adaptive PSO assisted by a Kriging
model is proposed in [40] to solve the optimization problem in active distribution networks with the
incorporation of multiple controllable resources. The Kriging model is used to calculate the power
flow of the active distribution networks approximately during the evolutionary search process.

Based on the above, few studies have shown that spatio-temporal models are used to forecast and
create power wind scenarios for a particular location. Besides, there are limited references that consider
spatio-temporal Kriging models in the scope of scenario generation, unit commitment, and economic
power dispatch (Table 1). In this work, we focus mainly on the Kriging and analogous models to
generate wind power scenarios. Kriging or Gaussian Process Regression is a common kernel-based
regression model capable of modeling complex functions [41]. It is often referred to as the Best Linear
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Unbiased Estimator (BLUE) and, as the name implies, is a linear estimator [42]. It determines the values
at points of interest as a weighted sum of values at other points, and its variations are primarily based
on assumptions about the underlying mean function of the data distribution [42]. The interpolation
error is minimized by studying and modelling the spatio-temporal distribution of the points already
measured. This spatio-temporal distribution or spatio-temporal variability is represented in the form
of an experimental variogram [41]. The variogram is the basis for the application of the Kriging.
Generally, Kriging models are just spatial models but can also extend to spatio-temporal problems
by considering time as an additional dimension [23]. Compared to other regression methods, the
Kriging approach has the following advantages: 1) it provides not only the estimate of the value of
a function, but also the mean squared error of the estimation, the so-called Kriging variance [41]; 2)
it does not assume the data follow any probability distribution and can fully use both temporal and
spatial information; 3) it can use a limited set of sampled data points to estimate the value of a variable
over a continuous spatial field.

In this paper, a wind forecasting approach is proposed. It uses spatial and temporal correlations
existing in the database of a wind farm to predict the power generation of specific locations using the
spatio-temporal Kriging method. The method discusses in this paper differs from the work developed
in [36], as it uses a spatio-temporal Kriging model and analogous models to generate wind power
scenarios. [36] uses only a spatial Kriging model. Besides, in [36] the model is used to estimate
the value of the ED objective function corresponding to each scenario generated by the sampling
method. Concerning the work described in [2], the principal components technique and time series are
used to create wind scenarios for a security assessment application. Both [36] and [2] works require
probabilistic modeling in their initial stages. Most of the works developed and shown in Table 1 are
about point forecasts of renewable generation. In contrast, this paper combines the spatio-temporal
Kriging method and analogs for generating scenarios. Therefore, The main contributions of this paper
include: a) The development of a wind speed forecasting algorithm for renewable energy systems
based on the spatio-temporal Kriging method and analog models; b) Comparison of the proposed
method with commonly used methods for generating scenarios and c) Demonstration of the feasibility
and practicality of the proposed model for integrating into the economic dispatch framework.

The rest of the paper is structured as follows: Section II presents an overview of the
scenario-generation methods for wind forecasting, followed by the presentation of the proposed
spatio-temporal wind forecast model, and the ED formulation. Section III presents the solution
methodology. Numerical tests of the integration of the spatial-temporal wind forecast with economic
dispatch are provided in Section IV. Conclusions and future research are discussed in Section V.

2. Mathematical Model for Wind forecasting and Economic Dispatch

This section discusses the methods used to create wind power scenarios and also formulates the
ED problem in which the scenarios generated are subsequently used. First, a review of commonly
used methods such as time series (ARMA) and Monte Carlo simulations are made along with the
Kantorovich distance-based scenario reduction technique. Then the spatio-temporal models based
on Kriging method are presented. It begins by explaining their spatial form and then analyze the
spatio-temporal model. The idea of a technique based on analogous for creating scenarios is also
explained. Finally, an ED is formulated in which the objective function is to minimize both generation
and reserve costs, subject to operational constraints of the system.

2.1. Overview of scenario-generation based methods

The first step is to characterize the wind speed from the database available. For this purpose, two
of the most widely used methods are used to characterize wind speeds, such as Weibull distributions
and ARMA models [43–45].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2020                   doi:10.20944/preprints202010.0513.v1

https://doi.org/10.20944/preprints202010.0513.v1


6 of 25

The Weibull distribution is a two-parameter function commonly used to fit the frequency
distribution of wind speed [44]. The Weibull probability density function can be expressed as

f (v) =
k
c
(

v
c
)(k−1)e−(

v
c )

k
, (1)

where f (v) is the probability of observing wind speed v. Wind speed can be represented as a stochastic
process whose characteristic parameters shall be estimated. The Weibull shape and scale parameters
are denoted by k and c, respectively. k is dimensionless, and it indicates how peak the side under
consideration is, while c has units of wind speed (m/s) and it shows how windy the site is. The
cumulative distribution function is given by:

F(v) = 1− e−(
v
c )

k
(2)

The Auto-Regressive Moving Average (ARMA) statistical model is used to model random time
series based on historical data, pattern identification, and parameter estimation [45,46]. This is a hybrid
of auto-regressive (AR) and moving average model. The typical ARMA (p,q) model is expressed as:

Zt =
p

∑
j=1

φjZt−1 + εt −
q

∑
j=1

Θjεt−1 + c, (3)

where Zt is the random time series to be modeled, p AR parameters φ1, φ2, ..., φp, and q moving
average parameters Θ1,Θ2, ...,Θq. The input εt is normally distributed white noise with zero mean and
standard deviation σ.

Once the wind speed has been characterized, scenarios are generated using some of the most
commonly used methods for this purpose, such as Time-series-based ARMA models and Monte-Carlo
simulations.

In Time-Series-based ARMA model, before starting the algorithm, it is necessary to fit the wind
speed data to a known probability density function (PDF) and estimate the parameters of the ARMA
model. Then, the number of desired scenarios NS and the period T for generating the scenarios
are established. The process starts with s=1 and t=1. For each time period t, random samples for
εt are created, and the ARMA model is evaluated by obtaining random scenarios. A distribution
transformation process is carried out to get wind speed scenarios[45]. The distribution transformation
is described as:

V = φ−1 [Fz (Z)] , (4)

where FZ(Z) is the cumulative distribution function (CDF) of the randomly generated scenarios, and
φ(V) is the CDF of actual historical wind speed data. Finally, the values of wind speed are transformed
into power scenarios P(V) through the power curve associated with the turbine model installed in the
wind farm. It is mathematically expressed as:

P(V) =


0 V ≤ Vcutin ∨ V ≥ Vcutout

1
2 Cp(V)ρAV3 Vcut−in ≤ V ≤ Vrated

Pmax Vrated ≤ V ≤ Vcutout

, (5)

where A is the swept area of the wind turbine rotor (m2), ρ is the air density at the wind site (kg/m3),
Cp(V) is the overall efficiency of the wind turbine, V is the wind speed (m/s), Vcutin is the cut-in speed
of the wind turbine (m/s), Vcutout s the cut-out speed of the wind turbine (m/s), Vrated is the rated
speed of the wind turbine (m/s), and Pmax is the maximum power output of wind generator (MW).

Monte Carlo simulation is a technique used to study how a model responds to randomly generated
inputs. Wind speed data is used to generate scenarios of wind power. First, random sequences of
the variable Y ∼ N (0, σ) are generated and then it is obtaining the CDF function Ft. For horizon t, s
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realizations of the variable V = Φ−1[Ft] are obtained by applying the inverse of the Weibull cumulative
distribution function (CDF) Φ [45]. Finally, the scenarios are transformed to wind power by (5). The
process is repeated until period T and number of scenarios NS are reached.

The uncertainty of renewable generation can be represented by a wide range of scenarios that
can cause the problem of dispatch to become computationally intractable. Therefore, a mathematical
technique is needed to reduce the set of scenarios that have been generated. The resulting set has
statistical characteristics similar to those of the original set. A practical scenario-reduction technique
based on the Kantorovich distance is used to obtain an appropriate number of scenarios [5,45]. It can
be express as:

DK
(
Q, Q′

)
= ∑

ω∈Ω\ΩS

π (ω)min
(∥∥y (ω)− y

(
ω′
)∥∥) (6)

where ω and ω′ are the scenarios, Q and Q′ are the probability distributions in initial scenarios set Ω
and reduced scenarios set Ω′. Two different algorithms can be used to solve the problem: backward
reduction or the forward selection [5,45]. An interactive fast-forward selection algorithm is used to
reduce the set of scenarios. It begins with an empty set, and each iteration, one by one, calculates a
scenario ωk that minimizes Kantorovich distance. ωk is extracted from the initial set and included
in the new set. The algorithm continues until a specified number of scenarios have been achieved.
The probabilities of each non-selected scenario are then allocated to the nearest selected ωk. Finally, a
reduced set with associated probabilities is created. The interactive fast-forward selection algorithm is
detailed in [5,45].

2.2. Spatio-temporal based method

Wind speed, and thus wind power generation, depends on time and space. Using the spatial
correlation between individual locations can significantly reduce errors in point forecasts and has the
advantage of developing models that can produce forecasts at locations not included in the observation
samples.

2.2.1. Spatial Kriging

Kriging is an interpolation method in which the measured values of the surrounding region are
used in a linear combination to generate a prediction at an undetermined location. It is the optimal
linear predictor of Z(s0) at s0 locations ε Ds. Z(s0) is determined at the unsampled location s0 by the
Kriging prediction

Z∗ (s0) = k +
n

∑
i=1

λiZ (si) = k + λTZ (7)

where λi and n are the weight assigned to the observation point Z(si) and the number of neighbors
considered for the estimation of Z(s0), respectively. The values of λ and k are calculated by minimizing
the mean squared prediction error

E(Z(s0)− λTZ− k)2 = Var(Z(s0)− λTZ− k) + (Z(s0)− λTµ− k)2 (8)

where µ is the Lagrange multiplier, µ ≡ (µ(s1), ..., µ(sn))T , and s ε Ds. The term (µ(s0)− λTµ− k)2 is
minimized if k satisfies

k = µ(s0)− λTµ (9)

and in this equation, the first term can be written as

Cov(s0, s0) + λTΣλ− 2λTcT (10)

where c ≡ (Cov(s0, s1), ..., Cov(s0, sn))T and Σ is a nxn matrix whose (i, j)th element is Cov(si, sj).
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Differentiating (10) with respect to λ and setting the result equal to zero gives the optimal
coefficients λ∗ = Σ−1c, and the optimal constant term is, therefore, k∗ = µ(s0)− cTΣ−1µ. The optimal
linear predictor is given by

Z∗(s0) = µ(s0) + cTΣ−1(Z− µ) (11)

Finally, the minimized mean squared prediction error, also called the Kriging variance, is:

σ2(s0) = Cov(s0, s0)− cTΣ−1c (12)

Note that the Kriging predictor requires the values of the Σ and c covariances to be known. In practice,
both values can be calculated by means of a variogram or a covariance function. Usually, a parametric
model is chosen for the covariance function Cov(si, sj) = C(si, sj; θ), where θ is a vector of unknown
parameters to be determined from the data. Depending on how the expectation E(Z(s)) is modeled,
different versions of predictors can be developed: Simple Kriging, Ordinary Kriging, and Universal
Kriging.

2.2.2. Spatio-temporal Kriging

A Kriging predictor, as described above, is obtained to generate spatio-temporal predictions. For
this case, an additional dimension, the temporal dimension t, is included. This section discusses how
spatial Kriging prediction is generalized for use in spatio-temporal contexts.

The problem setting is as follows: Consider a spatio-temporal set of available data Z(si, ti) =

z1(s1, t2), ..., zn(sn, tn) where zi is the value of variable z at location s and time t. The n points are
the turbine sites in a wind farm and the values at (si, ti) are the wind speed measurements at these
locations [47]. The objective is to make predictions at (s0, t0), where no measurements are taken. The
estimator Ẑ(s, t) is define by:

Ẑ(s, t) =
n(s,t)

∑
i=1

λi(s, t)(Z(si, ti)) = [λ1 · · · λn]

z1
...

zn

 (13)

where λi are weights for Z(si, ti)), i = 1, ..., n. The kriging predictor Ẑ(s, t) is a linear combination
of the observed points. The weights are based on the covariances among points in the sample and
the covariances between sample points and the point to be predicted. It incorporates the covariance
structure among the Z(s, t) into the weights for predicting Ẑ(s, t). The objective of the estimator is to
minimize the error variance under the constraint of unbiasedness:

min σ2(s, t) = Var[Ẑ(s, t)− Z(s, t)] (14)

s.t.
E[Ẑ(s, t)− Z(s, t)] = 0 (15)

As mentioned above, the kriging estimator is the optimal estimator, since that it minimizes the error
variance. This quantity is also known as the mean squared prediction error (MSPE).

In order to compute estimates, we will need the covariances among all points and between each
of the observed points and the point to be predicted. The usual way to obtain these is through a
covariance function.

C(s, t) = Cov(Z(hs + h, ht + t), Z(hs, ht)) (16)

where (hs + h, ht + t) ε Ds and (hs, ht) ε T.
As mentioned above, the kriging weights can be calculated by means of a semivariogram γ(s, t)

or a covariance function C(s, t). The semivariogram is more useful than the covariance function given
that it can be calculated experimentally. A semivariogram is a visual representation of the covariance
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between each pair of points in the data sampled. For each pair of points in the data sampled, the
semivariance is plotted against the distance or lag between them. The experimental semivariogram
γ̂(s, t) can be written as:

γ̂(s, t) =
1

2|N(hs, ht)| ∑
N(hs ,ht)

(Z(si, tj)− Z(si + hs, tj + ht))
2 (17)

where the set N(hs, ht) consists of the points that are within spatial distance hs and time lag ht of each
other. The relationship between covariance function and semivariogram is:

γ(s, t) = C(0, 0)− C(s, t) (18)

When the experimental semivariogram has been developed, it is fitted to a theoretical model of
covariance C(s, t). The theoretical or model semivariogram is the distributional model that best fits
the data. Spatio-temporal covariance function C(s, t) has a variety of forms that can be applied to
the data [48,49], such as linear, spherical, exponential, Gaussian, or logistic models. The choice of a
semivariogram model is user-defined, although statistical tools can help identify best-fitting models
using several approaches, including the least square, maximum likelihood, and Bayesian methods.
Before spatio-temporal covariance model has been identified, we can use it to derive semivariances at
all locations and find the kriging weights.

Once the covariance matrices among points in the sample and between sample points and the
prediction point have been calculated, the weights of the kriging estimator can be found. The idea is to
find the estimator Ẑ(s, t) = λ′Z such that it satisfies the problem (14-15). This is satisfied if ∑ λi = 1
and the mean is stationary. To solve this optimization problem, Lagrange multipliers are used:

L = Var
(
Z0 − Ẑ0

)
+ 2λ

(
∑ λi − 1

)
= σ2 +

i=1

∑
n

j=1

∑
n

λiλjCij − 2
i=1

∑
n

λiCi0 + 2λ (λi − 1) (19)

where the last term in this sum guarantees that the unbiasedness constraint ∑ λi = 1 is met through
the Lagrange multiplier λ. Then partial derivatives of L are developed with respect to the weights λi,
set these equal to zero, and resolved. The weights can be found from the following system of linear
equations (kriging equations):

λ =

[
λi
λ

]
=


λ1
...

λn

λ

 =


C11 · · · C1n

...
...

Cn1 · · · Cnn

1 · · · 1


−1 

C10
...

C1n
1

 (20)

where Cij = Cov
(
Zi − Zj

)
, Ci0 = Cov (Zi − Z0), and λ is a Lagrange multiplier that appears due to

the unbiasedness constraint ∑ λi = 1.
When the weights are calculated, the predicted value of Z(s, t) is estimated at an unsampled

spatio-temporal location (so, to) by (13). The value of the predicted point (so, to) is equal to the sum of
the value of each sampled point times that unique weight of the point (s, t). The covariance matrix
used to calculate the weights differs slightly depending on the type of kriging being performed.

The analog method consists of examining the wind speed database to look for similar information
to predict future occurrences. Each data in the historical archive is considered to be a possible scenario
[50,51]. The method is to compare the current day forecast with the database in order to mine similar
days or analogs as scenarios.
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2.3. Stochastic Dispatch Problem Formulation

Economic dispatch is the short-term determination of the optimal output of a number of electricity
generation facilities, to meet the system load, at the lowest possible cost, subject to transmission
and operational constraints. In this subsection, the economic dispatch problem of a power system
is formulated mathematically, taking into account the following: the use of a DC optimal power
flow model, the cost functions are linear, the inter-temporal constraints, such as ramping limits, are
not included in the formulation, the uncertainty is presumed to be exclusively generated by wind
generators, the uncertainty associated with wind generation can be effectively modeled by a finite set
of scenarios and their probability of occurrence, and conventional units are considered to be entirely
dispatchable from their minimum to their maximum capacity.

In this paper, the objective function of the ED model is to minimize the overall expected system
costs, which consists of the day ahead dispatch cost plus the expectation of the balancing operation
costs. The aim of the stochastic formulation is to assess the generation scenarios Ns that have been
created and to ensure that they can be included in the ED framework. Based on [52], the objective
function of the model writes as follows:

min
T

∑
t=1

G

∑
g=1

Cg(Pg,t) +
T

∑
t=1

Ns

∑
s=1

πs[
G

∑
g=1

[Cg
up(rg,s,t

up)− Cg
down(rg,s,t

down)]

+ α
W

∑
w=1

Pw,s,t
wcut + β

B

∑
b=1

Pb,s,t
dcut]

(21)

where Pg,t, Pwcut
w,s,t , Pdcut

b,s,t , rg,s,t
up, rg,s,t

down, Cg(.), Cup
g (.), Cdown

g (.), α, β, π, G, B, W, Ns, and T are the
dispatched power by the deterministic generator g at t, wind curtailment for scenario s at t, load
shedding for scenario s at t, up reserve by the generator g for the scenario s at t, down reserve by
the generator g for the scenario s at t, the generation cost function of power plant g, the reserve costs
(up and down) of power plant g, penalty cost for wind curtailment, penalty cost for load shedding,
probability of occurrence of scenario s, set of conventional generators, set of buses, set of wind
generators, set of scenarios, and period of time, respectively.

In order to make the solution feasible, certain constraints have to be fulfilled. Some basic
constraints that need to be set are power balance equations, bounds of reserve and energy, network
constraints, and bound of generators. The details of each constraint are described as follows.

• Active power balance constraints: The balancing actions must ensure a balance between
generation and demand in any possible scenario s. The constraint to be satisfied can be given as

G

∑
g=1

Pg,t +
B

∑
b=1

Pb,s,t
dcut +

W

∑
w=1

(Pw,s,t − Pw,s,t
wcut)

− ∑
mεΛn

1
xnm

(δn,s,t − δm,s,t)−
B

∑
b=1

Pb,t = 0, ∀n, ∀s, ∀t

(22)

where Pw,s,t, δn,s,t, δm,s,t, xnm, Λn, and N are the wind power scenario s of generator w at t, the
voltage angle of node n under s at t, the voltage angle of node m under s at t, the reactance of the
line n−m, the set of nodes directly connected to node n, and the set of nodes, respectively. We
define bus 1 as the reference node by setting δ1,s,t to 0.

• Transmission capacity constraints: For physical reasons, the amount of power transmitted
through a power line n−m has a limit. This limit is justified by thermal or stability considerations.
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Therefore, a line must be operated so that this transport limit is not exceeded under any
circumstances. This is formulated as

− Pmax
nm ≤ δn,s,t − δm,s,t

xnm
≤ Pmax

nm , ∀n ε Λn, ∀m ε Λn, ∀s, ∀t (23)

where Pmax
nm is the transmission capacity of the transmission line n−m.

• Generation output constraints: Each unit is designed to work between the minimum power
capacity and the maximum power capacity. The following constraint ensures that the unit is
within its respective rated minimum and maximum capacity.

Pmin
g ≤ Pg,t ≤ Pmax

g , ∀g, ∀ t (24)

where Pmin
g and Pmax

g are minimum output of generator g and maximum output of generator g.
• Wind curtailment constraint: The amount of wind power production that is curtailed under each

scenario s must be lower than or equal to Pw,s,t:

Pw,s,t
wcut ≤ Pw,s,t, ∀w, ∀s, ∀t (25)

• Load shedding constraint: The amount of load that is shed in each scenario s has to be lower
than or equal to the demand value:

Pb,s,t
dcut ≤ γPb,t, ∀b, ∀s, ∀t (26)

where γ is the maximum allowable load shedding percentage.
• Reserve constraints: The reserve capacity for the balancing energy is shown below:

Pg,t + rg,s,t
up ≤ Pg

max, ∀g, ∀s, ∀t (27)

Pg,t − rg,s,t
down ≥ Pg

min, ∀g, ∀s, ∀t (28)

rg,s,t
up ≤ Rg

up, ∀g, ∀s, ∀t (29)

rg,s,t
down ≤ Rg

down, ∀g, ∀s, ∀t (30)

where Rup
g and Rdown

g are the upward reserve capacity and downward reserve capacity,
respectively.

• The quantity of reserves, generation and demand must be non-negative:

Pg,t ≥ 0, ∀g, ∀t (31)

rg,s,t
up, rg,s,t

down ≥ 0, ∀g, ∀s ∀t (32)

Pw,s,t
wcut ≥ 0, ∀w, ∀s, ∀t (33)

Pb,s,t
dcut ≥ 0, ∀b, ∀s, ∀t (34)

where Ξ =
{

Pg,t, rg,s,t
up, rg,s,t

down, Pw,s,t
wcut, Pb,s,t

dcut, δn,s,t, δm,s,t

}
is the set of decision variables

∀g, ∀w, ∀b, ∀n, ∀m, ∀s, ∀t.

The resulting ED problem is given by:
minimize (21) (35)

subject to:
Power Balance constraint : (22) (36)

Transmission capacity constraint : (23) (37)
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Figure 1. Solution methodology flowchart.

Generators output constraint : (24) (38)

Wind curtailment constraint : (25) (39)

Load shedding constraint : (26) (40)

Reserve constraints : (27)− (30) (41)

Non− negative constraints : (31)− (34) (42)

The stochastic programming model (35)-(42) can be used to determine the effect of uncertain wind
power generation on the expected value of total system operating costs.

3. Proposed Methodology

The proposed scenario creation methodology consists of a three-step process: first, the spatial
covariance structure of the sampled points is determined by fitting a semivariogram; second, weights
derived from this covariance structure are used to interpolate values for unsampled points; and
third, the forecast values are used to generate power scenarios by the analogous method. Figure 1
summarizes the proposed methodology.

3.1. Empirical variogram calculation and parametric fitting

Initially, assuming that the database has a set of spatio-temporal data measured in T instants of
time on a spaced grid, as shown in the Figure 2. The possible sets of spatial distances hs between the
pairs of points considered are calculated, whereas the lag times ht are t1, t2, ..., tn. Thus, combining the
distance and the time lags, spatio-temporal distances are obtained. Also, N(hs, ht) is calculated for
such distances. For this purpose, it is considered:

N(hs, ht) =
{
(si, ti)(sj, tj) : si − sj = hs and ti − tj = ht

}
(43)

Computing the semivariances for each spatio-temporal distance hs, ht, the empirical
spatio-temporal semivariogram γ̂(s, t) the empirical spatio-temporal semivariogram is obtained by
(17). After calculating the empirical semivariogram, it is important to model it using a parametric
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Figure 2. Spatio-temporal distances.

function which will be used in the Kriging method. The most common covariance (and semivariogram)
functions are:

1. The separable covariance model assumes that the spatio-temporal covariance function is
represented as the product of a spatial and temporal term:

Csep(hs, ht) = Cs(hs)Ct(ht) (44)

2. The product-sum covariance model

Cps(hs, ht) = kCs(hs)Ct(ht) + Cs(hs) + Ct(ht) (45)

with k > 0
3. The spatio-temporal metric covariance model

Cm(hs, ht) = Cjoint(
√

h2
t + (κht)2) (46)

4. The sum-metric covariance model:

Csm(hs, ht) = Cs(hs) + Ct(ht) + Cjoint(
√

h2
t + (κht)2) (47)

5. The exponential covariance model:

C(hs, ht) = c0 + c1

(
1− e−

√
h2

s +(κht)2

a

)
(48)

The coefficients of the parametric functions are calculated by applying the weighted least squares
(WLS) method and minimizing the difference between the empirical and parametric semivariograms.

3.2. Estimating the weights and derivation of the Kriging estimator

The weights are based on the covariances among points in the sample and the covariances
between sample points and the point to be predicted. With the function fitted in the previous step,
these covariances are calculated.
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The covariance matrix among the observed points Cij is:

Cij =


C11 C12 · · · C1n
C12 C22 · · · C2n

...
...

. . .
...

C1n C2n · · · Cnn

 (49)

The covariances Cij are considered to be parameters, which are estimated by the modeled
semivariogram. The points in the lower triangular portion of this matrix are omitted due to the
symmetry of the covariance matrix.

The covariances between sample points and the prediction point Ci0 are:

Ci0 =


C10

C20
...

Cn0

 (50)

Recall that in the matrix form, the kriging equations can expressed by (20), where after inverted
the partitioned matrix, the weights can be written as:

λi = C−1
ij Ci0 −

C−1
ij 11

′
C−1

ij Ci0

1′C−1
ij 1

+
C−1

ij 1

1′C−1
ij 1

(51)

The predicted value of Z at the prediction point is:

Ẑ(s, t) =
n

∑
j=1

λiZ(si, ti) = C−1
ij Ci0Z(si, ti)−

C−1
ij 11

′
C−1

ij Ci0

1′C−1
ij 1

Z(si, ti) +
C−1

ij 1

1′C−1
ij 1

Z(si, ti) (52)

3.3. Scenario generation

The analog approach searches back in time to find similar forecasts and uses matching
observations from such analogous dates directly as scenarios. This research proposes and tests a
simple analog approach based on the spatio-temporal wind forecasts created by the Kriging method.
The method is based on the analysis of distance measurements between the current forecast and those
available in the database [50,51].

di =
1

rows(~ωt)

T

∑
t=1

(ω̂t − ~ωt,i)
2 (53)

where ω̂t, ~ωt, and T are wind speed forecast vector, historical archive of observation vectors, and
period respectively. Also, i = 1, 2, ..., columns( ~ωs)

Once the evaluation has been carried out, data with less distance are selected as scenarios. The
scenarios are transformed to wind power by (5). The process is repeated until period T and number of
scenarios NS are reached.

4. Results and Discussion

4.1. Database description

The data used in this analysis consists of one year of spatio-temporal measurements in five
randomly selected turbines on an at a wind farm, between 2010 and 2011 [47]. The data contains
precise hourly wind speeds and turbine coordinates. To convert wind speed into wind power, the
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power curve of the standard turbine model GOLDWIND 70/1500 IEC IA/S, with 1.5 MW capacity
and 65 m of the hub height [53], is used.

4.2. Results of scenario generation and reduction

First, the data is adjusted by regression to the Weibull distribution function. The estimated scale
and shape parameters for the Weibull distribution are 10,927 and 2,14067, respectively. The distribution
parameters are used to create scenarios based on the Monte Carlo method. The set of available data is
then divided into two parts. One part is used to estimate the ARMA model parameters, and the other
part is used for validating the ARMA model. The data are used to estimate the set of parameters and
the structure of the model. The resulting model is used for scenario generation. The model parameters
for the selected structure are c = 0.6282, p = 0.9178, and q = −0.1058.

Concerning spatial-temporal modeling, a set of points (triangle) and a set of wind speeds is
considered, as shown in the Figure 3. Also, the value of wind speed at the new location s0 (circle) is
required to predict. To compute the estimates, the spatial and temporal distances to be used for the
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Figure 3. Spatio-temporal wind speed data.

construction of the semivariogram are calculated. Next, the experimental semivariogram based on
equation (17) is developed in order to establish a theoretical model for the covariance function between
the spatial-temporal data. Once the semivariogram has been constructed, the data is adjusted to the
theoretical model. Based on the adjustment made, it was decided that the most acceptable model was
the exponential curve. Figure 4 depicts the experimental semivariogram, and the model fitted. The
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Figure 4. Experimental semi-variogram and theoretical model of spatio-temporal data.
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corresponding exponential covariance function has the form that can be defined by:

C(hs, ht) = c0 + c1

(
1− e−

√
h2

s +(κht)2

a

)
(54)

where c0, c1, k, and a are parameters obtained by the fitting and h and u are spatial and temporal data,
respectively.

Once the model of the semivariogram is adjusted, the kriging weights are calculated by solving
equation (51):

λi =


−1.1767
2.05339
−0.0026
0.1719
−0.0466

 (55)

Note that the weights sum to 1.
Now the predicted value of Z at the unobserved point can be calculated by (52). Figure 5 depicts

the prediction developed (black line) at the unobserved point.
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Figure 5. Spatio-temporal wind speed data.

The next step is to use the Monte-Carlo, ARMA, and Spatio-temporal methods to generate several
scenarios for each hour of the next 24 hours. Once the wind scenarios are generated, the Kantorovich
distance algorithm is used to reduce the number of realizations. The sum of probabilities of all
generated and reduced scenarios is always one at any given time. Figure 6 depicts the wind speed
scenarios reduced (only 10 scenarios are shown). From this set, wind power scenarios are derived.
Equation (5) is used to calculate output power.

Time series metrics are used to discuss scenario quality: scenario mean, mean absolute error
and root mean square error are evaluated. Table 2 gives forecast error statistics for the scenarios. We
measured the overall error characteristics using two values: the mean absolute error (MAE) and the
root-mean-square error (RMSE). In the Table 2, it can be seen that scenarios based on spatio-temporal
model have lower error values.

Table 2. Error statistics for the scenarios

Method Mean MAE RMSE
ARMA model 7.6128 0.3136 1.0797
Monte Carlo 7.5995 0.3119 1.1029

Spatio-temporal 7.1644 0.2840 0.9342
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Figure 6. Wind speed scenarios.

Concerning computational cost, the three methods were used to generate 300 scenarios. All
the numerical experiments were performed using Matlab 9.2 on a desktop with a Core-i7 processor,
2.60 gigahertz, 12 gigabytes RAM and GPU GeForce GTX 960M. In short, the ARMA-based method
generates scenarios from a prediction model derived from the database, and also uses the parameters
k and c of the associated Weibull distribution. Average computational time for this algorithm
is 1.182961 seconds. The Monte Carlo method generates scenarios using the parameters k and
c of the Weibull distribution. Average computational time for this algorithm is 0.29834 seconds.
Finally, the spatio-temporal method generates scenarios through analogous in the database. Average
computational time for this algorithm is 8.9813 seconds.

The results show that the proposed algorithms generate scenarios that fit appropriately to the
database used. Based on the error analysis, it can be verified that the scenarios based on spatio-temporal
and analog method have a better fit. Finally, the Monte Carlo method presents lower computational
cost and reduced number of parameters for the generation of scenarios.

4.3. ED Results

The modified IEEE-3 bus and IEEE-24 test systems are proposed for the study of the ED problem
with the use of spatio-temporal Kriging and common methods for modeling the generation of wind.

The ED model is implemented in the Julia programming environment and the simulations were
performed on a laptop with a Core-i7 processor, 2.60 gigahertz, 12 gigabytes RAM, and GPU GeForce
GTX 960M.

In order to analyze and compare the impact of different scenarios, a test was performed to
determine the appropriate number of scenarios to use in the dispatch problem by increasing the
number of scenarios and observing the behavior of the objective function. The corresponding numerical
results obtained are shown in Figure 7, where the value of the cost function for each method and the
corresponding number of scenarios are depicted. For a set of scenarios less than 120, the cost function
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has variations, while for values greater than 120, it can be verified that the changes in the value of the
objective function are negligible. Based on results of the figure, it can be established that a set of 120
scenarios is adequate for uncertainty assessment due to renewable generation.
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Figure 7. Changes in the objective function value vs. the number of scenarios

The methods are compared in two aspects: costs of dispatch and computational time.

4.4. Case 1: IEEE-3 bus test system

The modified IEEE-3 bus test system is used to demonstrate the effectiveness of proposed method.
The system has three conventional power plants located in bus 1, bus 2, and bus 3 and one wind
generator located in bus 2. All technical specifications for generation units and the test system are
reported in [54]. The installed capacity of the wind farm is 30 MW for this case. The penalty coefficient
α (underestimation cost coefficient) for wind curtailment is 80$/MW and the penalty coefficient β

(overestimation cost coefficient) for load shedding is 160$/MW [10]. The maximum allowable load
shedding percentage γ is set to be 5% [10].

The total cost of the methods after running the optimization problem described in section 2.3
by equations (35)-(42), for an arbitrary selected day, are listed in Table 3. The table details the cost of
dispatch before and after the actual wind power. As shown, the cost of the deterministic approach is
lower than that of the other methods before the real wind power is dispatched. However, with actual
wind power, it is found that the cost of the Spatio-temporal method is lower than the Deterministic,
Monte Carlo, and ARMA costs. It demonstrates that scenario-based methods perform better than
deterministic ones in the presence of uncertainty. In general, the proposed method has better overall
savings.

Table 3. The costs of methods

Method Initial costs($) Ex-post costs($)
DO 47265.1298 50984.8851

ARMA model 48891.2826 40502.5400
Monte Carlo 47684.4255 42168.0466

Spatio-temporal 47735.5114 39971.3819

Tables 4-7 present the results of the economic dispatch under the proposed model for the different
alternatives. When all values of Pg,t and Wind are summed, they meet the necessary demand at t.
The generation costs of generators P1, P2, and P3 are 30$, 40$, and 20$. The maximum capacity of
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the generators is 150 MW, 150 MW, and 80 MW, respectively. It is observed that the most economical
generators P1 and P3 are those that participate mainly in the dispatch for all cases. In all three cases,
generator P2, which is the most expensive, dispatches its minimum capacity. Also, generator P3, which
is the cheapest, dispatches its maximum capacity. The tables also present the amount of wind power
used to complete the dispatch. For this case study, when using the ARMA method, 4.9% of the total
demand is met with wind, in the case of Spatio-temporal 5%, and for Monte Carlo 3.8%.

Table 4. Demand of the system

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
Demand (MW) 177.50 166.90 159.03 156.30 156.30 159.03 196.10 227.9 251.70 251.70

Table 5. Economic Dispatch with ARMA scenarios

Variable\Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
P1 (MW) 78.625 68.555 60.7767 58.1217 58.0403 61.0785 96.295 126.505 150.00 150.00
P2 (MW) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.6044 10.9373
P3 (MW) 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00

Wind (MW) 8.875 8.345 8.2533 8.1783 8.2597 7.9515 9.805 11.395 11.0956 10.7627

Table 6. Economic Dispatch with Spatio-temporal scenarios

Variable\Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
P1 (MW) 78.625 68.555 61.0785 58.485 58.485 61.0785 96.295 126.505 149.115 149.115
P2 (MW) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
P3 (MW) 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00

Wind (MW) 8.875 8.345 7.9515 7.815 7.815 7.9515 9.805 11.395 12.585 12.585

Table 7. Economic Dispatch with Monte Carlo scenarios

Variable\Time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
P1 (MW) 78.625 71.6608 61.0785 58.6542 58.485 63.8014 99.0349 133.912 150.00 150.00
P2 (MW) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.8737 13.7135
P3 (MW) 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00

Wind (MW) 8.875 5.2392 7.9515 7.6458 7.815 5.2286 7.0651 3.988 10.8263 7.9865

The computational time of methods are listed in Table 8. For the DO method, the computation
time is about 18.975s, the Spatio-temporal is about 33.221s, for Monte Carlo is about 31.720s, and for
the ARMA model is about 30.6883s. The computation time of the Spatio-temporal method is longer
than that of the deterministic, ARMA and Monte Carlo based method.

Table 8. The computation time of methods

Method Time(s)
DO 18.975

ARMA model 30.6883
Monte Carlo 31.720

Spatio-temporal 33.221

4.5. Case 2: IEEE-24 bus test system

The modified IEEE-24 bus test system is used with twelve conventional generators and one wind
generator located in bus 3. All technical specifications for generation units and the test system are
reported in [55]. The installed capacity of the wind farm is 500 MW for this case. The penalty coefficient
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α (underestimation cost coefficient) for wind curtailment is 80$/MW and the penalty coefficient β

(overestimation cost coefficient) for load shedding is 160$/MW [10]. The maximum allowable load
shedding percentage γ is set to be 5% [10].

The total the total cost of the methods after running the optimization problem described in section
2.3 in equations (35)-(42), for an arbitrary selected day, are listed in Table 9. As shown, the cost of
the deterministic approach is lower than that of the other methods before the real wind power is
dispatched. However, with actual wind power, it is found that the cost of the Spatio-Temporal method
is lower than the Deterministic, Monte Carlo, and ARMA costs.

Table 9. The costs of methods

Method Initial costs($) Ex-post costs($)
DO 324281.9561 580689.9267

ARMA model 617789.6697 577629.6470
Monte Carlo 635792.0678 581598.6268

Spatio-temporal 594790.9791 576376.125

The computational time of methods are listed in Table 10. For the DO method, the computation
time is about 23.2292s, the Spatio-temporal is about 429.401s, for Monte Carlo is about 410.833 s, and
for the ARMA model is about 448.2883s. The computation time of the Spatio-temporal method is
longer than that of the deterministic and Monte Carlo method and shorter than that of ARMA based
method.

Table 10. The computation time of methods

Method Time(s)
DO 23.2292

ARMA model 448.2883
Monte Carlo 410.833

Spatio-temporal 429.401

Finally, an estimation of the behavior of the total cost of the ED problem is carried out over 30
days. Figure 8 depicts the cost behaviour for DO (black), Monte Carlo (green), ARMA (magenta), and
Spatio-temporal (red) approaches. Scenario-based approaches are found to have a lower cost than the
deterministic method under uncertainty.
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Figure 8. Dispatched ED costs

Figure 8 depicts that the Spatio-temporal method has the lowest costs most of the days tested.
However, there are also points, as in t10, where the ARMA method has the lowest cost.

Table 11 reports the average total cost of each case and also indicates, in percentage, the cost
decrease obtained when compared to the deterministic method.

Table 11. Average costs

DO Monte Carlo ARMA Spatio-temporal
Average ($) 582840.0 579740.0 577970.0 575670.0

% - 0.5319 0.8356 1.2301

As seen in the Table, with the spatio-temporal approach, the highest percentage of cost reduction
(1.2301%) is achieved.

5. Conclusions

This research examined three wind scenario creation methods. The methods allow the operator
to leverage historical data to create many scenarios. Also, this paper described a wind prediction
model using a spatio-temporal model based on the Kriging method. Besides, from the spatio-temporal
prediction, wind scenarios were generated using analogs. These scenarios were then converted into
wind power, considering the power curve of the wind turbines. An economic dispatch model was then
established so that the generated scenarios can be integrated into the formulation. Finally, the problem
was implemented and evaluated on modified IEEE 3-bus and IEEE 24-bus systems. The following
conclusions were established based on the studies:

• The proposed approach for spatio-temporal modeling is computationally efficient and can be
applied to predict values on unobserved points, from data measured around the unmeasured
point. In this work, the data of the wind speed and the location of these measurements are used.

• Because the weights of the kriging estimator depend on the modeled semivariogram, kriging is
very sensitive to the mis-specification of the semivariogram model.

• In general, interpolation accuracy by kriging is limited if the number of observations sampled is
small. The data are limited in spatial scope, or the data are not broadly spatially correlated. In
these cases, it is challenging to generate an experimental semivariogram.
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• The number of scenarios is an important parameter and can have a significant impact on cost
function of the ED problem. A good value for Ns is likely to depend on the method of scenario
creation. For the presented approach, the stabilization of the objective function occurred in values
close to 120 scenarios, as can be seen in Figure 7.

• An economic dispatch model that considers wind generation in its formulation is presented
in this research. Wind generation is created using a Kriging-based spatio-temporal model and
other methods commonly used for this purpose. The proposed approach’s effectiveness is
demonstrated by the simulation of the modified IEEE 3-bus and the IEEE-24 bus systems.

• The results show that spatio-temporal and analogs models for generating scenarios can be
integrated efficiently in the ED problem framework and reduce costs.The reduction in operating
costs when using spatio-temporal scenarios is 1.2301%.

Scenario creation and ED problem under uncertainty remains an open area for research. Many
of the methods presented in this paper could be improved upon to produce better scenarios and
to attain ED solutions with lower costs in less time. Scenario creation methods have the potential
to be applied to other sources of uncertainty in the power system. Besides, we can further take
advantage of spatio-temporal and analog-based approaches and provide different strategies for
modeling uncertainties on both the supply and demand sides. Finally, savings due to ED under
uncertainty are likely to vary from system to system and with wind energy penetration. The number
of scenarios used may play a large role in the dispatch costs. Evaluations of the potential for savings
should be made for other systems, especially those with flexibility requirements. Further work will
focus on the application in a real power grid.
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