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Abstract: Chilling injury (CI), which causes seed browning in pepper, may arise following long-term cold 

storage, and is a major cause of postharvest losses. To explore potential strategies of minimizing the 

associated postharvest losses, the present study investigated the optimal pepper harvest time that could 

reduce levels of seed browning, in addition to the relationship between fruit maturity and seed browning. 

Fruit harvested 15 days after flowering (DAF) were sensitive to cold storage at 4°C and exhibited 100% 

seed browning (CI index, 4.0); in contrast, the seed browning rate of fruit harvested 35 DAF was 10% (CI 

index, 0.4) within 7 d of cold storage. Seed antioxidant activity was higher in seeds harvested at early 

stages (15 DAF to 20 DAF) than in seeds harvested at later stages (40 DAF to 50 DAF) at the beginning of 

storage. Pericarps of fruit harvested at 50 DAF exhibited the highest antioxidant activity. Lipoxygenase, 

catalase, and peroxidase activity, and the expression levels of cell wall-related genes, pectin 

methylesterase-like protein, and endo-β-1,4-glucanase were higher in seeds of immature fruit harvested 

15 DAF than in seeds of mature fruit harvested 35 DAF. The endosperm separated from the seed coat in 

fruit harvested 35 DAF and the seeds did not brown under low-temperature storage. The lack of seed 

browning observed in mature fruit under low-temperature storage could be attributed to physical 

protection provided by the seed coat rather than cold stress resistance conferred by antioxidants. 
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1 Introduction 

Hot pepper (Capsicum annuum L.) is a subtropical crop that is susceptible to chilling injury (CI). CI is 

observed in hot pepper subjected to < 7–10°C for 1–2 weeks [1,2]. The symptoms of CI in pepper include 

seed browning, surface pitting, shrinkage, and calyx discoloration [2-4]. However, hilling injury severity 

could vary across cultivars, fruit maturity levels, and exposure times [5]. Postharvest CI decreases pepper 

fruit quality, which causes yield losses during cold storage and in the course of market distribution [6-8]. 

Nevertheless, cold storage is an effective postharvest management technology for the maintenance of 

horticultural crop quality and the suppression of respiration [2]; consequently, it is critical to investigate 

appropriate strategies of storing and maintaining the quality of such sensitive and commercially important 

crops.  
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Seed browning is major symptom of CI in hot pepper [9]. Severe seed browning has been observed in 

hot pepper stored at 5°C, which has been attributed to invisible cell damage and the release of free phenolic 

compounds [9,10]. Under severe CI, the exocarp turns brown or black, and the epidermis and hypodermal 

cortical cells undergo necrosis [11,12]. Browning symptoms could be minimized by reducing storage and 

distribution periods. In previous studies exploring mechanisms of reducing seed browning, seed browning 

was significantly inhibited by Methyl jasmonate (MeJA) but induced by Methyl Salicylate during storage 

at 2°C; in addition, treatment with MeJA inhibited seed browning by increasing endogenous JA production 

and upregulating the expression of antioxidant-related genes in pepper fruit [2,10].  

It has been proposed that CI induces oxidative stress responses and that antioxidants protect the fruit 

against cold-induced damage [13]. Similarly, CI symptoms have been attributed to cell membrane damage 

by reactive oxygen species (ROS) generated from lipid peroxidation [5,6]. CI increases membrane 

permeability and the leakage of ions from the cytoplasm into the intercellular spaces [14], and results in 

ultrastructural changes to the membrane [15]. 

However, CI sensitivity also depends on crop maturity. Mature persimmon and tomato fruit were 

relatively less sensitive to CI than immature fruit [16]. In addition, green bell pepper was more sensitive to 

surface pitting than mature pepper fruit [17]. Chilling stress responses in the form of seed browning have 

also been observed in young eggplant fruit, with young seeds being more susceptible to chilling-induced 

browning than old seeds [5,18]. The determination of optimal harvest time of subtropical crops such as 

pepper could be an effective method of reducing postharvest losses associated with CI; however, few 

studies have examined the correlation between harvest time, based on fruit maturity, and seed browning 

under cold storage. Most previous studies have only explored the physiological changes that occur in 

pepper fruit exposed to CI [19], the metabolite changes in brown seeds under various storage temperatures 

[20], and seed browning based on different early harvest times following low-temperature storage [5].  

Here, to explore a strategy for reducing postharvest losses and maintain hot pepper quality during 

cold storage and in the course of market distribution, we investigated the optimal harvest time for 

preventing seed browning induced by CI. We examined changes in fruit quality, antioxidant activity, gene 

expression, and anatomy at different stages of fruit maturity, namely, 15, 20, 25, 30, 35, 40, 45, and 50 days 

after flowering (DAF), following cold storage. The results of the present study could not only enhance our 

understanding of the mechanism of seed browning following CI but also facilitate the formulation of 

effective postharvest management approaches.  

2 Materials and Methods 

2.1 Plant materials and storage conditions 

Pepper (Capsicum annuum L. “Nockgwang”) plants were grown in the greenhouses of the National 

Institute of Horticultural and Herbal Science, Wanju, Republic of Korea. The fruits were harvested at 15, 

20, 25, 30, 35, 40, 45, and 50 DAF (Figure 1A). Harvested fruit were washed with water containing 200 µL 

L-1 sodium hypochlorite and air-dried at room temperature(25~28°C). They were then either packed in a 

commercial cardboard box covered with plastic film and stored at 4°C for 14 d or maintained at 20°C for 8 

d. The relative humidity was maintained at 85 ± 5%. Fruits were evaluated following the storage. Seeds and 

pericarp were excised for antioxidant activity analyses and RNA extraction, flash-frozen in liquid nitrogen, 

and stored at -80°C. 
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(a)                                                                             (b) 

 

 
 

(c) 

 

Figure 1. Changes in pepper fruit skin color and seed browning during storage. (A) Photograph of seeds 

and pericarp of pepper fruit. (B) Changes in skin color a* value (redness) in fruit harvested at different times 

0 d and 15 d after cold storage and maintained at 20°C for 4 d (15+4d). (C) CI (Seed browning) index. Data 

are means ± standard error (SE) (n = 20). Different letters indicate significant difference among treatments at 

the same storage time according to the Duncan’s New Multiple Range (DMRT) test. P < 0.05. Fruits were 

harvested at 15, 20, 25, 30, 35, 40, 45, and 50 days after flowering (DAF), stored for 15 d at 4 °C and for 4 d at 

20 °C (15+4). 
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2.2 Fruit quality evaluation 

For the firmness assay, 20 pepper fruits were selected from the different harvest time treatments and 

two portions of each fruit were measured with a texture analyzer (TA Plus Lloyd Instruments Ltd., 

Fareham, Hampshire, UK) fitted with a plunger head 3 mm in diameter. Its operating speed was 0.5 mm s-

1. Fifteen fruit samples were used to measure total soluble solids (TSS) content and titratable acidity (TA) 

with a digital refractometer (PAL-1; Atago Co. Ltd., Saitama, Japan), and an auto pH titrator (TitroLine 

Easy; Schott Instruments GmbH, Mainz, Germany). TA was expressed in g acetic acid/100 g sample juice. 

For the fruit skin color assessment, 15 samples per treatment were measured and two portions of each fruit 

were examined using a color difference meter (Model CR-400, Minolta, Osaka, Japan) based on Hunter’s 

a* scale. 

The CI index was calculated according to the degree of seed browning, which was visually rated as 

follows: 0 = no symptom; 1= < 25%; 2 = 25–50%; 3 = 50–75%; 4+ = > 75%. The CI index was calculated based 

on the following formula [21]: 

CI (Seed browning) index = [Σ (chilling injury grade) × (number of fruit at the chilling injury grade)] / (total 

number of fruits in the treatment)        (1) 

2.3 Antioxidant, total phenol analysis 

Each sample was freeze-dried and pulverized. The seed powder (100 mg) or pericarp powder (50 mg) 

was extracted twice in 1 mL of 70% (v/v) ethanol with shaking for 1 h at 20 ± 2°C. The extracts were 

centrifuged at 4°C at 12,000 × g for 15 min. The supernatant was passed through a 0.2-µm Teflon® (PTFE) 

filter and used in the antioxidant activity assay. 

The total polyphenol content was measured according to the method of Singleton and Rossi [22], with 

modifications. Briefly, 100 μL extract or standard was mixed with 100 μL of 1 N Folin–Ciocalteu reagent 

for 3 min and then 1 mL of 2% (w/v) sodium carbonate solution was added. The mixture was incubated for 

30 min and its absorbance was read at 726 nm using a microplate reader (EPOCH2, BioTek Instruments 

Inc. VT, USA). The output was expressed as mM gallic acid equivalents (GAE)/g DW. 

1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was assessed according to the 

method of Dietz et al. [23]. Twenty microliters of extract was mixed with 180 µL of 0.18 mM DPPH and 

briefly vortexed. The samples were set aside for 20 min and the absorbance was measured at 515 nm using 

a microplate reader. DPPH-free methanol served as the blank reference. The absorbance was converted to 

DPPH radical scavenging activity. 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical 

scavenging activity was evaluated according to the method of Re et al. [24], with modifications. In brief, 7 

mM ABTS stock solution was prepared by combining 7 mM ABTS with 2.45 mM potassium persulfate and 

the mixture was stored in the dark for 16 h. The solution was adjusted with ethanol until the absorbance at 

734 nm was 0.7 ± 0.02 at ambient temperature (25 ± 2°C). Subsequently, 20 μL of each extract was mixed 

with 180 μL of the ABTS+ solution and the absorbance at 734 nm was measured using a microplate reader 

at ambient temperature (25 ± 2°C) after 10 min. The ABTS radical scavenging activity was expressed as 

Trolox equivalent antioxidant capacity (μmol TE/g DW). 

2.4 Gene expression analysis 

All samples were frozen in liquid nitrogen and pulverized to a fine powder in a mortar and pestle. 

Total RNA was extracted from the pericarp tissue using the RNeasy plant mini kit (Qiagen, Valencia, CA, 

USA). Five hundred nanograms of total RNA was used to synthesize cDNA in a QuantiTect reverse 

transcription kit (Qiagen, Valencia, CA, USA). The product was amplified using iQTM SYBR Green 

Supermix and specific primers (Supplementary Table S1). RT-qPCR was performed in a CFX96 TouchTM 

real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA, USA). The PCR was programmed as 
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follows: 95 °C for 30 s, followed by 40 cycles of 95°C for 10 s, and 55 °C or 58 °C for 40 s. Relative gene 

expression was calculated using the 2-ΔΔCt method of Livak and Schmittgen [25] and normalized against the 

expression levels of the housekeeping genes, Actin and eukaryotic initiation factor 4E (eIF4E). The qRT-

PCR analysis was conducted using at least 3 and 2 biological and technical replicates, respectively. 

2.5 Anatomical analysis under light microscopy and scanning electron microscopy (SEM) 

Stereomicroscopy (SM): Live seeds collected at each harvest time were observed under a helium 

stereomicroscope (Stemi-2000; Carl Zeiss AG, Oberkochen, Germany). 

Light microscopy (LM): The procedures used were modified from Clement et al. [26]. Seeds were fixed 

for 24 h in 2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) with 4% (w/v) sucrose. After three 

30-min rinses in phosphate buffer, the specimens were post-fixed for 4 h with 1% (w/v) OsO4 in the buffer 

plus 4% (w/v) sucrose. The samples were then rinsed thrice with buffer for 30 min each time, dehydrated 

in an alcohol gradient series, immersed in propylene oxide, and embedded in Epon epoxy resin. Semi-thin 

sections (2.5 µm) were prepared using a ultramicrotome, mounted on glass microscope slides, and 

subjected to periodic acid-Schiff (PAS) polysaccharide-specific treatment. PAS-positive reactions were red 

in color. The thin sections were immersed in 1% (w/v) periodic acid for 30 min, and then in Schiff’s reagent 

for 40 min, and finally in 5% (w/v) sodium bisulfite for 35 min. The sections were then rinsed in distilled 

water, dried on a hotplate, and mounted in Histomount. A negative control was prepared in the same 

manner, except the periodic acid oxidation step was omitted. The thin sections were observed under a light 

microscope (Axioscop 2; Carl Zeiss AG, Oberkochen, Germany). 

Scanning electron microscopy (SEM): Live tissues were examined under a SEM (SU-3500; Hitachi, 

Tokyo, Japan) in low vacuum mode. 

 

2.6 Statistical Analysis 

Data are means ± SE. They were subjected to ANOVA and significant differences were evaluated using 

Duncan’s new multiple range test. All data processing was performed in SAS v. 9.2 (SAS Institute, Cary, 

NC, USA). 

3 Results and Discussion 

3.1 Fruit quality 

The quality of the pepper fruit harvested at different times was determined during low-temperature 

storage. Fruit firmness increased with a delay in harvest time and decreased with an increase in storage 

period (Table 1). Firmness of the fruit harvested at 35–45 DAF was significantly higher than in fruit 

harvested at 15–30 DAF during cold storage at 4°C for 15 d even after transfer to 20°C. Soluble solid content 

(SSC) significantly increased with an increase in storage period. Similarly, TSS content in bell pepper 

increased gradually with storage periods [27]. Maximum SSC was observed in the fruit harvested at 50 

DAF. The titratable acidity (TA) was higher in the fruit harvested at 35–50 DAF than in fruit harvested 

earlier. In general, TA reduction is a major characteristic feature during storage periods [28]. Consistently, 

pepper fruit acidity increased with harvest time showing fruit harvested at 50 DAF had the highest TA 

while fruit acidity decreased over the storage periods. The fruit harvested at a later stage (35 DAF to 50 

DAF) exhibited higher firmness, SSC, and TA than those harvested at 15 DAF. Fruit hardness and flavor 

improve with post-flowering maturation. There were no significant differences in the color A value 

(redness) among fruits harvested before 35 DAF. Fruit color changed to red when fruits were transferred 

to shelf condition at 20°C, after low-temperature storage. Hence, 35 DAF may be the optimal harvest time 

required to obtain the fruit color and robustness preferred by consumers. 
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Table 1. Changes in pepper fruit firmness, soluble solid content (SSC), and titratable acidity (TA) during storage. 

 0 d 7 d 15 d 15 + 4 d 

 Firmness (N) 

15 DAF 9.63 ± 0.34 Fa 10.46 ± 0.32 Da 6.51 ± 0.43 CDb 5.12 ± 0.24 CDc 

20 DAF 11.05 ± 0.37 Ea 10.63 ± 0.25 Da 6.08 ± 0.26 Db 4.85 ± 0.20 Dc 

25 DAF 12.94 ± 0.33 Da 12.62 ± 0.39 Ca 7.28 ± 0.24 Cb 5.35 ± 0.26 CDc 

30 DAF 13.80 ± 0.31 CDa 11.82 ± 0.33 Cb 8.67 ± 0.37 Bc 5.15 ± 0.28 CDd 

35 DAF 15.76 ± 0.40 Ba 11.94 ± 0.43 Cb 9.23 ± 0.28 Bc 6.55 ± 0.25 Bd 

40 DAF 18.91 ± 0.49 Aa 14.42 ± 0.49 Bb 10.71 ± 0.21 Ac 7.55 ± 0.34 Ad 

45 DAF 18.16 ± 0.43 Aa 15.97 ± 0.44 Ab 11.20 ± 0.25 Ac 7.94 ± 0.38 Ad 

50 DAF 14.75 ± 0.33 BCa 13.97 ± 0.30 Bb 8.65 ± 0.25 Bc 5.73 ± 0.20 Cd 

 Soluble solids content (%) 

15 DAF 5.53 ± 0.12 Dd 6.40 ± 0.12 DEc 6.90 ± 0.00 Cb 7.70 ± 0.00 Da 

20 DAF 5.30 ± 0.06 Ec 6.67 ± 0.03 Dab 6.60 ± 0.00 Cb 6.83 ± 0.09 Ea 

25 DAF 5.30 ± 0.00 Ed 6.07 ± 0.13 EFc 6.60 ± 0.06 Cb 7.17 ± 0.15 DEa 

30 DAF 5.33 ± 0.03 Ed 5.93 ± 0.03 Fc 6.60 ± 0.06 Cb 7.07 ± 0.15 DEa 

35 DAF 5.37 ± 0.03 DEc 6.20 ± 0.17 EFb 6.50 ± 0.06 Cb 6.97 ± 0.18 Ea 

40 DAF 5.90 ± 0.00 Cc 7.20 ± 0.12 Cb 6.87 ± 0.15 Cb 8.87 ± 0.50 Ca 

45 DAF 7.33 ± 0.07 Bc 8.53 ± 0.15 Bb 9.60 ± 0.12 Ba 9.80 ± 0.25 Ba 

50 DAF 9.83 ± 0.03 Ad 10.60 ± 0.17 Ac 11.97 ± 0.32 Ab 13.50 ± 0.00 Aa 

 Titratable acidity (%) 

15 DAF 0.12 ± 0.00 Ga 0.07 ± 0.00 Fb 0.07 ± 0.00 Gb 0.07 ± 0.00 Db 

20 DAF 0.13 ± 0.00 Gb 0.17 ± 0.01 Ea 0.08 ± 0.00 Fc 0.07 ± 0.00 Dc 

25 DAF 0.21 ± 0.00 Fa 0.21 ± 0.01 Da 0.10 ± 0.00 DEb 0.10 ± 0.02 Cb 

30 DAF 0.25 ± 0.02 Ea 0.23 ± 0.01 Da 0.09 ± 0.00 Eb 0.12 ± 0.02 Cb 

35 DAF 0.29 ± 0.01 Da 0.25 ± 0.00 Db 0.10 ± 0.00 Dc 0.11 ± 0.01 Cc 

40 DAF 0.34 ± 0.00 Ca 0.34 ± 0.01 Ca 0.11 ± 0.00 Cc 0.20 ± 0.01 Bb 

45 DAF 0.45 ± 0.01 Ba 0.45 ± 0.01 Ba 0.19 ± 0.00 Bc 0.23 ± 0.00 ABb 

50 DAF 0.52 ± 0.03 Aa 0.54 ± 0.01 Aa 0.22 ± 0.00 Ab 0.24 ± 0.00 Ab 

*Fruits were harvested at 15, 20, 25, 30, 35, 40, 45, and 50 days after flowering (DAF) and stored for 15 d at 4 °C (15 d) 

followed by 4 d at 20 °C (15 + 4 d). Data are means ± SE (n = 20 for firmness; n = 15 for SSC and TA). Means with the 

same uppercase letter in a column or same lowercase letter in a row are not significantly different at P < 0.05 according 

to Duncan’s multiple range test. 

3.2 Harvest time and seed browning 

Peppers were harvested at 15, 20, 30, 35, 40, 45, and 50 DAF. Photographs showing the colors of 

the inner and outer sections of the fruits were taken during low-temperature storage (4°C) and after transfer 

to shelf conditions (20°C). The seeds of the fruit harvested 15 DAF showed 100% browning within 7 d of 

low-temperature storage (CI index, 4.0). In contrast, only 10% of the peppers harvested 35 DAF displayed 

brown seeds (CI index, 0.4). There was no significant difference in CI index between 35 DAF and 50 DAF 

seeds following low-temperature storage (4°C), and after transfer to shelf conditions (20°C). Similarly, seed 

browning in hot pepper was severe in fruit stored at 5°C, but only in fruit harvested 15 DAF [5]. In the 

present study, seed browning rates in the chilled samples exhibited strong linear correlations with storage 

period and harvest time (Figure 1). The CI index in seeds of fruits harvested from 15 DAF to 30 DAF was 

significantly higher than in fruits harvested from 35 DAF to 50 DAF when fruits were stored for 15 days at 

4°C and 4 days at 20°C (Fig. 1C). In addition, pepper fruit harvested from 15 DAF to 30 DAF exhibited seed 

browning without ripening progress until 15 days of cold storage (Fig. 1A), which is consistent with the 

finding of a previous study in which pepper fruit stored at 2°C exhibited seed browning without ripening 
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progress for 25 d [10]. Therefore, the results suggest that harvesting time of hot pepper “Nockgwang” 

significantly influences seed browning, and harvesting pepper after 35 DAF can suppress seed browning 

under long-term low-temperature storage (4°C). 

3.3 Antioxidant capacity, total phenol content 

Cell membranes are particularly susceptible to CI [29], as cold stress induces the generation of ROS 

associated with seed browning in hot pepper [20]. Here, we measured antioxidant activity in hot pepper 

seeds and pericarps at various developmental stages using the ABTS and DPPH assays (Tables 2 and 3). 

Antioxidant activity was the highest in 15 DAF seeds, but steadily declined thereafter, until 50 DAF. The 

seeds in fruit harvested 15 DAF had high antioxidant content early in storage but relatively low antioxidant 

levels under shelf conditions following low-temperature storage (Table 2). Under shelf conditions (20°C), 

after 15 d of low- temperature storage, the antioxidant levels detected based on DPPH were significantly 

higher 35 DAF than at other maturity stages (Table 2). The antioxidant activity in the seeds of fruit 

harvested 15 DAF was significantly higher than in seeds of fruit harvested 40–50 DAF, under 7-d low-

temperature storage, with the seeds in fruit harvested 15 DAF exhibiting 100% browning (CI index, 4.0). In 

contrast, the seeds in fruit harvested 40–50 DAF exhibited no browning (Figure 2). Therefore, the 

antioxidant activity in the seeds did not prevent browning entirely during low-temperature storage. 

Antioxidant activity is positively correlated with vegetable freshness. Oxidative stress responses are 

associated with the emergence of CI symptoms such as pepper fruit pitting [2]. Here, we compared 

antioxidant activity in the pericarp and seeds. The pericarp of fruits harvested 35–50 DAF exhibited 

relatively higher antioxidant activity than those of the pericarp of fruits harvested 15 DAF. Fruit harvested 

50 DAF had the highest ABTS and DPPH content (Table 2). The findings are consistent with those reported 

by Jang et al. [30], who demonstrated that antioxidant activity 43−48 days post-anthesis (DPA) was similar 

to those in earlier stages. The response could explain why the seeds did not brown during cold storage. 
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Table 2. Changes in 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-

sulfonic acid (ABTS), and total phenolic content in hot pepper seeds during storage. 

 0 d 7 d 15 d 15 + 4 d 

 DPPH (Trolox equivalent, μmol/g DW) 

15 DAF 5.19 ± 0.07 Aa 4.79 ± 0.10 Db 4.76 ± 0.02 Cb 3.64 ± 0.05 Cc 

20 DAF 5.13 ± 0.08 Ab 5.42 ± 0.03 Aa 5.20 ± 0.02 Ab 3.18 ± 0.04 Dc 

25 DAF 4.59 ± 0.09 Cb 5.01 ± 0.02 Ca 4.94 ± 0.04 Ba 3.73 ± 0.02 Cc 

30 DAF 4.60 ± 0.06 Cc 5.23 ± 0.02 Ba 4.94 ± 0.02 Bb 3.90 ± 0.03 Bd 

35 DAF 4.93 ± 0.04 Bb 5.08 ± 0.03 Ca 4.85 ± 0.03 BCb 4.18 ± 0.07 Ac 

40 DAF 3.88 ± 0.02 Eb 4.44 ± 0.07 Ea 4.44 ± 0.06 Da 3.98 ± 0.03 Bb 

45 DAF 4.36 ± 0.04 Da 4.03 ± 0.03 Fc 4.20 ± 0.03 Eb 3.90 ± 0.06 Bc 

50 DAF 3.89 ± 0.05 Eb 4.04 ± 0.04 Fa 3.93 ± 0.04 Fab 3.99 ± 0.04 Bab 

 ABTS (Trolox equivalent, μmol/g DW) 

15 DAF 15.78 ± 1.09 ABa 15.65 ± 1.05 Ca 13.33 ± 0.72 CDa 14.02 ± 0.91 ABa 

20 DAF 17.40 ± 1.15 Ab 21.16 ± 0.61 Aa 17.50 ± 0.73 Ab 12.13 ± 0.67 Cc 

25 DAF 14.69 ± 0.95 Bb 17.60 ± 0.36 Ba 17.12 ± 0.50 ABa 14.71 ± 0.34 Ab 

30 DAF 16.96 ± 0.58 ABab 18.39 ± 0.73 Ba 16.35 ± 0.57 ABb 14.08 ± 0.49 ABc 

35 DAF 14.97 ± 0.78 ABa 15.58 ± 0.72 Ca 15.18 ± 0.74 BCa 12.77 ± 0.53 BCb 

40 DAF 7.33 ± 0.43 Db 11.11 ± 0.46 Da 11.62 ± 1.00 Da 8.50 ± 0.60 Db 

45 DAF 10.94 ± 0.58 Ca 9.53 ± 0.47 Dab 8.06 ± 0.57 Eb 7.89 ± 0.63 Db 

50 DAF 8.55 ± 0.62 Dab 9.29 ± 0.47 Da 7.29 ± 0.62 Eb 8.69 ± 0.64 Dab 

 Total phenolics (gallic acid equivalent, mg/g DW) 

15 DAF 4.66 ± 0.01 Aa 4.57 ± 0.00 Ab 4.53 ± 0.00 Ac 3.33 ± 0.00 Ad 

20 DAF 3.67 ± 0.02 Bb 4.01 ± 0.01 Ba 4.04 ± 0.04 Ba 2.66 ± 0.01 Bc 

25 DAF 2.65 ± 0.02 Db 2.56 ± 0.01 Cc 3.41 ± 0.01 Ca 2.54 ± 0.01 Cc 

30 DAF 2.73 ± 0.02 Ca 2.44 ± 0.00 Db 2.46 ± 0.01 Db 2.20 ± 0.00 Dc 

35 DAF 1.88 ± 0.02 Ec 2.22 ± 0.01 Eb 2.29 ± 0.01 Ea 1.86 ± 0.01 Ec 

40 DAF 1.11 ± 0.01 Gd 1.52 ± 0.01 Fb 1.66 ± 0.01 Fa 1.31 ± 0.01 Fc 

45 DAF 1.54 ± 0.01 Fa 1.20 ± 0.01 Gb 1.15 ± 0.00 Gc 1.21 ± 0.01 Gb 

50 DAF 1.12 ± 0.01 Ga 1.10 ± 0.02 Hab 1.12 ± 0.01 Ga 1.08 ± 0.01 Hb 

*Fruits were harvested 15, 20, 25, 30, 35, 40, 45, and 50 days after flowering (DAF) and stored for 15 d at 4°C (15 d) and 

then for 4 d at 20°C (15 + 4 d). Means with the same uppercase letter in a column or same lowercase letter in a row are 

not significantly different at P < 0.05 according to Duncan’s multiple range test. 

 

Tissue browning induced by CI is associated with polyphenol oxidase and phenylalanine ammonia-

lyase production. Such enzymes participate in phenolic biosynthesis and polymerization [5,31]. The total 

phenolic levels in the seeds of fruit harvested 15 DAF were significantly higher than in those harvested at 

any other stage under shelf conditions. In other words, brown seeds in fruit harvested 15 DAF had 

comparatively higher total phenolic content than those of non-browning seeds in fruit harvested 50DAF 

during low-temperature storage (Table 3).  

The above results suggest a significant correlation between the degree of seed browning at different 

harvest times and changes in total phenolic levels under low-temperature storage. 
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Table 3. Changes in 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-

sulfonic acid (ABTS), and total phenolic content in pepper pericarp during storage. 

 0 d 7 d 15 d 15 + 4 d 

 DPPH (Trolox equivalent, μmol/g DW) 

15 DAF 28.74 ± 1.21 Da 26.05 ± 0.68 Cb 20.08 ± 1.00 Ec 29.17 ± 0.52 Da 

20 DAF 35.96 ± 1.16 BCa 27.01 ± 0.39 Cb 29.70 ± 1.79 Cb 28.03 ± 0.42 Db 

25 DAF 34.43 ± 0.29 Ca 28.23 ± 0.87 BCb 28.23 ± 0.95 Cb 36.06 ± 0.54 Ba 

30 DAF 24.89 ± 0.33 Ec 27.58 ± 0.46 BCb 24.68 ± 0.35 Dc 32.58 ± 0.95 Ca 

35 DAF 23.67 ± 0.56 Ec 26.97 ± 0.43 Cb 22.24 ± 0.31 DEc 31.65 ± 0.77 Ca 

40 DAF 27.72 ± 0.98 Da 22.13 ± 0.94 Db 27.93 ± 0.65 Ca 29.40 ± 0.34 Da 

45 DAF 37.09 ± 0.49 Bab 30.27 ± 1.60 Bc 38.02 ± 0.42 Ba 35.30 ± 0.50 Bb 

50 DAF 42.64 ± 0.81 Ab 39.99 ± 1.29 Ac 47.83 ± 0.51 Aa 40.61 ± 0.68 Abc 

 ABTS (Trolox equivalent, μmol/g DW) 

15 DAF 42.49 ± 1.44 Bb 30.51 ± 0.49 Gc 27.62 ± 0.19 Fd 45.44 ± 0.53 Ca 

20 DAF 45.40 ± 1.47 Ba 38.69 ± 0.11 Eb 45.98 ± 0.54 Ca 44.29 ± 0.30 Ca 

25 DAF 35.67 ± 1.53 Cc 45.04 ± 0.52 Cb 46.49 ± 0.26 Cb 57.53 ± 0.12 Aa 

30 DAF 33.58 ± 0.61 Cd 46.13 ± 0.24 Bb 37.20 ± 0.57 Ec 52.33 ± 0.35 Ba 

35 DAF 34.02 ± 1.96 Cc 38.38 ± 0.13 Eb 36.31 ± 0.33 Ebc 44.07 ± 0.56 Ca 

40 DAF 34.98 ± 1.76 Cb 34.24 ± 0.18 Fb 41.89 ± 0.50 Da 40.78 ± 0.52 Da 

45 DAF 42.87 ± 0.83 Bb 41.69 ± 0.39 Db 51.22 ± 0.32 Ba 50.87 ± 0.89 Ba 

50 DAF 50.53 ± 0.81 Ab 50.58 ± 0.34 Ab 55.76 ± 0.11 Aa 51.80 ± 0.65 Bb 

 Total phenol (gallic acid equivalent, mg/g DW) 

15 DAF 3.71 ± 0.13 Cab 3.46 ± 0.01 Eb 3.70 ± 0.12 Dab 3.82 ± 0.03 Da 

20 DAF 3.91 ± 0.05 Ba 3.53 ± 0.01 Dec 3.76 ± 0.01 Db 3.42 ± 0.02 Fd 

25 DAF 3.71 ± 0.01 Cc 3.79 ± 0.02 Cb 3.82 ± 0.01 Db 4.42 ± 0.02 Aa 

30 DAF 3.23 ± 0.02 Dd 4.00 ± 0.05 Ab 3.46 ± 0.00 Ec 4.24 ± 0.01 Ba 

35 DAF 3.31 ± 0.01 Dc 3.59 ± 0.02 Db 3.13 ± 0.02 Fd 3.88 ± 0.02 Ca 

40 DAF 3.37 ± 0.01 Dc 3.39 ± 0.02 Fc 4.18 ± 0.02 Ca 3.65 ± 0.01 Eb 

45 DAF 3.67 ± 0.06 Cd 3.93 ± 0.01 Bc 4.39 ± 0.01 Ba 4.27 ± 0.02 Bb 

50 DAF 4.19 ± 0.01 Ac 4.06 ± 0.02 Ad 4.75 ± 0.02 Aa 4.41 ± 0.00 Ab 

*Fruits were harvested at 15, 20, 25, 30, 35, 40, 45, and 50 days after flowering (DAF) and stored for 15 d at 4 °C (15 d) 

and for 4 d at 20 °C (15 + 4 d). Means with the same uppercase letter in a column or same lowercase letter in a row were 

not significantly different at P < 0.05 according to Duncan’s multiple range test. 

3.4. Analysis of the expression levels of antioxidant- and cell wall-related genes during storage 

To confirm the relationships observed between seed browning and antioxidant levels during cold 

storage, we investigated the levels of expression of antioxidant-related genes in seeds of hot pepper. Gene 

expression levels of catalase (CAT) and peroxidase (POD) were significantly upregulated in the seeds of 

fruit harvested 15 DAF and 25 DAF, when compared to the levels in those harvested 35 DAF and 45 DAF, 

under 7 days of cold storage (Figure 2). The findings corroborate those for antioxidant levels in the seeds 

evaluated using ABTS and DPPH assays (Table 2). However, according to Boonsiri et al. [5], CAT and POD 

activity in seeds of fruits harvested 25 DAF was significantly higher than in seeds from fruit harvested 15 

DAF, suggesting a negative correlation between browning and CAT and POD activity. Lee et al. [20] 

showed that genes related to superoxide dismutase, CAT, and ascorbate peroxidase were significantly 

upregulated in hot pepper seeds at 20 days and 2°C, when seed browning was severe. The results of the 

present study revealed antioxidant gene expression in immature seeds, indicating that seed browning 

during cold storage would be more severe in immature seeds than in mature seeds.  
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Figure 2. RT-qPCR analysis of the transcript levels of catalase (CAT), lipoxygenase (LOX), and peroxidase 

(POX) (upper panel), endo-β-1,4-glucanase (cCeL3), pectin methylesterase-like protein (PME), and β-

Galactosidase-1 (PBG1) in seeds of hot pepper. Data are means ± SE of three replicates. Different letters 

indicate significant differences among treatments within the same storage time according to the Duncan’s 

New Multiple Range Test (DMRT) (P < 0.05). *Fruits were harvested 15, 25, 35, and 45 days after flowering 

(DAF) and stored for 15 d at 4°C and for 4 d at 20°C. 

 

Seed browning might be associated with cell membrane peroxidation by LOX [20]. In the present 

study, LOX expression in the seeds of fruit harvested 15 DAF was significantly higher than in seeds of fruit 

harvested later (35 DAF to 45 DAF) during low-temperature storage. Here, we confirmed that cold stress 

induced LOX, which caused membrane lipid peroxidation, disrupted membrane integrity, and induced 

seed browning under low-temperature storage. We also examined the expression of cell wall-related genes 

during pepper fruit storage. The expression of pepper endo-β-1,4-glucanase (cCeL3) was significantly 

upregulated in seeds harvested 15 DAF than in seeds of fruits harvested at later stages, during low-

temperature storage. However, enzyme activity had the lowest initial value in fruits harvested ~35 DAF. 

Pepper cCeL3 is involved in leaf abscission [32]. Endo-1,4-β-glucanase (EGase) is upregulated during fruit 

ripening and requires cooperative cell wall component disassembly during ripening and abscission [33]. 

The upregulation of cCeL3 in the seeds of fruit harvested 15 DAF might be associated with the softening of 

young seeds as EGase mediates fruit softening [34]. Seeds in fruit harvested 15 DAF were softer than those 

in fruit harvested 35 DAF and 45 DAF. PME1 expression in the seeds of fruit harvested 15 DAF and 25 DAF 
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was significantly higher than in seeds of fruit harvested 35 DAF and 45 DAF, during cold storage. PME 

hydrolyzes pectin, which is the primary constituent of the middle lamella and the primary cell wall. The 

expression of PME1 in the seeds of fruit harvested 15 DAF and 25 DAF increased under low-temperature 

storage (Figure 2). Similarly, in sweet pepper, PME1 activity progressively increased during storage [27]. 

Pepper β -galactosidase-1 (PBG1) gene expression in seeds of fruit harvested 25 DAF has been reported to 

be significantly higher than in 35 DAF and 45 DAF fruits, following 15 days of cold storage, and even after 

transfer to 20°C. PBG1 gene participates in fruit ripening in bell pepper [35]. Therefore, young seeds, which 

are sensitive to cold stress and chilling, may initiate cell wall degradation. Similarly, PME1 upregulation 

may cause cell wall softening. Pectinesterase and β-galactosidase have been associated with CI sensitivity 

and loss of firmness in carambola fruit [36]. 

3.5 Anatomical analysis 

In the present study, we explored the relationship between hot pepper seed maturity and CI by 

examining cell wall integrity after cryopreservation of seeds harvested at various times. Stereomicroscope 

images of seeds of pepper fruit harvested 15, 25, 35, and 45 DAF are shown in Figure 3A. After 7 d cold 

storage, the seeds of fruit harvested 15 DAF and 25 DAF browned. In contrast, the seeds of fruit harvested 

35 DAF and 45 DAF exhibited no browning. We used SEM and LM to observe the structures of seeds 

obtained from fruits harvested at various times (Figure 3). The SEM images showed that the seed coat did 

not separate from the endosperm in the seeds of fruit harvested 25 DAF. These seeds exhibited browning 

after 7 d of storage at 4°C. In contrast, seeds from fruit harvested 35 DAF showed no browning; however, 

their seed coats were separated from their endosperms. The LM images revealed that the seeds from fruit 

harvested 35 DAF had fully developed seed coats and embryos. However, seeds from fruit harvested 25 

DAF had damaged cells, only partially formed seed coats, and exhibited high sensitivity to cold storage. 

An earlier study reported that the early stages of pepper seed development were highly sensitive to high 

temperatures after anthesis. Hence, heat stress may have a detrimental effect on embryo formation [37]. 
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Figure 3. Pepper seed anatomy. A. Stereomicroscope image of pepper seeds. Fruits were harvested 15, 25, 

35, and 45 days after flowering (DAF) and stored for 7 d at 4°C. B. Scanning electron microscope (SEM) 

images (upper pane) and light microscope (LM) images (lower panel) of pepper seed. Left: browning of seed 

in fruit harvested 25 DAF. Right: normal seed in fruit harvested 35 DAF. Fruits were harvested 25 DAF or 

35 DAF and stored for 7 d at 4°C.  

The results of the present study indicate that the degree of pepper seed browning varies with harvest 

time after flowering and is associated with changes in seed physicochemical properties. Seeds from fruit 

harvested after 35 DAF did not undergo browning. The seed coat may harden as the seeds mature after 

flowering. This change may confer physical resistance to cold stress. The above finding is consistent with 

the observation that chilled pepper fruit display visible symptoms of cell damage [15]. Similarly, in pea, 

the seed coat confers protection against CI [38]. 

 

4. Conclusion 

The present study investigated the optimal harvest time that would minimize hot pepper seed 

browning induced by low-temperature storage. Harvesting pepper fruit 35 DAF resulted in excellent fruit 

quality and prevented seed browning. In contrast, the seeds of fruits harvested at 15 DAF had relatively 

higher antioxidant levels than those harvested later. Nevertheless, 100% of these seeds had turned brown 

within 7 d of cold storage. Cell wall degradation-related genes were upregulated and the seed coat was not 

fully developed until 25 DAF. Consequently, before seed maturity, the seeds were highly sensitive to 

chilling stress. However, the seeds of fruits harvested 35 DAF had fully formed seed coats. The primary 
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reason why the seeds of fruits harvested 35 DAF did not turn brown during cold storage was a mature 

hard seed coat conferred resistance to cold stress. This study confirmed that seed maturity in pepper was 

highly correlated with seed browning. Therefore, antioxidant activities in seeds are not responsible for the 

browning that occurs in the seeds of immature pepper fruit subjected to low-temperature storage. The 

results of the present study suggest that producers could minimize postharvest losses in hot pepper 

production that occur during long-term storage under low temperatures, and could facilitate the 

maintenance of the quality of hot pepper over longer periods, particularly in the course of long-distance 

export activities that require low-temperature distribution. 

Supplementary Materials: Table S1: Primer sequences of genes used in the present study 
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