

## ***Strain dependent resistivity of granular manganite systems: a simple quantitative approach***

***P. De Feo<sup>1</sup>, F. Ferraioli<sup>2</sup>, N. Coppola<sup>1,3</sup>, L. Maritato<sup>1,3</sup>***

<sup>1</sup> Dipartimento di Ingegneria Industriale-DIIN, Università degli studi di Salerno, 84084 Fisciano (SA), Italy.

<sup>2</sup> Leonardo S.p.A., Electronic Division, 80078 Pozzuoli (NA), Italy

<sup>3</sup> CNR-SPIN, 84084 Fisciano (SA), Italy.

### ***ABSTRACT***

The effects of an external strain tensor on the electrical resistivity of a manganite granular system are investigated using a simple approach describing the induced deformation in terms of the tilt angle between adjacent grains. The results obtained assuming the resistivity of each grain as given by a metallic part, coming from the inner grain, and a surface related tunnel contribution, allow to estimate appreciable resistivity variations even in the case of small deformation angles.

### ***INTRODUCTION***

Perovskite-like compounds have been the subject of intense research works in the last decades, due to their interesting and many-fold fundamental physical properties which have suggested a large variety of possible practical applications [1-2]. This class of materials is characterized by a particular rich phase diagram, with the coexistence of different forms of order involving several degrees of freedom such as charge, spin, orbital and crystal lattice, finally resulting in nano-scale phase separation and intrinsic inhomogeneity [3-6]. The consequent possibility to change the physical behavior of these compounds, by playing with several factors (as the ionic size, the chemical composition, the applied magnetic field, the external strain etc.) has burst the interest in investigating their possible practical use [7]. Furthermore, the balance between competing phases could be so delicate that small changes in these factors could be related to large changes in their physical properties.

Among the most studied perovskite families are the manganites, mainly due to the observed phenomena of Colossal Magneto-Resistance CMR [8,9]. In manganites, the CMR effect is traced back to a paramagnetic-ferromagnetic transition which, thanks to the double-exchange mechanism, simultaneously opens a conduction channel among aligned Mn electronic spins [3, and references therein]. This is another clear evidence of the strong interplay, in these compounds, among different orders at a nanometer scale. Moreover, the dependence on the chemical composition of the Curie temperature below which the spin alignment appears, has open the way to studies of their possible use as spin valves and spin filters [10,11].

The tight relation between the electrical transport behavior, the Curie temperature and the externally applied strain in manganites, has also suggested to investigate this interplay in view of future innovative applications. Theoretical prediction of the effect of biaxial strain on the electrical and magnetic properties of crystalline manganites [12] have been confirmed experimentally [13]. The main physical effect taken into account in these studies, was the crystal lattice distortion due to the externally applied biaxial strain with

its effect on the double exchange mechanism and, finally, on the Curie temperature values. For these reasons, both the theoretical and the experimental works, have been related to manganite epitaxial thin films, implying stiff single crystal substrates, which do not have large commercial use. On the other hand, the deposition of manganite thin films on poly-crystalline substrates, typically results in granular systems. In granular thin films, the externally applied strain no longer directly influences the crystal lattice, but it is generally incorporated by changing the grain arrangement. The scientific literature about the strain effects on the electrical transport properties of manganites is largely related to studies of epitaxial thin films [14-16] while the researches involving the effects on manganite granular films are more rare [17,18].

The aim of this work is to propose a simple model for investigating the sensitivity of the electrical resistivity of a manganite granular system to the external strain tensor. Manganites, similarly to many perovskite compounds, in their poly-crystalline form, present a disordered array of grains. Each grain can be described as consisting of two parts, an inner part (core, body, intragrain) where the physical properties are those of the ideal compound and an outer part (shell, intergrain, surface) with different physical properties. In particular, the surface zone, due to the so-called space charge layer [19], generally show reduced electrical transport properties. By implementing the theoretical model proposed by Zhang et al. [20], we have been able to describe the effects of externally applied deformations on the electrical resistivity of granular manganites. Our results show that the resistivity changes are appreciable even for small distortions. The limits and the potential developments of our work are also discussed.

## RESULTS AND DISCUSSION

In the case of manganites, the presence of different behaviors in the inner and outer part of grains can be traced back to differences in the double exchange energy [3]. The values of the double exchange energy indeed depend on several factors (chemical composition, spin order, dislocations, dangling bonds) and have a strong influence on the magnetic and transport properties of the two zones. When two grains come in contact, the interface between two adjacent “cores” represented by the surface phase plus the eventual intergrain gap acts as a potential barrier and its role on the resistivity can be described in terms of the tunnel effect. The model proposed by Zhang et al. [20] assumes the presence of both the interfacial tunneling and the intragrain metallic transport behavior [20]. The resistivity of the system can be, therefore, written as the weighted sum of the body phase and of the surface phase resistivities  $\rho_b$  and  $\rho_s$  respectively:

$$\rho = \frac{f_b}{c} \rho_b + \frac{f_s}{c} \rho_s \quad (\text{Eq.1})$$

where  $c$  is the material compactness,  $f_b$  is the volume fraction of the body phase and  $f_s=1-f_b$  is that of the surface phase. Accordingly, with this representation each grain is modeled as the series of two “equivalent” resistors one with metallic resistivity  $\rho_b$  (the inner part) and the other with tunnel resistivity  $\rho_s$  (the outer part). By assuming spherical shape for the grains, see Figure 1a, and by observing that  $\rho_s$  is inversely proportional to the tunneling probability, Eq. (1) can be written as a function of measurable quantities (see [20] for the details):

$$\rho = \frac{1}{c} \left[ \rho_b \left( 1 + \frac{3\omega}{D} \right) + \frac{3\omega K}{D^2} e^{b \left( \frac{(Dm - 3\omega m_s)^2}{(D - 3\omega)^2} - m_s^2 \right)^{1/2}} \right] \quad (\text{Eq.2})$$

where  $\omega$  is the thickness of the surface zone in between two adjacent grains,  $D$  is the overall grain dimension,  $m$  and  $m_s$  are respectively the normalized magnetization of the overall grain and of the surface zone and  $K$  and  $b$  are two constants respectively related to the surface chemistry inhomogeneity and to the transfer integral between adjacent Manganese ions [20].

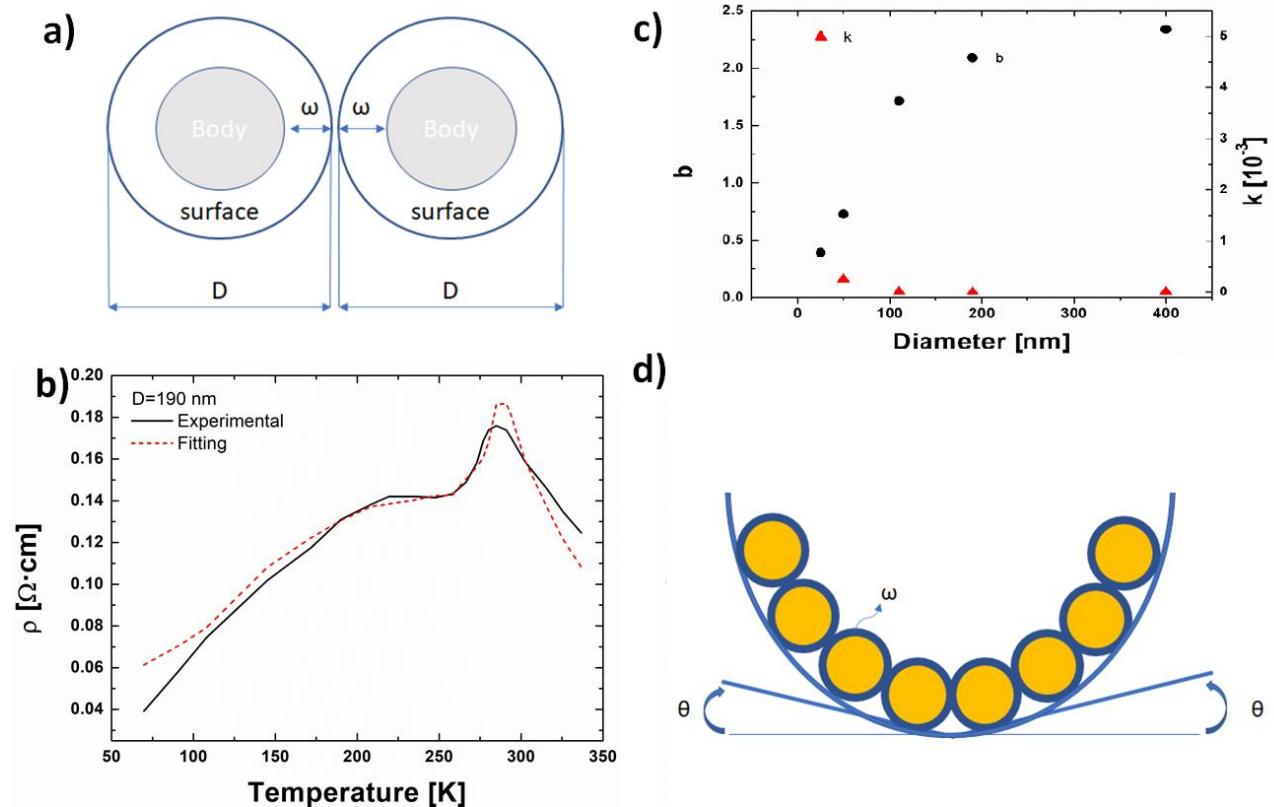



Figure 1: a) schematic representation of adjacent grains; b) results of the fitting procedure obtained using Eq.2 in the text, for the experimental  $R(T)$  curve corresponding to a sample with  $D=190 \text{ nm}$  in [20]; c) “b” and “k” values obtained using the fitting procedure in Eq.2 for the samples characterized by different grains’ size in [20]; d) schematic representation of the grains’ chain distortion due to the deformation applied to the sample.

We have fitted the measured values for the bulk magnetization  $m_b$  in [20] assuming a temperature dependence well described in terms of the following modified Bloch’s law [21]

$$m_b = \left[ 1 - \left( \frac{T}{T_C} \right)^{\frac{3}{2}} \right]^\beta \quad (\text{Eq.3})$$

In this way, we have obtained good fitting of the experimental data in [20] using  $T_C=270 \text{ K}$  and  $\beta=0.1$ . By assuming the same temperature dependence to describe the behavior of  $m_s(T)$  in eq. (2), we have reached good agreement with the experimental resistivity data as a function of the grain dimension  $D$  in [20], fixing, in the surface zone, always the values of  $T_C=254 \text{ K}$  and  $\beta=2.2$  for all the different  $D$  values and using the constants  $K$  and  $b$  as free fitting parameters. As an example, in **Error! Reference source not found.b**, the results of our fitting procedures are shown and compared to the experimental resistivity curve for the sample with  $D=190 \text{ nm}$  presented in [20]. In **Error! Reference source not found.c**, we show the behavior of

the constant K and b as a function of D. As expected, the K values are significantly large only for the case of small grain dimension (50 nm) and suddenly go to very small values with increasing D. On the other hand, the b values increase with increasing D and seem to tend to saturation in the limit of very large D.

In the case of a granular maganite system, the described dependence of the electrical resistivity  $\rho$  upon the thickness  $\omega$  and the grain size D, paves the way for further theoretical investigations of the effects on  $\rho$  due to an external strain tensor field. In a very simplified model, one can consider a one-dimensional array of spherical adjacent grains and treat the external deformation applied to it, in terms of the tilt angle  $\theta$  schematically represented in **Error! Reference source not found.d**. In the case of a long grain chain, the  $\theta$  angles are not constant but vary from an adjacent couple of grain to the next, reaching the maximum for the couple of grains in the center of **Error! Reference source not found.-d**. The electrical resistivity of the overall system will result from the series of many terms like the one in Eq. (2), where the quantity  $\omega$  is now dependent upon  $\theta$ . The  $\rho$  values exponentially depend on  $\omega$  and, therefore, we expect large change of them due to the external deformation. Obviously, due to the variation in the values of  $\theta$ , the changes in the electrical resistivity will not be constant, but, because of the connection in series, they will sum up along the one dimensional granular chain.

For simplicity, in our investigation, we have taken into account only the resistivity change due to the central adjacent grains in **Error! Reference source not found.d**, considering, therefore, the maximum single variation in resistivity. From **Error! Reference source not found.d**, it is clear that in the case of a tilt angle  $\theta$ , the initial  $\omega_0$  value between the central grains is modified as

$$\omega = \omega_0 \cdot \cos \theta \quad (\text{Eq.4})$$

The relative percentage change in the electrical resistivity is defined as

$$\Delta\rho(\theta) = \frac{\rho(0) - \rho(\theta)}{\rho(0)} \cdot 100 \quad (\text{Eq.5})$$

In **Error! Reference source not found.**, the results of  $\Delta\rho(T)$  obtained by our model, introducing the Eq (3) in Eq. (2), are presented as a function of  $\theta$  and D.

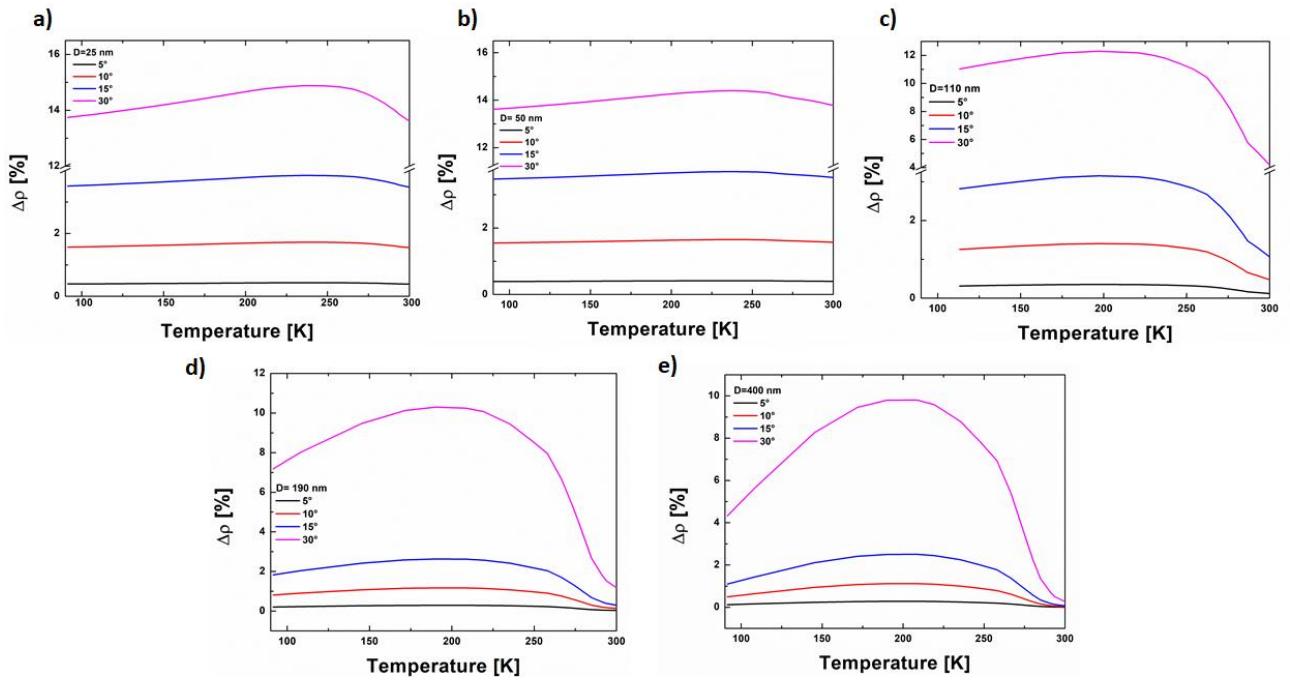



Figure 2: Percentage resistivity variations  $\Delta\rho$  (Eq.5) as a function of the temperature for different values of the tilt angle ( black line is for  $\theta=5^\circ$ , red line for  $\theta=10^\circ$ , blue line for  $\theta=15^\circ$  and the magenta line for  $\theta=30^\circ$ ) and for different D values: a) D=25 nm, b) D=50 nm, c) D=110 nm, d) D=190 nm, e) D= 400 nm.

The  $\Delta\rho$  values are strongly dependent on the tilt angle  $\theta$  with only slight variations of the percentage values as a function of D. The maximum  $\Delta\rho$  values go from 10% to 15% for  $\theta=30^\circ$ , from 2% to 4% for  $\theta=15^\circ$ , between 1% and 2% for  $\theta=10^\circ$  and stay below 1% (from 0.1% to 0.5%) for  $\theta=5^\circ$ . The temperature  $T_M$  at which the  $\Delta\rho$  values reach their maximum ( $\Delta\rho_{\max}$ ), depends upon the grain dimensions, increasing with decreasing D values. In **Error! Reference source not found.**-b, as an example, we show the behavior upon the grain dimensions D of both  $T_M$  and  $\Delta\rho_{\max}$  obtained for  $\theta=5^\circ$ . With decreasing D, it is interesting to note that the  $T_M$  values approach room temperature. Moreover, at least in our simple model, the effect of the tilt angle  $\theta$  on the resistivity, seems to reach a saturation value for  $\theta$  below  $5^\circ$ . In **Error! Reference source not found.**a, we report the  $\Delta\rho$  values as a function of D obtained at 273 K for  $\theta= 5^\circ$ . As already mentioned, values in the range from 0.1% to 0.5% are observed.

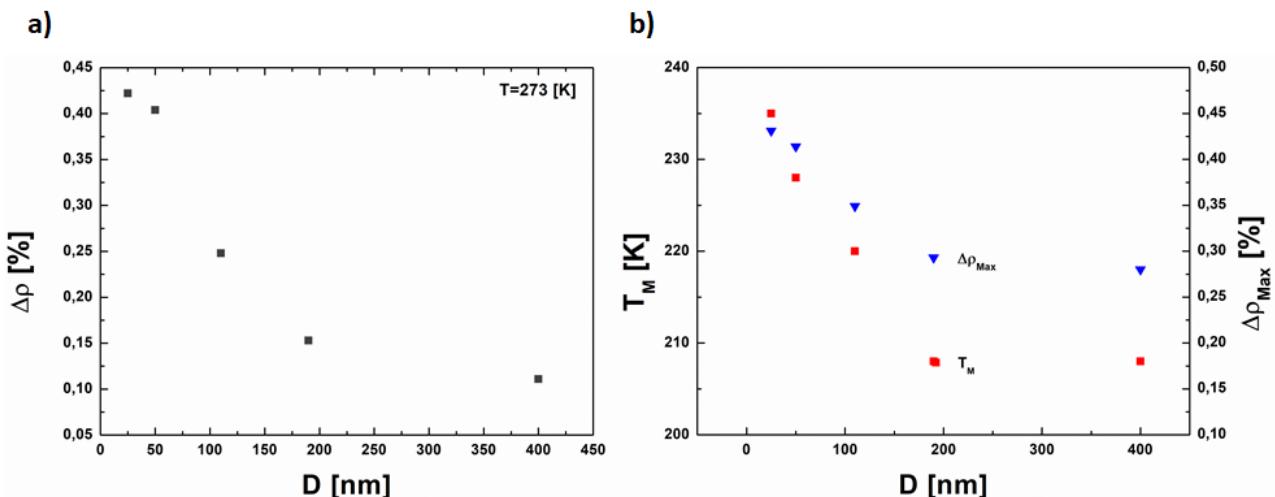



Figure 3: a) percentage resistivity variation  $\Delta\rho$  for different D values at  $\theta=5^\circ$  and  $T=273$  K; b)  $T_M$  temperature (red squares) corresponding to the maximum value of the percentage resistivity variation (blue triangles) for each of the considered D values.

For better clarity, the values in **Error! Reference source not found.a** are also reported in Table 1Table 1.

**Table 1:  $\Delta\rho$  [%] values as a function of D for T=273 K and  $\theta=5^\circ$ .**

| D[nm] | $\Delta\rho$ [%] |
|-------|------------------|
| 25    | 0,42             |
| 50    | 0,40             |
| 110   | 0,25             |
| 190   | 0,15             |
| 400   | 0,11             |

We remark that these values are calculated in the limit which assumes the deformation between adjacent grains along the one dimensional chain to be described in terms of only that of the central couple in **Error! Reference source not found.d**. As a consequence, the actual values expected in the case of a long one dimensional chain should be reduced. On the other hand, the calculated changes are relative to the resistivity variations which, by playing with the system geometry, can correspond to important changes in terms of resistance. Although calculated using a simple approach, our quantitative results clearly show that, also in the case of granular manganites, the effects of an external strain tensor on the electrical transport properties of the system are appreciable even for small deformations. The expected  $\Delta\rho$  variation at room temperature for  $\theta=5^\circ$  is in fact, in the range 0.1%-0.5% and, at least in the limit of the model, these values stay constant for values of  $\theta < 5^\circ$ . Finally, we point out that, by suitably modelling the tilt angle deformation along the system, the calculation can be extended to the case of two-dimensional and three-dimensional arrays of grains. Further studies in this direction are presently ongoing also to compare the model results to real experiments.

## CONCLUSIONS

We have analyzed the effect of an external strain tensor on the resistivity of a granular manganite system. In the model proposed, one-dimensional chain of grains are taken into consideration and the strain effect is introduced via a simple deformation of the system arrangement described in terms of the tilt angle between couples of adjacent grains. The resistivity variations calculated implementing previous theoretical analysis, allow to estimate appreciable values even in the case of small deformation angles. Future studies regarding similar analysis on two- and three-dimensional systems are presently under way, in order to describe situations closer to practical application.

**Author Contribution:** Conceptualization: F.Ferraioli, L. Maritato; formal analysis: F.Ferraioli, L. Maritato and P. De Feo; investigation: P. De Feo, F. Ferraioli and L. Maritato; data curation: P. De Feo; writing -original draft preparation: P. De Feo and L. Maritato; writing- review and editing P. De Feo, L. Maritato and N. Coppola; visualization: P.De Feo and N.Coppola; supervision: L. Maritato. . All authors have read and agreed to the published version of the manuscript.

## REFERENCES

- 1) Bhalla A., Guo R., Roy R., The perovskite structure: a review of its role in ceramic science and technology, *Mat Res Innov*, **2000**, 4, 3–26. <https://doi.org/10.1007/s100190000062>
- 2) Hu Y., Guo Y., Wang Y., Chen Z., Sun X., Feng J., Ming Lu T., Wertz E., Shi J., A review on low dimensional metal halides: Vapor phase epitaxy and physical properties. *J. Mater. Res.*, **2017**, 32 (21), 3992-4024. DOI: [10.1557/jmr.2017.325](https://doi.org/10.1557/jmr.2017.325)
- 3) Viret M., Ranno L., and Coey J. M.D., Magnetic localization in mixed-valence manganites, *Phys. Rev. B*, **1997**, 55, 8067-8070. <https://link.aps.org/doi/10.1103/PhysRevB.55.8067>
- 4) Guiton B. S., Davies P. K., Nano-chessboard superlattices formed by spontaneous phase separation in oxides, *Nature Mater.*, **2007**, 6, 586-591. [10.1038/nmat1953](https://doi.org/10.1038/nmat1953)
- 5) Erni R., Abakumov A. M., Rossell M.D., Batuk D., Nanoscale phase separation in perovskite revisited, *Nature Mater.*, **2014**, 13 (3), 216-217. [10.1038/nmat3865](https://doi.org/10.1038/nmat3865)
- 6) Tennyson E. M., Doherty T. A. S., Stranks S. D., Heterogeneity at multiple lenght scales in halide perovskite smiconductors, *Nature Review Materials*, **2019**, 4, 573-587 <https://doi.org/10.1038/s41578-019-0125-0>
- 7) Dogan F., Lin H., Guilloux-Viry M., Pena O., Focus on Properties and Applications of Perovskites, *Sci. Technol. Adv. Mater.*, **2015**, 16, 020301. <https://doi:10.1088/1468-6996/16/2/020301>
- 8) Salamon M.B., Jaime M., The physics of manganites: Structure and transport, *Rev.. Mod. Phys.*, **2001**, 73, 583. <https://doi.org/10.1103/RevModPhys.73.583>
- 9) Haghiri-Gosnet A. M. and Renard J.P., CMR manganites: physics, thin films and devices, *Journal of Physics D: Applied Physics*, **2003**, 36 (8): R127. [10.1088/0022-3727/36/8/201](https://doi:10.1088/0022-3727/36/8/201)
- 10) Salafranca J., Calderón M. J., Brey L., Magnetoresistance of an all-manganite spin valve: A thin antiferromagnetic insulator sandwiched between two ferromagnetic metallic electrodes, *Phys. Rev. B*, **2008**, 77, 014441-014445. <https://doi:10.1103/PhysRevB.77.014441>
- 11) Prasad B., Blamire M., Fully magnetic manganite spin filter tunnel junctions, *Applied Physics Letters*, **2016**, 109 (13) 132407-132411. <https://doi.org/10.1063/1.4963845>
- 12) Millis J., Darling T., Migliori A., Quantifying strain dependence in “colossal” magnetoresistance manganites, *J. Appl. Phys.*, **1998**, 83 (3), 1588-1591. <https://doi.org/10.1063/1.367310>
- 13) Adamo C., Ke X., Wang H. Q., Xin H. L., Heeg T., Hawley M. E., Zander W., Schubert J., Schiffer P., Muller D. A., Maritato L., Schlom D. G., Effect of biaxial strain on the electrical and magnetic properties of (001)  $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$  thin films, *Appl. Phys. Lett.*, **2009**, 95, 112504-112506. <https://doi.org/10.1063/1.3213346>

14) Ovsyannikov, G.A., Shaikhulov, T.A., Shakhunov, V.A., V. L. Preobrazhensky, T. Mathurin, N. Tiercelin, P. Pernod, Resistivity of Manganite Thin Film Under Strain, *J Supercond Nov Magn* **2019**, 32, 2759–2763. <https://doi.org/10.1007/s10948-019-5026-3>

15) K. H. Ahn K. H., Lookman T., Bishop A.R., Strain-induced metal-insulator phase coexistence in perovskite manganites, *NATURE* **2004**, 428, 401-404. <https://doi:10.1038/nature02364>.

16) Petrov, A.Y., Aruta, C., Mercone, S., Adamo, C., Alessandri, I., Maritato, L., Room temperature metal-insulator transition in as grown  $(La_{1-x}Sr_x)(y)MnO_3$  thin films deposited by molecular beam epitaxy, *Eur. Phys. J. B* 2004, 40 (1), 11–17. <https://doi:10.1140/epjb/e2004-00233-7>.

17) Chen, Y.H., Wu, T.B., Thickness dependent transport properties and percolative phase separation in polycrystalline manganite thin films, *Appl. Phys. Lett.* **2008**, 93, 224104. <https://doi.org/10.1063/1.3037202>

18) Kataria, B., Solanki, P., Kachr, U., Vagadia, M., Ravalia, A., Keshvani, M.J., Trivedi, P., Venkateshvarlu, D., Ganesan, V., Kandasami, A., Shah, N., Kuberkar, D.G., Role of strain and microstructure in chemical solution deposited  $La_{0.7}Pb_{0.3}MnO_3$  manganite films: Thickness dependent swift heavy ions irradiation studies, *Radiation Physics and Chemistry* **2013**, 85 173-178. [10.1016/j.radphyschem.2013.01.023](https://doi:10.1016/j.radphyschem.2013.01.023)

19) Pryds N., Esposito V., When two become one: An insight into 2D conductive oxide interfaces, *J. Electroceram.* **2017**, 38, 1-23. <https://doi.org/10.1007/s10832-016-0051-0>

20) Zhang N., Ding W., Zhong W., Xing D., Du Y., Tunnel-type giant magnetoresistance in the granular perovskite  $La_{0.85}Sr_{0.15}MnO_3$ , *Phys. Rev. B*, **1997**, 56 (13), 8138-8142. <https://link.aps.org/doi/10.1103/PhysRevB.56.8138>

21) Cojocaru S., Naddeo A., Citro R., Modification of the Bloch law in ferromagnetic nanostructures, *EuroPhysics Letters*, **2014**, 106, 17001-17006. [10.1209/0295-5075/106/17001](https://doi:10.1209/0295-5075/106/17001)