Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

Article

Trypanosoma cruzi presenilin-like transmembrane
aspartyl protease: Characterization and cellular
localization

Guilherme C. Lechuga 12, Paloma Napoleao Pégo?, Carolina C.G. Bottino?, Rosa T. Pinho?, David
W. Provance, Jr 12 and Salvatore G. De-Simone 5 *

1 FIOCRUZ, Center for Technological Development in Health/National Institute of Science and Technology
for Innovation on Diseases of Neglected Population (INCT-IDPN), Rio de Janeiro, R], Brazil;
guilherme.lechuga@yahoo.com.br; paloma.pego@cdts.fiocruz.br; bill. provance@cdts.fiocruz.br

2 FIOCRUZ, Oswaldo Cruz Institute, Cellular Ultrastructure Laboratory, Rio de Janeiro, R], Brazil

3 FIOCRUZ, Oswaldo Cruz Institute, Interdisciplinary Medical Research Laboratory, Rio de Janeiro, R],
Brazil;

4 FIOCRUZ, Oswaldo Cruz Institute, Clinical Immunology Laboratory, Rio de Janeiro, R], Brazil;

5 Federal Fluminense University, Department of Molecular and Cellular Biology, Niteroi, R], Brazil.

* Correspondence: salvatore.dsimone@cdts.fiocruz.br; Tel.: +55-21-3865-8183

Abstract: The increasing detection of infections of Trypanosoma cruzi, the etiological agent of Chagas
i disease, in non-endemic regions beyond Latin America has risen to be a major public health issue.
! With an impact in the millions of people, current treatments rely on antiquated drugs that produce
' severe side effects and are considered nearly ineffective for the chronic phase. The minimal progress

in the development of new drugs highlights the need for advances in basic research on crucial

biochemical pathways in T. cruzi to identify new targets. Here, we report on the T. cruzi presenilin-
F like transmembrane aspartyl enzyme, a protease of the aspartic class in a unique phylogenetic

subgroup with T. vivax separate from protozoans. Computational analyses suggest it contains 9
r transmembrane domains and an active site with the characteristic PALP motif of the A22 family.
» Multiple linear B-cell epitopes were identified by SPOT synthesis analysis with Chagasic patient
‘ sera. Two were chosen to generate rabbit antisera, whose signal was primarily localized to the
i flagellar pocket, intracellular vesicles and endoplasmic reticulum in parasites by whole cell
’ immunofluorescence. The results suggest that the parasitic presenilin-like enzyme could have a role
! in the secretory pathway and serve as a biomarker for infections.
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1. Introduction

Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi and endemic to Latin
America, currently affecting 8 million people worldwide [1]. Despite successful governmental
strategies to control Triatoma infestans, the primary vector responsible for transmission in Southern
Cone countries [2], the emergence of secondary vector species and multiple instances of oral
outbreaks, underlie recent increases in transmission [3,4]. Alarmingly, current migratory trends out
of endemic areas have greatly contributed to the spread of the disease to non-endemic countries that
are causing social issues and having a high economic impact on national health care systems, most
notably in North America and Europe [5].

There are only two approved drugs available for the treatment of Chagas disease, nifurtimox
and benznidazole (Bz). They are only indicated for the acute phase and are ineffective during the
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chronic phase of the disease. Additionally, they produce severe side effects that often lead to a
discontinuation of treatment before the prescribed endpoint [6,7]. Other concerns are naturally
resistant strains [8] and a dormancy state of T. cruzi that also leads to resistance [9]. Recent clinical
trials on the effectiveness of Bz for preventing or slowing cardiac pathogenesis showed unsatisfactory
results [10]. Similar results were observed with posaconazole [11,12], which reinforces the need to
search for new, more efficient therapeutic drugs.

A promising approach to identify new targets is to investigate parasite metabolism pathways.
Among the many metabolic candidates explored in different T. cruzi life stages, proteases have been
intensively studied for inhibition [13-15]. These proteins are involved in basic functions like nutrition
and cell division as well as other more specific activities such as evading the immune system or acting
as virulence factors [16-18]. Cruzipain, the major cysteine protease of T. cruzi, has already been the
aim of multiple studies for the development of new inhibitors [19,20]. Numerous other proteases
could also be targets. According to the MEROPS protease database on those expressed from the T.
cruzi genome, cysteine and metalloproteases represent the most abundant classes with more than 150
different annotations, whereas serine, threonine and aspartyl proteases are present in a lesser number
[21].

The presence and role of aspartic proteases in T. cruzi is an understudied area of its biology. Our
group previously identified the presence of two distinct aspartyl proteases activities that differed by
their cellular localization. One activity was detected in the supernatant of whole parasite extracts
after centrifugation at 100,000 x g, while the other was associated with a membrane-enriched fraction
[22]. The presence of an aspartic enzyme associated with the membrane drew our attention for its
potential to have a presenilin (PS)-like function as the catalytic portion of a parasitic y-secretase
complex (GSC). This complex is a multimeric intramembrane structure found in many species
ranging from animal to plants. It has been localized in different subcellular membrane compartments
(e.g., mitochondria, cell membrane and nuclear envelope) with a major distribution to the
endoplasmic reticulum (ER) and Golgi apparatus [23-26]. While PS-like enzymes have been
confirmed in the parasites Schistosoma mansoni [27] and Plasmodium falciparum [28,29] as well as the
nematode Caenorhabditis elegans [30], its presence in T. cruzi has not been previously confirmed. The
importance of the PS-like aspartyl protease in P. falciparum for its invasion of red blood cells [28]
suggested that a T. cruzi form could also serve a vital function.

Here, genomic information was used to generate a peptide library of the T. cruzi PS-like coding
region to represent potential linear B-cell epitopes. Two of the multiple linear B-cell epitopes
identified with Chagas patient sera were used to generate rabbit monospecific antibodies for the
cellular localization of the enzyme by fluorescence microscopy. Bioinformatics and biochemical
approaches were used to characterize the enzyme structure. The identification of this novel
transmembrane aspartyl-protease, located mainly in the flagellar pocket, opens the potential to
elucidate its metabolic function and role in the T. cruzi homeostasis.

2. Materials and Methods
2.1. Reagents

Amino-PEG500-UC540 cellulose membranes were obtained from Intavis AG Bioanalytical
Instruments (Germany). Amino acids for peptide synthesis were purchased from Calbiochem-Merck
(Germany). BSA, acetic anhydride, N, N-dimethylformamide, Freund’s incomplete adjuvant, DAP]I,
TRITC and FITC labeled anti-rabbit IgG antibodies, TRITC-phalloidin, monodancylcadaverine,
maleimide activated kit, Tween® 20, acetonitrile, monodancylcadaverine, tissue protease inhibitor
cocktail and trifluoracetic acid and were obtained from Sigma-Merck (USA). Rabbit and goat alkaline
phosphatase-labeled anti-human-IgG (AP-anti-hulgG) and anti-rabbit IgG (AP-anti-rabIgG) were
purchased from Abcam (USA). Super Signal R West Pico chemiluminescent substrate was from Pierce
Biotechnology (Rockford, IL, USA). Centrifugal Filter Units (cut-off 10 kDa) were from Millipore
(Bedford, MA, USA) and Nitro-Block II from Applied Biosystems, USA. Fetal bovine serum (FBS)
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was from Thermo Fisher Scientific Inc. Brain and heart infusion (BHI) medium from Difco and
nitrocellulose membrane from BioRad.

2.2. Parasites and cell culture

The CL-Brener strain of T. cruzi was obtained from the Trypanosomatidae collection (CT-IOC/05)
curated by Dr. Maria A. de Souza (Oswaldo Cruz Institute-FIOCRUZ). Epimastigote parasites were
propagated in BHI medium supplemented with 10% FBS [31]. Trypomastigote forms were obtained
from T. cruzi-infected Vero cell cultures, maintained in RPMI-1640 medium supplemented with 10%
FBS, on the 4th day post-infection. Intracellular amastigotes were obtained by trypsinization of
infected Vero cells monolayers and disruption of cells using a 25-gauge needle followed by
centrifugation (3,000 x g for 15 min at 25 °C) [32].

2.3. Parasite extract

T. cruzi epimastigotes in the log phase (4th day) were washed three times in PBS (pH 7.2) by
centrifugation (5,000 x g for 30 min at 4 °C). The final parasite pellet was suspended in 150 ul of
extraction buffer (150 mM NaCl, 50 mM Tris 50 (pH 7.5) with 1% Triton X-100 and protease inhibitors)
and subjected to 6 cycles of freeze-thawing. After centrifugation (10,000 x g for 1h at 4 °C), the
detergent soluble fraction was collected. Protein concentration was measured using the Folin-Lowry
method.

2.4. Synthesis of the SPOT peptide array on cellulose membrane

The DNA sequence for the putative PS-like aspartic peptidase (Q4CMV5) of the CL Brener strain of
T. cruzi was retrieved from the National Center for Biotechnology Information database. A library of
14 amino acid peptides with a 9-amino acid overlap was designed to represent the entire coding
region (372 aa) of the PS-like protein and automatically synthesized onto cellulose membranes using
an Auto-Spot Robot ASP222 (Intavis, Koeln, Germany) according to the SPOT synthesis protocol [33,
34]. Coupling reactions were followed by acetylation with acetic anhydride (4%, v/v) in N, N-
dimethylformamide to render peptides unreactive during the subsequent steps. After acetylation, F-
moc protective groups were removed by the addition of piperidine to render the nascent peptides
reactive. The consecutive amino acids were added by this same process of coupling, blocking and
deprotection until the desired peptide was generated. After the addition of the last amino acid in the
peptide, amino acid side chains were deprotected using a solution of dichloromethane-trifluoracetic
acid-tri isobutyl silane (1:1:0.05, v/v/v) and washed with methanol. Membranes containing the
synthetic peptides were either probed immediately or stored at —20 °C until needed.

2.5. Screening of SPOT membranes

SPOT membranes were washed with TBS (50 mM Tris-buffer saline, pH 7.0) and then blocked with
TBS-MT (Tris-buffer saline, 3% defatted milk, 0.1% Tween® 20, pH 7.0) under agitation for 1h at room
temperature or overnight at 4 °C. After extensive washing with TBS-T (Tris-buffer saline, 0.1% Tween
20, pH 7.0), membranes were incubated for 2h with human patient sera (1:250 dilution in TBS-MT),
washed three times with TBS-T, incubated for 1h with AP-anti-hulgG (1:5000 dilution in TBS-MT).
Next, membranes were washed three times with TBS-T and then the buffer exchanged to CBS (50
mM citrate-buffer saline) before the addition of the chemiluminescent enhancer Nitro-Block II. The
chemiluminescent substrate Super Signal R West Pico was applied and signals were immediately
detected by an MF-ChemiBis 3.2 (DNR Bio-Imaging Systems, Israel) as described previously [35].
Briefly, a digital image file was generated at a resolution of 5 MP and the signal intensities quantified
using TotalLab (Nonlinear Dynamics, USA) software.

2.6. Peptide synthesis and BSA and biotin conjugation
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Two T. cruzi peptides, EP7 and EP8 (Table 1), were chosen to be synthesized by the F-moc strategy
in a synthesizer machine (PSS-8, Schimadzu, Kyoto, Japan) with a C-terminal cysteine that was used
to conjugate peptides to bovine serum albumin (BSA) using a maleimide activated kit according to
manufacturer's instructions. The reaction mixture was passed through a centricon-P10 and the
peptide concentration in the filtrate (uncoupled peptide) measured on a Qubit device (Thermo
Fisher). Efficiency was calculated as (total peptide-uncoupled peptide/total peptide), which ranged
between 80 and 85% in every case. Peptides were also conjugated to biotin in the C-terminal region
as previously described [36].

2.7. Rabbit polyclonal antibodies production

Two New Zealand rabbits were immunized by a subcutaneous injection of peptide-BSA (150 pg)
emulsified with an equal volume of Freund's incomplete adjuvant. Three other inoculations, without
adjuvant, were administered each 7 days later and the serum collected five days after the last
injection. Blood was collected under standard bioethics conditions from the marginal ear vein.

To remove BSA-reactive antibodies, the rabbit sera anti-EP7 (rab-EP7) was passed over a Sepharose-
4B column (3 cm x 1 cmi.d.) that was coupled with BSA according to conditions previously described
[37]. The removal of anti-BSA antibodies was evaluated by the loss of reactivity in the rab-EP7 to BSA
by immunoblot.

2.8. Parasite sample preparation, SDS-PAGE and immunoblotting

The expression of T. cruzi presenilin-like was evaluated in log phase epimastigotes (5x106/mL) that
were washed three times in PBS (pH 7.2) and incubated for 24 hours in BHI in the presence or absence
of FBS (10%). In addition, parasites (5 x 106/mL) were incubated with 100 and 200 pM of gamma
secretase inhibitors, DAPT and Compound XXI/E respectively, for 24 hours. After incubation,
parasites were washed three times in PBS and a soluble fraction was prepared as described
previously.

Protein samples were separated by sodium dodecyl sulphate (SDS)-polyacrylamide gels
electrophoresis (SDS-PAGE, 10%) under reducing conditions. Proteins bands were visualized with
Coomassie Brilliant Blue R-250 stain.

For immunoblot analysis, total protein (20 pg) was separated by SDS-PAGE and transferred to a
nitrocellulose membrane (2 pm). After blocking with TBST buffer (TBS, 50 mM Tris-Cl, 150 mM NaCl
and 0.05% tween 20, pH 7.5) containing 5% skim milk, membranes were incubated with primary
serum (1:200) overnight at 4 °C, washed three times in TBS-T and incubated with the AP-anti-rablgG
(1:5,000) for 1h at 25 °C. After washing, the immunolabeled proteins were detected by
chemiluminescence using SuperSignal West Pico substrate kit. The densitometry of the bands was
performed using Image J (http://rsbweb.nih.gov).

2.9. Enzyme-linked immunosorbent assay (ELISA)

Wells of a 96 well-plate (C96 Microwell, Nunc, New York, USA) were loaded with the designated
synthetic peptide (1 pg/well) in coating buffer (Na2COs-NaHCOs, pH 9.6) overnight at 4 °C. After
washing (3x) with PBS-T (PBS, pH 7.2 with 0.1% Tween® 20), wells were blocked with PBS-M (PBS,
pH 7.2 with 2% defatted milk) for 2h at 37 °C. Next, a dilution series of immunized rabbit sera (1:10,
1:100, 1:200, 1:400, 1:800 and 1:1000 in 50 pl of PBS, pH 7.2) was added for 2h at 37 °C. Following
several washes with PBS-T, the plates was incubated with alkaline phosphatase labeled goat anti-
rabbit IgG (1:5000 in 50 pl of PBS, pH 7.2) for 2h. Wells were washed with PBS-T before the addition
of p-nitro phenylphosphate (pNPP) substrate. After 15 min, a stop solution (3N NaOH) was added
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and the absorbance was measured at 405 nm within 2h using a FlexStation 3 Microplate Reader
(Molecular Devices, Sumyvale, Ca, USA).

2.10. Immunofluorescence microscopy

Parasites in different life stages (epimastigotes, trypomastigotes and amastigotes) were obtained as
described above and treated with paraformaldehyde (4%) in suspension for 5 min. Parasites were
collected by centrifugation (3,000 x g for 5 min at RT) and washed 3x in PBS. Next, 5 x 10¢ parasites
were placed onto a glass slide and allowed to air-dry overnight. Next, cells were permeabilized with
0.1% Tween® 20 in PBS (pH 7.4) for 5 min and blocked with 1% casein in PBS (pH 7.4) for 15 min at
37 °C. Afterwards, parasites were incubated with rabbit anti-EP7 or pre-immune (1:100), for 2h at 37
°C. Slides were washed in PBS and then incubated with TRITC-labeled anti-rabIgG (1:400) for 1h at
37 °C. Next, parasites were washed in PBS and stained with DAPI and mounted in DABCO solution.
An Axio Imager M2 fluorescence microscope (Carl Zeiss) was used to collect a z-stack of images.

To label autophagic vacuoles, epimastigotes (5 x 10¢/mL) were cultivated for 24 hours in BHI medium
deprived or supplemented with 10% FBS. After incubation, parasites were washed twice in PBS and
incubated with 50 uM of monodancylcadaverine (MDC) for 30 minutes. Parasites were washed with
PBS to remove the dye and visualized under fluorescence microscope.

To evaluate co-localization of EP7 with intracellular organelles, epimastigotes (5 x 10°) were
cultivated as described above and washed twice with PBS, parasites were incubated for 15 minutes
with 0.05 mg/mL of DiOCs(3) to probe the ER and 30 minutes with BODIPY FL-pepstatin A (1 pg/ml).
To specifically probe the flagellar pocket, epimastigotes were incubated with 10 pg/ml Concanavalin
A-FITC (ConA-FITC) for 30 min at 4 °C [38]. After incubation, parasites were washed three times
with PBS and fixed with paraformaldehyde (4%) and processed for anti-EP7 labeling as described
above. For image analysis fluorescence were analyzed in Image ] using BAR plugin for multichannel
plot profile.

2.11. Database searches, computational and phylogeny studies

Searches for possible domains and structural components characteristics of PS in T. cruzi were
performed on the Uniprot database [http://www.uniprot.org/] based on sequence homologies with
similar proteins identified in other organisms. Sequence alignments were conducted on the Clustal
Omega server (http://www.ebi.ac.uk/Tools/msa/clustalo/).

The potential transmembrane domains (TMD) of the T. cruzi enzyme were analyzed by three different
predictions programs; the TMpred [39], the TopCons [40] and MemConP [41]. The model most
consistent with the identified epitopes and motifs were obtained using TopCons which uses an
algorithm based on the statistical analysis of base and the prediction is made using a combination of
several weight-matrices for scoring.

Secondary structure predictions were obtained from PSIPRED [http://bioinf. cs.ucl.ac.uk/psipred/]
and CDM [http://gor.bb.iastate.edu/cdm/] servers. The tertiary structure prediction was performed
on the LOMETS server [http://zhanglab.ccmb.med. umich.edu/ LOMETS/] and I-TASSER
(https://zhanglab.ccmb.med.umich.edu/I-TASSER/; data not shown). For protein-protein interactions
a network analysis was performed using STRING and Cytoscape (version 3.7.2) [42].

For curation of a family of target sequences for Q4CMVS5, a set of aspartic proteases sequences were
retrieved from the Uniprot database using the following criteria: an EC designation of 3.4.23 for
aspartic endopeptidases; a length between 300 to 800 and a reviewed annotation. Another set of
sequences homologous to other proteins, which have been cited by Blast prospected, was added after
a delta-blast of the Refseq database with coverage greater than 80% of their sequence-issue and
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identity over 10-30%. From this set, an alignment was performed on the Mafft server with blossum80
and a gap penalty of 2.5, followed by clustering to eliminate the excessive number of gaps with the
method "minimum linkage".

Multiple sequence alignments and the cladogram were generated using Clustal Won sequences with
following accession numbers: Acromyrmex echinatior (F4X309), Angiostrongylus cantonensis
(C7BVX5), Arabidopsis thaliana (QOWT05), Ascaris suum (F1L7X7), Bathycoccus prasinos (KS8EKK4),
Bombyx mori (I6TQWO0), Bos taurus (Q9XT97), Caenorhabditis elegans (002100), Camponotus
floridanus (E2AIY0), Canis familiaris (Q6RH31), Cricetulus griséus (G3HNF2), Danio rerio
(Q9W6T7), Desmodus rotundus (K9IKI1), Entamoeba histolytica (C4M1A2), Gallus gallus (Q4]IM4),
Heterocephalus glaber (G5BP42), Homo sapiens (’49768), Macaca fascicularis (Q8HXW5), Macaca
mulatta (F7AGUS8), Microcebus murinus (P79802), Mus musculus (P49769), Mus musculus
(Q3UYK2), Mustela putorius furo (G9KIX0), Pan troglodytes (K7CVQ1), Pongo abelii (Q5R780),
Rattus norvegicus (P97887), Sus scrofa (Q0MS44), Xenopus laevis (012976), Trichomonas vaginalis
(A2DZ73), Leishmania mexicana (E9AQFO0), Leishmania major (Q4QF26), Leishmania infantum
(A4HWP2), Leishmania braziliensis (A4H8C1), Trypanosoma cruzi (Q4E0Z2), Trypanosoma brucei
brucei (Q38F54), Trypanosoma brucei gambiense (C9ZXP4), Trypanosoma congolense (GOUTQ1),
Trypanosoma vivax (GOU246).

2.12. Ethics statement

Approval for the experimental use of animals was granted by the Ethics Committee for
Experimentation on Animals of the Oswaldo Cruz Foundation (CEUA ne P-0279/06), Rio de Janeiro
before the start of the study. Animals were housed and maintained according to the institutional
guidelines for animal studies, which conform to the specifications outlined in the US National
Institutes of Health guidelines for the care and use of laboratory animals. All efforts were made to
minimize suffering.

2.13. Statistical Analysis

Statistical analysis was performed using GaphPad Prism version 5.0. The statistical difference using
a t-test were considered if p-value < 0.05.

3. Results

3.1. Spot Synthesis and epitope identification

The identification of the antigenic regions that are present in the PS-like(Q4CMV5) of T. cruzi
was performed through the Spot Synthesis technique, which can define linear B cell epitopes. An
array of 14-mer peptides with a9 amino acid overlap was designed that represented the entire coding
region of Q4CMV5 and was synthesized in situ on a cellulose membrane. The membrane was
incubated with a pool of sera from patients (n =8) whose diagnosis for Chagas disease was confirmed.
An image of the detected chemiluminescent signal is shown in Figure 1A. The signals were quantified
and normalized to the highest intensity to determine the relative intensity percentage, which is
plotted against their positions in Figure 1B. The individual peptide sequences and their locations of
the membrane are listed in Figure 1C. From the 73 peptides in the library, twenty peptides showed
signal intensities above 50% that were considered above the cutoff for a positive reaction
(summarized in Table 1).

d0i:10.20944/preprints202010.0346.v1
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Figure 1: Spot synthesis analysis for linear B-cell epitopes in T. cruzi PS-like protein. A library of 14-
mer peptides that sequentially represents the coding sequence of T. cruzi PS-like protein with a 9
amino acid overlap was synthesized directly onto a cellulose membrane followed by probing with a
pool of Chagasic patient sera (n=8). (A) Image of the chemiluminescent signal from bound human
IgG antibodies. Peptides containing epitope sequences are identified by boxes. (B) Graph of the signal
intensities normalized to the maximum and minimum signals from the positive and negative
controls, respectively. Epitopes were identified within consecutive peptides with intensity levels
above 50%. (C) Table of the individual 14-mer peptides and their locations on the membrane.

Table 1: Epitopes mapped in Trypanosoma cruzi PS-like protein (Q4CMV5) using a pool of sera from
patients with chronic Chagas disease.

Epitope . Residue
code Epitope sequence position
EP1 AFLLGRRIA 11-19
EP2 SLIADQQEFS 41-49
EP3 ALYDMVAVLSPRGP 199-204
EP4 KRNEPL 214-219
EP5 YNSNANPSMQKA 224-235
EP6 PPGEDMHTRDGPRE 241-254
EP7 SVPRLYYA 271-278
EP8 RSPFKLGLGD 281-290

EP9 KSRF 331-334
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EP10 RFVVT 355-359

3.2. Structure and topology of T. cruzi PS-like

All eukaryotic PS family members are predicted to be multi-pass membrane proteins with
several transmembrane domains (TMDs). Using the TopCons program, a topology with nine TMD
was predicted for the T. cruzi PS-like protein from the translated genomic sequence (Figure 2). It also
indicated that the N- and C-terminal should be present in the cytosol and luminal spaces,
respectively. A large intracellular hydrophilic loop was identified between TMD 6 and TMD 7. The
overall topology of T. cruzi PS showed a striking similarity to the structure of other previously
described PSs proteins, with the same number of TM domains. The model presented in Figure 4 also
shows the localization of the epitopes identified by the SPOT synthesis analysis concerning the TMDs.
From the ten epitopes identified, six (EP2, EP4, EP5, EP6, EP7 and EP9) were located in coil/loop
structures of the PS protein with only EP2 appearing on the extracellular surface of the plasma
membrane while the others epitopes were on the internal cytosolic face. Surprisingly the EP1, EP3,
EP8 and EP10 was located in a membrane-extracellular interface region of the protein. Also predicted
protein topology revealed possible intracellular domains for endoproteolytic cleavage between TMD
6 and 7 (Figure 2).

B Conserved domains
@ Epitopes

| |

Protein estimated size (CTF = ~23 kDa) I

Protein estimated size (Holoprotein =41 kDa)

Figure 2: Modeling of T. cruzi PS as a multi-pass transmembrane protein. The model is based on the
predictive results obtained using TopCons (https://topcons.net/pred) and layout was generated using
Protter (http://wlab.ethz.ch/protter/). The model with 9 transmembrane domains reveals all 10
identified epitopes, probable sites of endoproteolytic cleavage (arrow) and the localization of the
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typical domains listed in Table 2. (*) Highly conserved domain in the PS-like catalytic pocket (YD and
GLGD).

3.3. Motifs crucial for A22 aspartyl protease family and y-secretase activity are conserved in T.
cruzi homologs

The data available from studies on the y-secretase complexes in mammalian cells have
indicated that certain amino acid motifs are crucial for its proteolytic activity, substrate recognition
and complex assembly [43]. To prove that these critical motifs are also conserved in the putative T
cruzi PS-like, multiple sequence alignments were performed utilizing amino acid sequences of PS
component homologs from A. thaliana, Physcomitrella patens, Chlamydomonas reinhardtii, Dictyostelium
discoideum and Homo sapiens (data not shown). Potential homologs were identified by PSI-BLAST and
the level of similarity among the PSs from these species was aligned to the Homo sapiens sequence
(data not shown).

By alignment of the T. cruzi PS-like sequence (Q4CMV5) with the H. sapiens PS protein (data not
shown), we found several compatible motifs sequences (Table 2). The human ATIKS motif was
associated with the sequence WSVLN (aa 34-38) from the T. cruzi PS-like, both localized in TMD1.
The human SILNAAIMIS motif was identified with the SIVNALILVA (aa 70-79) motif in the T. cruzi
PS-like protein, both present in the TMD2. The AxxxS (AQRDS) present in the TMD2 of the H. sapiens
PS1 protein was correlated to the T. cruzi PS-like protein NSSND sequence (aa 256-260) located in the
intracellular loop between TMD6 and TMD?. Conversely, the SxxxA (SALMA) motif present in the
TMD?5 of both human PS1 and PS2 proteins aligned with SVIVG (aa 168-172) in T. cruzi PS-like also
located in TMDb5. The GxGD motif aligned with PFKLGLGD (aa 283-287) in the T. cruzi PS-like, in
TMD?7 domain. As in human PS1 highly conserved domains in the catalytic pocket (YD; 192-194 and
GLGD;287-290) were identified closely in TM6 and TM7 respectively.

The human TMDS8 has two motifs [GxxxG (GVKLG) and SxxxGxxxxA (SVLVGKASA)], which
lie on the side of the catalytic Asp. Both motifs contain sites of FAD mutations, which form a portion
of the catalytic core of the PS and influence helix packing that may modulate enzymatic activity. In
the T. cruzi PS-like, they are both situated in TMDZ, observed as PFKLG (aa 283-287) and
SVLSARAAL (aa 295-303). The TMD8 and TMD?9 of the human protein have two unusual, sequential
motifs: AxxxAxxxG (ACFVAILIG) and AxxxSxxxG (ALPALPISITFG). These motifs remained in
similar positions the T. cruzi PS-like, the sequence ASTVAVCEG is located in TMDS (aa 312 -320) and
ALPALPISICFG (336-347) in the TMD9. Finally, the conserved C-terminal PALP motif that
determines the conformation of the active site [44, 45, 46, 47] were identified at TMD9 (aa 339-342) in
T. cruzi sequence (Table 2 and Figure 2).

Table 2: Comparison of amino acid motifs in human PS and the T. cruzi orthologue.

TMD  T. cruzi PS-like aa position®*  Human PS AA position*

1st WSVLN 34-38 ATIKS 98-102

2nd SIVNALILVA 70-79 SILNAAIMIS 132-141

2nd MV 88-89 MV 93-94

Sth SVIVG 168-172 SALMA 230-234
6th YD 193-194 YD 256-257
6th MV 195-196 MV 298-299

- NSSND 256-260 AQRDS 342-346
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- - - SSILA 366-370

=

7th PFKLGLGD 283-290 GVKLGLGD 378-385

=

7th SVLSARAAL 295-303 SVLVGKASA 390-398

=

8th ASTVAVCEG 312-320 ACFVAILIG 409-417

9th PALP 339-342 PALP 433-436

9t ALPALPISICFG  336-347  ALPALPISITFG 431-442

*Amino acid position in PS primary structure; Grey highlight denotes amino acids differences between T. cruzi

and human segments.

3.4. Phylogeny and protein-protein interaction

A group of sequences for PSs was retrieved on the Uniprot server (http://www.uniprot.org)
through a search using the criteria name, "PS", and a length of 300 to 800. A phylogenetic tree was
created with the sequences that was aligned by the neighbor-joining algorithm using a CLUSTAL W
program (Figure 3A). The T. cruzi PS-like aspartyl proteases are localized in a separate subgroup
along with the T. vivax enzyme that is detached from the other protozoa subclasses of this protease
family, like Leishmania sp and T. brucei. Network analysis of predicted protein-protein interaction
revealed that T. cruzi PS-like could interact with calreticulin, signal peptide peptidase (SPP),
peptidase, formin, protein kinase and glycogen synthase kinase 3A (GSK3A) (Figure 3B).

Vertebrate

- IAnhropud

NG ol | Roundworm

| Protozoan
roemmemey | PlaN

Protozoan

Figure 3: Phylogenetic relationship of PS and PS-like proteins and protein-protein interaction
network of T. cruzi PS-like. (A) Amino acid sequences obtained from Uniprot server (http://www.
uniprot.org, search criteria name: "PS" and length: [300 to 800]) were aligned with Clustal W and the
phylogenetic tree was constructed with the sequences aligned by the neighbor-joining algorithm
using a CLUSTAL W in MEGA software. Family members are grouped according to their
relationship to human SPP/SPPL orthologues. Acromyrmex echinatior (F4X309), Angiostrongylus
cantonensis (C7BVX5), Arabidopsis thaliana (QOWTO05), Ascaris suum (F1L7X7), Bathycoccus prasinos
(K8EKK4), Bombyx mori 16TQWO), Bos taurus (Q9XT97), Caenorhabditis elegans (002100), Camponotus
floridanus (E2AIY0), Canis familiaris (Q6RH31), Cricetulus griséus (G3HNEF2), Danio rerio (Q9W6T7),
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Desmodus rotundus (K9IKI1), Entamoeba histolytica (C4M1A2), Gallus gallus (Q4JIM4), Heterocephalus
glaber (G5BP42), Homo sapiens (P49768), Macaca fascicularis (Q8HXWS5), Macaca mulatta (F7AGUS),
Microcebus murinus (P79802), Mus musculus (P49769), Mus musculus (Q3UYK?2), Mustela putorius furo
(GY9KIXO), Pan troglodytes (K7CVQ1), Pongo abelii (Q5R780), Rattus norvegicus (P97887), Sus scrofa
(QO0MS44), Xenopus laevis (012976), Trichomonas vaginalis (A2DZ73), Leishmania mexicana (E9AQFO),
Leishmania major (Q4QF26), Leishmania infantum (A4HWP2), Leishmania braziliensis (A4HS8C1),
Trypanosoma cruzi (Q4E0Z2), Trypanosoma brucei brucei (Q38F54), Trypanosoma brucei gambiense
(C9ZXP4), Trypanosoma congolense (GOUTQL1), Trypanosoma vivax (GOU246). (B) Network analysis of
T. cruzi PS-like protein interactions curated in STRING: calreticulin, signal peptide peptidase (SPP),
peptidase, formin, protein kinase and glycogen synthase kinase 3A (GSK3A). Edge line thickness
represent strength of data support.

3.5. Antisera production, SDS-PAGE and Western Blotting

The ten linear B-cell epitopes identified in the T. cruzi PS-like coding region were next analyzed
by several physical-chemical parameters that included a prediction of stability, net charge in a neutral
buffer and hydrophobicity to evaluate their potential to serve as antigens for antibody production.
In addition, the sequences were compared to the translated nucleotide databases of other parasites,
in particular Leishmania sp., to choose peptides specific for T. cruzi with the lowest chance to display
cross-reactivity. Two epitopes, designated EP7 and EP8, were chosen for the production of anti-sera
in rabbits.

Both epitopes were synthesized as peptides with a cysteine at the C-terminal to permit their
conjugation to BSA through maleimide chemistry. The peptide-BSA preparations of EP7 and EP8
were used to inoculate rabbits and the resulting polyclonal serum was refined through a Sepharose-
BSA column to remove anti-BSA antibodies. The loss of reactivity to BSA was accessed by western
blot with a membrane containing two concentrations of BSA (10 and 20 pg) that suggested that the
BSA reactivity in anti-EP7 serum was eliminated (Figure S1). In preliminary immunofluorescence
experiments with a dilution series of the two anti-peptide sera, anti-EP7 serum maintained a positive
reaction when diluted up to 1:200 in immunofluorescence tests compared to 1:50 for EP8 (data not
shown). Additionally, peptide ELISAs confirmed the higher performance of the anti-EP7 sera as well
as a competition assay that showed a sharp inhibition activity by a preincubation with an increasing
concentration of EP7 peptide. An inhibition of 50% was obtained with 20 uM of peptide (Figure S2).
Based on these results, the rabbit antisera anti-EP7 was chosen for further characterization of the T.
cruzi PS-like protein.

Western blot analysis of epimastigote whole extract revealed 4 major bands, a stronger band at
~23 kDa, and others at ~32 kDa, 40 kDa and 76 kDa (Figure 4A). To examine the pattern of T. cruzi
PS-like expression in epimastigotes, parasites were treated with gamma-secretase inhibitors (GSI
(DAPT and XXI/E) and under serum deprivation. Treatment of parasite with GSI decreased
presenilin holoprotein (~41 kDa) expression (Figure 4B), while it increased presenilin C-terminal
fraction (CTF) (Figure 4D). In addition, FBS deprivation increased significantly (approximately 9-
fold) the CTF expression (Figure 4C).
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Figure 4: Performance of the anti-EP7 rabbit polyclonal serum for detection of the T. cruzi PS-like
protein. (A) SDS-PAGE of CL strain epimastigote whole extract (20 ug) and a corresponding western
blot probed with anti-EP7 serum. Four main bands were identified (arrows). (B) Western blot of
whole cell extracts (20 pg) from epimastigotes under serum deprivation conditions and after
treatment with gamma-secretase inhibitors, DAPT (100 pM) and Compound XXI/E (200 uM) after 24
hours with polyclonal anti-EP7 serum or anti-B-tubulin antibodies (internal control). Densitometry
analysis of the western blots presented as the ratio of T. cruzi PS-CTF and B-tubulin under nutritional
stress (C) and treated with DAPT (100 uM) or compound XXI/E (200 uM) (D). Data represent the
mean and standard deviation from at least three independent experiments. *Significant difference
using t-test (p<0.05).

3.6. Subcellular localization of PS-like protein in different stages of T. cruzi

The cellular localization of the T. cruzi PS-like protein was determined by fluorescence
microscopy using the anti-EP7 sera (Figure 5). Differences in intensity and fluorescence pattern were
observed comparing pre-immune serum and anti-EP7 sera immunoreactivity (Figure S3). Merged
images of EP7 staining showed a punctate staining pattern of the PS-like protein that localized to the
plasma membrane and was suggestive of distinct nanodomains, especially in the area of the
flagellum. Epimastigotes and amastigotes forms showed a stronger staining signal for the PS-like
protein in the anterior region near the kinetoplast and flagellum (Figures 5A and C), whereas
trypomastigotes showed a signal distributed along the body and in regions with an undulated
membrane (Figure 5B). In epimastigotes and amastigotes, a portion of the protein was in the
proximity of the flagellar pocket region near the emerging flagellum and kinetoplast (Figure 5A and
O).

To analyze the influence of starvation and nutritional stress in the PS-like fluorescence
distribution, epimastigotes were maintained in serum free medium. Under this condition, an
increased fluorescence signal was observed specifically in the regions of the flagellum and flagellar
pocket region near the kinetoplast when compared to control groups that were cultivated with 10%
FBS (Figure 5 D and E). As an indication of the nutritional stress induced by serum deprivation, an
increase in the number of autophagic vacuoles in epimastigotes was observed by MDC labeling
(Figure S4).

For localization of EP7 to intracellular organelles, epimastigotes were also evaluated using
fluorescent trackers directed to the endoplasmic reticulum (ER), flagellar pocket and acid vacuoles.
As expected, EP7 fluorescence was mainly localized in the anterior region of the parasite (Figure 3 F,
G and H). Multichannel intensity plots related to the longitudinal axis of the parasite revealed a peak
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of EP7 fluorescence in the parasitic anterior region that was occurred after the fluorescence peak
representing the kinetoplast. A partial correlation was observed between the PS-like fluorescence
pattern and the ER, as revealed using DiOCs, that was distributed throughout the epimastigote
(Figure 5 F). In contrast, the distribution of BODIPY FL-pepstatin A, a broad aspartyl protease
inhibitor, co-localized with an aspartic protease present in acidic vacuoles, both lysosomes and
reservosomes, which were distributed in the posterior region of the parasites (Figure 5 G).

To label the flagellar pocket, parasites were incubated with Concanavalin A-FITC (ConA-FITC)
at 4 °C [38]. A strong signal was evident in the anterior region, but a fluorescence signal was also
noticeable on the parasite surface. Near the kinetoplast, the localization of EP7 fluorescence correlated
with the flagellar pocket tracer. An overlay of EP7 signal was partially noted against the ER probe
with a greater correlation to the flagellar pocket and Cathepsin D fluorescent trackers (Figure 5 F, G
and H).

Control Serum free

Merge

Merge

Merge Merge

-

Figure 5: Immunofluorescent subcellular localization of the T. cruzi PS-like protein. A single z-plane
image of a representative parasite of different forms of T. cruzi, (A) amastigote (B) trypomastigote
and (C) epimastigote immunolabeled with anti-EP7 (red) and DAPI to label nuclei and kinetoplast
(blue). White arrowhead shows a immunolabeled concentration signal near the flagellar pocket.
Increased signal of PS-like protein in epimastigotes from controls conditions in 10 % FBS (Control; D)
to serum deprivation for 24 hours (E). Cytolocalization of EP7 with the ER stained with DiOC6 (F),
intracellular vesicles marked with Cathepsin B (G) and the flagellar pocket (H). Fluorescence intensity
plot of each channel (Red, Green and Blue) were performed tracing a line from the posterior to the
anterior region of the parasite for each organelle dye. Scale bar = 10 um
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4. Discussion

Improvements in our understanding of the biochemistry, cellular composition and molecular
biology of T. cruzi can identify essential proteins and their processes that should contribute to the
development of new therapies against its infections. This is especially important since the current
treatments for Chagas disease include medications that display toxic side effects as well as
considerable drug resistance [7] and there is little possibility of vaccine development. As the interface
between a cell and its environment, the plasma membrane has a fundamental role in the transfer of
material to and from the cytoplasm that also contributes to the detection and propagation of external
signals [48]. Therefore, we have focused on identifying essential enzymes in the plasma membrane
that could serve as targets for new therapies.

Our group previously reported the identification of an aspartyl protease activity that could be
differentially distributed to a membrane-enriched fraction separate from the soluble fraction of whole
parasite extracts [22]. At the time, the biochemical isolation of the enzyme responsible for the activity,
at a level necessary for identification, proved to be exceedingly challenging. We chose an analysis of
the T. cruzi genomic data as an alternative approach using sequence searches based on homologies.
Using sequences of aspartyl proteases residing in the plasma membrane revealed a single sequence
corresponding to a PS-like protein in T. cruzi. The analysis showed similarities along the primary
sequence and, importantly, in highly conserved domains. Based on our previous observations [22],
we hypothesized that the activity of the membrane-associated aspartic protease could initially be
attributed to the PS-like protein.

Initially, a microarray of peptides was synthesized using the Spot-synthesis technique to identify
linear B-cell epitopes in the putative PS-like T. cruzi protease that are recognized by patient
antibodies. Ten epitopes were readily defined (Table 1), confirming the likelihood that the predicted
T. cruzi PS-like protein is expressed. Molecular modeling of the sequences revealed nine TM domains
(Figure 5), which was similar from the mammalian model presented [49].

To test our hypothesis that the membrane-associated aspartyl protease activity could be
attributed to the presence of the T. cruzi PS-like protein, immunoblotting was performed with rabbit
anti-EP7 epitope peptide. The estimated size of PS-like holoprotein is 41 kDa, which correlates with
one of the bands detected by western blot. Two smaller bands, one of 24 kDa and another at 32 kDa,
are compatible with C-terminal fragments (CTF), which suggests that the enzyme can suffer
endoproteolytic cleavage as observed for the human orthologue [23]. The presence of two CTFs is
related to an alternative cleavage pathway promoted by caspases during apoptosis [50]. The
induction of apoptosis could in part explain the increased expression of CTF observed under serum-
free conditions and compound treated parasites. Additionally, the different electrophoretic mobilities
of the CTFs could reflect differences in phosphorylation [51]. Although, it is known that GSC can be
dissociated with Triton X-100 (1%), the higher molecular mass band found (~76 kDa), could be
attributed to the retention of PS-like protein with other proteins that would be consistent with its
presence in a complex, such as NIC, Aph-1 and Pen-2, since some fractions can remain physically
associated in high-molecular weight complexes that are often metabolically stable [23, 52].

Presenilin undergoes autoproteolytic cleavage into two subunits, N-terminal fraction and C-
terminal fraction. These subunits are integral components of active y-secretase complex and carry
two important aspartyl residues in the active site [44]. Western blot with anti-EP7 sera showed an
intense band at ~23 kDa correspondent to CTF, this molecular weight suggest that endoproteolytic
cleavage site is present in the hydrophilic loop between transmembrane 6 and 7. The treatment of
epimastigotes with GSI reduced the holoprotein expression, but increased CTF. GSI drugs (DAPT
and XXI/E) are known to inhibit A3 aggregation in Alzheimer's disease [53]. The exact mechanism of
these noncompetitive proteolytic inhibitors is unknown, but DAPT appears to bind to the PS1-CTF
[54]. This event was shown to increase PS1 levels in cellular and animal models [55] and stabilize the
interactions between PS-CTF in the complex with APH-1/nicastrin and PS1-NTF/PEN-2 [56].

Expression of PS-CTF is low in control cultures but increased significantly in parasites incubated
in serum free medium, as well as the number of autophagic vacuoles labeled with MDC. This event
correlates with previously reports that pointed to the importance of presenilins in autophagy [57,58].
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Autophagy is a process that involves degradation of cellular contents in autophagosome and
lysosomes, which is important for energy balance in response to nutritional stress. It is an important
mechanism to remove misfolded or aggregated proteins, degradation of defective organelles, remove
pathogens and to maintain cytosolic amino acid pool [59]. Presenilin-1 is a key component required
for autophagy and lysosomal proteolysis. It is essential for v-ATPase targeting to lysosomes, and its
acidification [57]. PS1 Knock-out (KO) cells had a delay in the clearance of proteolytic products from
autophagic vacuoles [57]. Similar features were observed in PS-1 KO blastocysts, which had a
decrease in the proteolysis of long-lived proteins and increased autophagosomes. In addition, cells
with a low expression of PS1 had diminished lysosomal acidification due to a dysfunction in
glycosylation and the targeting of the v-ATPase VOal subunit [60]. With serum deprivation, the PS1
KO displayed a rapidly induced apoptosis of brain endothelial cells [61]. These lines of evidence
indicate that PS1 has an essential role in processes of autophagy and apoptosis. In T. cruzi, serum
deprivation lead to an upregulation of T. cruzi PS-like protein expression that appeared linked to
responses to cellular stress.

The subcellular localization of T. cruzi PS-like protein revealed an apparent surface
concentration of signal for the protease that was observed in the anterior region of amastigotes and
near the kinetoplast in epimastigotes. This corresponds to the flagellar pocket, an area of high activity
in trypanosomatids that is important for parasite nutrition and other cellular processes such as cell
polarity, morphogenesis and replication [62]. It is demarcated by a small invagination of the plasma
membrane where the flagellum exits the cytoplasm. The punctate intracellular signals, together with
its fractionation to membranes, suggest that the PS-like protein could also be localized to intracellular
membrane bounded structures, as observed using specific fluorescent markers (Figure 5) for the ER
and acidic vesicles. It also could be associated with the Golgi complex. In other cellular systems, the
integration of these organelles with PS/GSC is responsible for aspects of the secretory pathways
[63,64]. In T. cruzi and other trypanosomatids, the secretory pathway involves the ER and Golgi
complex to the flagellar pocket, which is the main site of exocytosis and endocytosis. Together, they
are part of a multi-organelle complex that has also been implicated in cell polarity and cellular
division [65].

While there is extensive information on the physiological role of this class of aspartyl proteases
in mammalian cells, there is little knowledge of the role of GSC in parasites. Its localization to the
flagellar pocket of the parasite may indicate that it is involved in a compartment of the cell where an
intense endocytic/secretory activity of proteins occurs [48]. In eukaryotic cells, the activity of PS/GSC
has been associated with intracellular trafficking and recycling of endosomal soluble proteins and
membrane-associated receptors, such as transferrin receptor, through the endocytic recycling
compartment [66]. In T. cruzi, transferrin receptors are expressed and localized in the flagellar pocket
of epimastigotes and amastigotes. After transferrin binding, endosomes are delivered to
reservosomes [67]. As amastigotes and epimastigotes are replicative forms, it would be expected that
they would have a larger demand for molecules to sustain proliferation [68].

To evaluate the possible, co-localization of PS-like within organelles like lysosomes, we
incubated cells with BODIPY-FL-pepstatin A. The merged signals in immunofluorescence
demonstrated that a sensitive pepstatin A aspartic protease is present in acidic vacuoles. However, it
remains to be determined if this signal was exclusively due to the presence of T. cruzi PS-like protein
or additional aspartic proteases enzyme families. The genome of T. cruzi predicts two additional
aspartyl proteases, a Ddi-1 aspartic protease and a membrane signal peptide peptidase (SSP). The
first belongs to the A2 family and is a soluble protein [66,69] while SPP is involved in ER quality
control and signal peptide degradation from proteins to be exported [70]. The physicochemical
properties and primary structure of the three proteinases are sufficiently different that no cross-
reactive epitopes were identified (data not shown). Independently of this fact, the presence of PS-like
in these organelles was also confirmed with the specific sera anti-EP7 (Figure 5 G).

A protein interactome was predicted by a bioinformatic analysis to identify potential interacting
partners of the T. cruzi PS-like protein. A putative T. cruzi protein and several trypanosomatids
membrane proteins, including calreticulin, were identified that was consistent with a membrane
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954 association for the T. cruzi PS-like protein (Figure 3). T. cruzi calreticulin has been localized in the ER,

9555  as was the T. cruzi PS-like protein, and is involved in glycoprotein folding [71]. It has also been
implicated in Ca*> homeostasis [72]. Interestingly, human PS-1 is also involved in Ca+ homeostasis,
in the lysosome as well as in acidification and proteolysis [73]. Predictions from the protein-protein
network interaction also revealed that PS-like could possibly interact with glycogen synthase kinase,
a serine/threonine kinase. In Trypanosoma brucei, this enzyme is involved in the regulation of
transferrin endocytosis in the parasite flagellar pocket [74], a region of PS-like localization.

Phylogenetic analysis revealed distinct phylogenetic clusters of PS/PS-like proteases. For the T.
cruzi PS-like aspartyl protease, a different subgroup was defined that contained the T. vivax variant,
which was separate from the other protozoan subclasses including Leishmania sp and T. brucei. Yet,
the analysis indicates that the motifs crucial for y-secretase assembly and activity are well conserved
among evolutionary distant species. In the aspartic proteases from the A22 family, conserved
domains of the Asp residue in the active site located in the N-terminal fragment is preceded by a Tyr
residue. Also, in the C-terminal fragment, the active site is composed of the sequence Gly-X-Gly-Asp-
Phe, where X may be a Leu or a Phe residue [75]. The sequence known as the PALP domain (Pro-Ala-
Leu-Pro) is well conserved within PS proteins and was identified in the T. cruzi protein at the TMD9
(Figure 2), similar to the human PS, which indicates that this aspartyl protease most likely belongs in
the A22 family [75]. Together with the catalytic motifs GLGD and YD, the PALP domain determines
the conformation of the active site [39,76,77] and was identified in all T. cruzi sequences analyzed
(data not shown).

An identified domain in the T. cruzi PS-like protein was the TMD8 AxxxAxxxG sequence that
also exists in human PS. This region appears to be involved in protein-protein interactions within
human cells [78], which has been suggested to function in the formation and stabilization of the GSC
[39].

5. Conclusion

This is the first description of the cellular localization of a PS-like aspartyl enzyme orthologue in
T. cruzi. While the precise function of the T. cruzi PS-like enzyme is yet defined, our results show that
it is expressed and upregulated under serum deprivation. Sequence analysis and epitope mapping
defined it as a multi-pass membrane protein. A comparative structural analysis revealed that several
motifs in the TMDs of known PSs are conserved in the T. cruzi PS-like protein, which suggests there
could be some function conservation. Combined with its subcellular localization, we anticipate a
function in secretion and/or endocytic trafficking along with autophagy. In mammalian cells, PS
activates a variety of class I membrane proteins suggesting that cognate target proteins may exist in
T. cruzi, although differences are expected as the phylogenetic analysis showed that the T. cruzi and
vertebrate homologs were separated into divergent clades. An intensive investigation of the spatial
and temporal expression patterns of the T. cruzi PS-like gene, combined with the use of new knockout
techniques, should help reveal its function in the host-parasite relationship and assist in the
development of novel treatments that targets its enzymatic activity.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Western blot
analysis of rabbit anti-EP7 serum depleted of antibodies anti-BSA in a Sepharose-BSA column. Figure S2: ELISA
performance and specificity of the rabbit sera anti-synthetic peptide EP7 and EP8. Figure S3: Detection of T. cruzi
presenilin protein by immunofluorescence. Figure S4: Autophagic vacuoles labeled with monodansylcadaverine
(MDC) increase during epimastigotes serum deprivation.

Author Contributions: Conceptualization, G.C.L. and S.G.S.; methodology, G.C.L. and S.G.S.; software, G.C.L.;
validation, G.C.L.,, D.W.P. and S.G.S; formal analysis, G.C.L.; investigation, G.C.L., PN.P., C.C.G.B. and RT.P..;
resources, S.G.S.; data curation, G.C.L.; writing —original draft preparation, G.C.L.; writing—review and editing,
G.C.L, DW.P. and S.G.S; visualization, G.C.L.; supervision, S.G.S..; project administration, S.G.S.; funding
acquisition, S.G.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Council for Scientific and Technological Development (CNPgq,
grant numbers #467.488.2014-2; #3075732011; #3013322015-0), and Carlos Chagas Filho Foundation for the


https://doi.org/10.20944/preprints202010.0346.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

Support to Research of the State of Rio de Janeiro (FAPER], grant numbers #110.198-13, #202.841-2018 and #001-
2010 to SGS). GCL was supported by a fellowship from FIOCRUZ/CDTS-INCT-IDPN/FAPER] (380623/2019-6).

Acknowledgments: We thank AOS, Jorge L.S. de Pina and Andre L.A. Souza for his support and advice in a few
steps on this project.

Conlflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1.  World Health Organization. WHO Chagas disease (American trypanosomiasis) Factsheet. World Heal.
Organ. 2015. Available at: http://www.who.int/media centre/fact sheets/fs 340/en/

2. Silveira, A.; Vinhaes, M. Elimination of vector-borne transmission of Chagas disease. Mem. Inst. Oswaldo
Cruz. 1999, 94 Suppl 1, 405-411. DOI:10.1590/S0074-027619 99000700080

3. Coura, ].R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions-
A comprehensive review. Mem. Inst. Oswaldo Cruz 2015, 110, 277-282. DOI: 10.1590/0074-0276140362

4. Hernandez, C.; Salazar, C.; Brochero, H.; Teheran, A.; Buitrago, L.S.; Vera, M.; et al., Untangling the
transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: Parasite
infection, feeding sources and discrete typing units. Parasit. Vectors 2016, 9, 620. DOI: 10.1186/s13071-016-
1907-5

5. Vannucchi, V., Tomberli, B.; Zammarchi, L.; Fornaro, A.; Castelli, G.; Pieralli, F.; et al., Chagas disease as a
cause of heart failure and ventricular arrhythmias in patients long removed from endemic areas: an
emerging problem in Europe. |. Cardiovasc. Med (Hagerstown) 2014, 16, 817-823. DOI:10.2459/JCM.000000
0000000 045

6. Sales, P.A.; Molina, I.; Murta, S.M.F.; Sanchez-Montalva, A.; Salvador, F.; Corréa-Oliveira, R.; et al.,
Experimental and clinical treatment of Chagas disease : A review. Am. J. Trop. Med. Hyg. 2017, 97, 1289-
1303. DOI: 10.4269/ajtmh.16-0761

7. Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas' disease (American
trypanosomiasis). Hum. Exp. Toxicol. 2006, 25, 471-9. DOI: 10.1191/0960327106het6530a

8.  Filardi, L.S.; Brener, Z. Susceptibility and natural resistance of Trypanosoma cruzi strain to drugs used
clinically in Chagas disease. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 755-759. DOI: 10.1016/0035-9203
(87)90020-4

9. Sanchez-Valdéz, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous dormancy protects
Trypanosoma cruzi during extended drug exposure. Elife 2018, 7, pii: e34039. DOI: 10.7554/eLife.34039

10. Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A.; Rosas, F.; et al., Randomized trial of
benznidazole for chronic Chagas' cardiomyopathy. N. Engl. ]. Med. 2015, 373,1295-1306. doi:10.1056/
NEJMoa1507574

11. Molina, I; Gémez, L; Prat, ]J.; Salvador, F.; Trevifio, B.; Sulleiro, E.; et al., Randomized trial of posaconazole
and benznidazole for chronic Chagas' disease. N. Engl. ]. Med. 2014, 370, 1899-908. DOI:10.1056/ NEJMoa
1313122

12. Morillo, C.A.; Waskin, H.; Sosa-Estani, S.; del Carmen Bangher, M.; Cuneo, C.; Milesi, R., et al,
Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzi carriers: The STOP-
CHAGAS trial. ]. Am. Coll. Cardiol. 2017, 69, 939-947. DOI:10. 1016/j.jacc.2016.12.023


http://www.who.int/media%20centre/
https://doi.org/10.4269/ajtmh.16-0761
https://doi.org/10.1191/0960327106het653oa
https://doi.org/10.1016/0035-9203(87)90020-4
https://doi.org/10.1016/0035-9203(87)90020-4
https://doi.org/10.20944/preprints202010.0346.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

13.  Klemba, M.; Goldberg, D.E. Biological roles of proteases in parasitic protozoa. Annu. Rev. Biochem. 2002, 71,
275-305. DOI:10.1146/annurev.bioch em.71.090501.145453

14. Maya, ].D.; Cassels, B.K,; Iturriaga-Vasquez, P.; Ferreira, J.; Faundez, M.; Galanti, N.; et al., Mode of action
of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host.
Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 601-620. DOI: 10.1016/j.cbpa.2006.03.004

15. Clayton, ]J. Chagas disease: pushing through the pipeline. Nature 2010, 465, S12-5. DOI: 10.1038/
nature(09224.

16. Armstrong, P.B. Proteases and protease inhibitors: a balance of activities in host-pathogen interaction.
Immunobiology 2006, 211, 263-281. DOI:10.1016/j.imbio.2006. 01.0 02

17. McKerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol.
Mech. Dis. 2006, 1, 497-536. DOI: 10.1146/annurev.pathol. 1.1103 04.100151.

18.  Vermelho, A.B.; De-Simone, 5.G.; d'Avila-Levy, C.M.; do Santos, A.L.S.; Nogueira, A.C. Trypanosomatidae
peptidases: A target for drugs development. Curr. Enz. Inhibition. 2007, 3, 19-48. DOI: 10.2174/1573408077
79815468

19. Engel, J.C; Doyle, P.S.; Hsieh, I.; McKerrow, J.H. Cysteine protease inhibitors cure an experimental
Trypanosoma cruzi infection. J. Exp. Med. 1998, 188, 725-734.

20. McKerrow, J.H.; Rosenthal, P.J.; Swenerton, R.; Doyle, P. Development of protease inhibitors for protozoan
infections. Curr. Opin. Infect. Dis. 2008, 21, 668-72. DOI:10.10 97/QCO.0b013e328315cca9

21. Rawlings, N.D.; Barrett, A.J.; Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res. 2010, 38,
D227-33. DOI:10.1093/nar/gkp971.

22.  Pinho, R.T.; Beltramini, L.M.; Alves, C.R.; De-Simone, S.G. Trypanosoma cruzi: Isolation and characterization
of aspartyl proteases. Exp. Parasitol. 2009, 122,128-33. DOI:10.1 016/j.exppara.2009.02.005

23. Wolfe M.S. Toward the structure of presenilin/y-secretase and presenilin homologs. Biochim. Biophys. Acta.
2013, 1828, 2886—2897. DOLI: 10.1016/j.bbamem.2013 .04.015

24. Hansson, C.A.; Frykman, S.; Farmery, M.R,; Tjernberg, L.O.; Nilsberth, C.; Pursglove, S.E.; et al., Nicastrin,
PS, APH-1 and PEN-2 form active y-secretase complexes in mitochondria. J. Biol. Chem. 2004, 279, 51654-
51660. DOI: 10.1074/jbc.M4 4500200

25. Brunkan, A.L.; Goate, A.M. PS function and y-secretase activity. J. Neurochem. 2005, 93, 769-92. DOI:10.11
11/7.1471-4159.2005.03099.x

26. Sato, T.; Diehl, T.S.; Narayanan, S.; Funamoto, S.; Ihara, Y.; De Strooper, B.; et al., Active y-secretase
complexes contain only one of each component. . Biol. Chem. 2007, 282(47):33985-93. DOI 10.1074/jbc.
M705248200

27. Magalhaes, L.G.; De Castro-Borges, W.; De Souza Gomes, M.; Guerra-5a, R.; Rodrigues, V. Molecular
cloning, sequencing and expression analysis of PS cDNA from Schistosoma mansoni. Parasitol. Res. 2009, 106,
7-13. DOI: 10.10 07/s00436-009-162 0-9

28. Li, X; Chen, H,; Oh, S.S; Chishti, A.H. A PS-like protease associated with Plasmodium falciparum
micronemes is involved in erythrocyte invasion. Mol. Biochem. Parasitol. 2008, 158, 22-31. DOI:10.1016/j.mol
biopara.2007.11.007

29. Mishra, M,; Singh, V.; Singh, S. Structural insights into key plasmodium proteases as therapeutic drug
targets. Front. Microbiol. 2019, 10, 394. DOI:10.3389/fmicb.2019. 003 94


https://doi.org/10.1016/j.cbpa.2006.03.004
https://doi.org/10.1097/qco.0b013e328315cca9
https://doi.org/10.20944/preprints202010.0346.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

30. Henricson, A.; Sonnhammer, E.L.L.; Baillie, D.L.; Gomes, A.V. Functional characterization in Caenorhabditis
elegans of transmembrane worm-human orthologs. BMC Genomics 2004, 5, 85. DOI: 10.1186/1471-2164-5-85

31. Giovanni-De-Simone, S.; De Carvalho, L.C.P.; Oliva, O.F.P.; Andrade, S.G.; Galvao-Castro, B. Trypanosoma
cruzi strain-specific monoclonal antibodies: identification of Colombian strain flagellates in the insect
vector. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 750-754. DOI: 10.1016/0035-9203(87)90019-8

32. Piras, M.M.; Piras, R.; Henriquez, D. Changes in morphology and infectivity of cell culture-derived
trypomastigotes of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1982, 6, 67-81. DOI:10.1016/0166-6851(82)
90066-4

33. Frank, R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane support-principles and
applications. J. Immunol. Methods 2002, 267, 13-26. DOI:10.10 16/s002 2-1759(02)00137-0

34. De-Simone, S.G.; Napoleao-Pégo, P.; De-Simone, T.S. Spot Synthesis: An optimized microarray to detect
IgE epitopes. Methods Mol. Biol. 2016, 1352, 263-277. DOI: 10.1007/978-1-4939-3037-1_20

35. De-Simone, S5.G.; Napoledo-Pégo, P.; Teixeira-Pinto, L.A.L.; Santos, ].D.L.; De-Simone, T.S.; Melgarejo, A.R ;
et al., Linear B-cell epitopes in BthTX-1, BthTX-II and BthA-1, phospholipase A2's from Bothrops jararacussu
snake venom, recognized by therapeutically neutralizing commercial horse antivenom. Toxicon 2013, 72,
90-101. DOI: 10.1016/j.toxicon.2013.06.004

36. Eid, M.; Evin, G.; Castro, B.; Menard, J.; Corvol, P. New renin inhibitors are homologous with pepstatin.
Biochem ]. 1981, 197, 465-471. DOI:10.1042/bj1970465

37. De-Simone, S.G. ; Nascimento, H.].; Prado, I. ; Aguiar, A.S. ; Melgarejo, A.R. ; Pina, J.L.; et al., Purification
of equine IgG3 by lectin affinity and an interaction analysis via microscale thermophoresis. Anal. Biochem.
2018, 561-562, 27-31. doi: 10.1016/j.ab.2 018.09.010

38. Demmel, L.; Schmidt, K.; Lucast, L.; Havlicek, K.; Zankel, A.; Koestler, T.; et al., The endocytic activity of
the flagellar pocket in Trypanosoma brucei is regulated by an adjacent phosphatidylinositol phosphate
kinase. J. Cell. Sci. 2014, 127, 2351-2364. DOI: 10.1242/jcs.146894

39. Hofmann, K,; Stoffel, W. TMbase-A database of membrane-spanning protein segments. Biol. Chem. Hoppe
Seyler 1993, 347, 166.

40. Bernse, A.; Viklund, H.; Hennerdal, A.; Elofsson, A. TOPCONS: consensus prediction of membrane protein
topology. Nucleic Acids Res. 2009, 37 (Web Server issue), W465-W468. doi: 10.1093/nar/gkp3630gy

41. Honigschmid, P.; Frishman, D. Accurate prediction of helix interactions and residue contacts in membrane
proteins. J. Struct. Biol. 2016, 194, 112-123. DOI:10.1016/ j.jsb. 2016.02.005

42. Doncheva, N.T.; Morris, ].H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and
visualization of proteomics data. J. Proteome Res. 2019, 18, 623—-632. https: //doi.org/10.1021/acs.jproteome.
8b00702

43. Dries, D.R; Yu, G. Assembly, maturation and trafficking of the gamma-secretase complex in Alzheimer's
disease. Curr. Alzheimer Res. 2008, 5,132-146.

44. Wolfe, M.S.; Xia, W.; Ostaszewski, B.L.; Diehl, T.S.; Kimberly, W. T.; Selkoe, D.J. Two transmembrane
aspartates in PS-1 required for PS endoproteolysis and vy-secretase activity. Nature 1999, 398, 513-7.
DOI:10.1038/19077

45. Kimberly, W.T.; Xia, W.; Rahmati, T.; Wolfe, M.S.; Selkoe, D.J. The transmembrane aspartates in PS 1 and
2 are obligatory for y-secretase activity and amyloid (3-protein generation. J. Biol. Chem. 2000, 275, 3173-
3178. DOI:10. 1074/jbc.275.5 .3173


https://www.ncbi.nlm.nih.gov/pubmed/?term=Bernsel%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19429891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Viklund%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19429891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hennerdal%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19429891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Elofsson%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19429891
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703981/
https://dx.doi.org/10.1093%2Fnar%2Fgkp363
https://doi.org/10.20944/preprints202010.0346.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

46. Sato, M; Sato, K; Liou, W.; Pant, S.; Harada, A.; Grant, B.D. Regulation of endocytic recycling by C. elegans
Rab35 and its regulator RME-4, a coated-pit protein. EMBO ]. 2008, 27, 1183-96. DOI: 10.1038/emb0;j.2008.54

47. Yamasaki, A. The GxGD Motif of PS contributes to catalytic function and substrate identification of y-
Secretase. ]. Neurosci. 2006, 26, 3821-3828. DOI:10.1523/JNEUR OSCI .5354-05.2006

48. Berna, L.; Chiribao, M.L.; Greif, G.; Rodriguez, M.; Alvarez-Valin, F.; Robello, C. Transcriptomic analysis
reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma
cruzi. Peer ]. 2017, 5, e3017. DOI:10.77 17/peer;j.3017

49. Kuo, LY;; Hu, J., Ha, Y.; Ehrlich, B.E. PS-like GxGD membrane proteases have dual roles as proteolytic
enzymes and ion channels. J. Biol. Chem. 2015, 290, 64 19-27. DOI: 10. 1074/jbc.M114.629584

50. Kim, T.W.; Pettingell, W.H.; Jung, Y.K,; Kovacs, D.M.; Tanzi, R.E.; Alternative cleavage of Alzheimer-
associated presenilins during apoptosis by a caspase-3 family protease. Science. 1997, 18;277(5324):373-6.
doi: 10.1126/science.277.5324.373.

51. Walter, J.; Griinberg, J.; Capell, A.; Pesold, B.; Schindzielorz, A.; Citron, M.; et al., Proteolytic processing of
the Alzheimer disease-associated presenilin-1 generates an in vivo substrate for protein kinase C. Proc.
Natl. Acad. Sci. U S A. 1997, 13;94(10):5349-54. doi: 10.1073/pnas.94.10.5349.

52. Elad, N.; De Strooper, B.; Lismont, S.; Hagen, W.; Veugelen, S.; Arimon, M.; et al, The dynamic
conformational landscape of gamma-secretase. J. Cell. Sci. 2015, 128, 589-598. https://doi.org/10.1242/jcs.
164384

53. Roderick, J.E., Tesell, J.,, Shultz, L.D., Brehm, M.A,, Greiner, D., Harris, M.H,, et al., c-Myc inhibition
prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-
ALL cells. Blood 2014, 123, 1040-1050. d0i:10.1182/ blood-2013-08-522698

54. Morohashi, Y.; Kan, T.; Tominari, Y.; Fuwa, H.; Okamura, Y.; Watanabe, N.; et al., C-terminal fragment of
presenilin is the molecular target of a dipeptidic gamma-secretase-specific inhibitor DAPT (N-[N-(3,5-
difluorophenacetyl)-L-alanyl]-S-phenyl glycine t-butyl ester). ]J. Biol. Chem. 2006, 281, 14670-14676.
DOI:10.1074/jbc. M5 13012200

55. Sogorb-Esteve, A.; Garcia-Ayllon, M.S.; Llansola, M.; Felipo, V.; Blennow, K.; Sdez-Valero, J. Inhibition of
v-secretasel leads to an increase in presenilin-1. Mol. Neurobiol. 2018, 55, 5047-5058. DOI:10.1007/s12035-
017-0705-1

56. Barthet, G.; Shioi, J.; Shao, Z.; Ren, Y.; Georgakopoulos, A.; Robakis, N.K. Inhibitors of y-secretase stabilize
the complex and differentially affect processing of amyloid precursor protein and other substrates. FASEB
J. 2011, 25, 2937-2946. DOI:10.1096/£j.11-183806

57. Lee, ].H.; Yu, W.H.; Kumar, A, Lee, S.; Mohan, P.S.; Peterhoff, C.M.; et al., Lysosomal proteolysis and
autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141, 1146~
1158. DOI: 10.1016/j. cell.2010. 05.008

58. Neely, KM.; Green, K.N.; LaFerla, F.M. Presenilin is necessary for efficient proteolysis through the
autophagy-lysosome system in a y-secretase-independent manner. |. Neurosci. 2011, 31, 2781-2791.
https://doi.org/10.1523/J]NEUROSCI.5156-10. 2010

59. Glick, D.; Barth, S.; Macleod, K.F. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010, 221, 3
12. DOI: 10.1002/path.2697

60. Neely, K. M.; Green, K. N.; LaFerla, F. M. Presenilin is necessary for efficient proteolysis through the
autophagy-lysosome system in a y-secretase-independent manner. |. Neurosci. 2011, 31, 2781-2791.
https://doi.org/10.1523/J]NEUROSCI. 5156-10.2010


https://doi.org/10.1523/JNEUROSCI.5156-10.%202010
https://doi.org/10.1523/JNEUROSCI.%205156-10.2010
https://doi.org/10.20944/preprints202010.0346.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

61. Gama Sosa, M. A.; De Gasperi, R.; Hof, P. R.; Elder, G. A. Fibroblast growth factor rescues brain endothelial
cells lacking presenilin 1 from apoptotic cell death following serum starvation. Sci rep.. 2016, 6, 30267.
https://doi.org/10.1038/srep 30267

62. Durante, LM.; Camara, M.M.; Buscaglia, C.A. A novel Trypanosoma cruzi protein associated to the flagellar
pocket of replicative stages and involved in parasite growth. PLoS. ONE. 2015, 10, e0130099.
DOI:10.1371/journal.pone.0130099

63. Wakabayashi, T.; De Strooper, B. Presenilins: members of the gamma-secretase quartets, but part-time
soloists too. Physiology (Bethesda) 2008, 23, 194-204. DOI: 10.1152/physiol.00009.2008

64. Field, M.C,; Carrington, M. The trypanosome flagellar pocket. Nat. Ver. Microbiol. 2009, 7, 775-86. DOI:
10.1038/nrmicro2221

65. McConville, M.J.; Mullin, K.A,; Ilgoutz, S.C.; Teasdale, R.D. Secretory pathway of Trypanosomatid
parasites. Microbiol. Mol. Biol. Rev. 2003, 66,122-154. DOI: 10.1128/ mmbr.66.1.122-154.2002

66. Zhang, M.; Haapasalo, A.; Doo, Y. K,; MacKenzie Ingano, L.A.; Pettingell, W.H.; Kovacs, D.M. PS/y-
secretase activity regulates protein clearance from the endocytic recycling compartment. FASEB ]. 2006, 20,
1176-1178. DOI:10. 1096/1j.05-5531fje

67. Batista, CM.; Kessler, R.L.; Eger, 1.; Soares, M. J. Trypanosoma cruzi intracellular amastigotes isolated by
nitrogen decompression are capable of endocytosis and cargo storage in reservosomes. PLoS One 2015, 10,
e0130165. DOI: 10. 1371/journal.pone.01 30165

68. Bonfim-Melo, A.; Ferreira, E.R.; Florentino, P.; Mortara, R. A. Amastigote synapse: The tricks of
Trypanosoma cruzi extracellular amastigotes. Front. Microbiol. 2018, 9, 1341. DOI: 10.3389/fmicb.2018.01341

69. White, R.E.; David ]J. Powell, D.J.; Berry, C. HIV proteinase inhibitors target the Ddil-like protein of
Leishmania parasites. FASEB ]. 2016, 25, 1729-1736. DOI: 10.1096/1j.10-178947

70. Sibley, L.D. The roles of intramembrane proteases in protozoan parasites. Biochim. Biophys. Acta. 2013, 1828,
2908-2915. https://doi.org/10.1016/j.bbame m.2013.04.017

71. Conte, I; Labriola, C.; Cazzulo, ].J.; Docampo, R.; Parodi, A.]. The interplay between folding-facilitating
mechanisms in Trypanosoma cruzi endoplasmic reticulum. Mol. Biol. Cell 2003, 14, 3529-3540. DOI:
10.1091/mbc.e03-04-0228

72.  Ramakrishnan, S.; Docampo, R. Membrane proteins in Trypanosomatids involved in Ca2+ homeostasis
and signaling. Genes 2018, 9, 304. DOI: 10.3390/genes9060304

73. Lee, ].H.; McBrayer, M.K,; Wolfe, D.M.; Haslett, L.].; Kumar, A.; Sato, Y.; et al., Presenilin 1 maintains
lysosomal Ca(2+) homeostasis via TRPMLI1 by regulating vATPase-mediated lysosome acidification. Cell.
Rep. 2015, 12, 1430-1444. DOI: 10.1 016/j.celrep.2015.07.050

74. Guyett, P.J.; Xia, S.; Swinney, D.C.; Pollastri, M.P.; Mensa-Wilmot, K. Glycogen synthase kinase 3f3
promotes the endocytosis of transferrin in the African Trypanosome. ACS Infect. Dis. 2016, 2, 518-528. DOL:
10.1021/acsinfecdis.6b00077

75. Kimberly, W.T.; LaVoie, M.].; Ostaszewski, B.L.; Ye, W.; Wolfe, M.S.; Selkoe, D.J. Gama-secretase is a
membrane protein complex comprised of PS, nicastrin, Aph-1 and Pen-2. Proc. Natl. Acad. Sc. (USA) 2003,
100, 6382-6387. DOI: 10.1073/pnas. 103739 2100

76. Yamasaki, A.; Tani, K;; Yamamoto, A.; Kitamura, N.; Komada, M. The Ca 2+ -binding protein ALG-2 is
recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the localization of Sec31A. Mol. Biol.
Cell. 2006, 17, 4876-4887. DOI: 10.1091/ mbc.e06-05-0444


https://doi.org/10.1038/
https://doi.org/10.1152/physiol.00009.2008
https://doi.org/10.1128/mmbr.66.1.122-154.2002
file:///E:/Users/Billp/Desktop/Provance/Fiocruz/Manuscripts/%20Giovanni/2020/202009%20Tcruzi/Biochim.%20Biophys.%20Acta
https://www.sciencedirect.com/science/journal/00052736/1828/12
https://www.sciencedirect.com/science/journal/00052736/1828/12
https://doi.org/10.1016/j.bbame%20m.2013.04.017
https://doi.org/10.20944/preprints202010.0346.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

77. Wang, ]., Beher, D., Nyborg, A. C., Shearman, M. S., Golde, T. E., Goate, A. (2006). C-terminal PAL motif of
PS and PS homologs required for normal active site conformation. J. Neurochem. 96 (1):218-27. DOI:10.11
11/.1471-4159.200 5.03548.x

78. Marinangeli, C.; Tasiaux, B.; Opsomer, R.; Hage, S.; Sodero, A.O.; Dewachter, I; et al., PS transmembrane
domain 8 conserved AXXXAXXXG motifs are required for the activity of the y-secretase complex. . Biol.
Chem. 2015, 290, 7169-7184. DOI:10.1074/ jbc.M114.601286


https://doi.org/10.20944/preprints202010.0346.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 October 2020 d0i:10.20944/preprints202010.0346.v1

Supplementary Material
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Figure S1: Western blot analysis of rabbit anti-EP7 depleted of anti-BSA antibodies by a
Sepharose-BSA column. SDS-PAGE (10%) of BSA (10 and 20 pg) under reducing
conditions, revelated by chemiluminescence using anti-EP7 peptide polyclonal rabbit
sera before and after purification in Sepharose-BSA column.
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Figure S2: Performance and specificity of the rabbit sera anti-synthetic peptide
EP7 and EP8. Two individual rabbits were immunized with either synthetic
peptide EP7 or EP8 and serum collected on day 42. Sera sensitivity was evaluated
by ELISA using a dilution series (Panel A; @ Rabbit #1, EP7 and A Rabbit #2, EP8).
Due to the higher sensitivity of the anti-EP7 serum, a competition assay was
performed with increasing concentrations of purified peptide (Panel B; 0.75 uM
to 50 uM). The percent inhibition of binding was calculated with 100% as the

value in the absence of competing peptide.
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Figure S3: Immunofluorescence of T. cruzi epimastigotes, cultivated in BHI medium
supplemented with 10% FBS, using rabbit anti-EP7 sera and pre-immune sera (A)

Parasites were incubated overnight with pre-immune sera (red, Panel A), anti-EP7 (red,
Panel B).
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Figure S4: Autophagic vacuoles labeled with monodansylcadaverine (MDC) increase
during epimastigotes serum deprivation. (A) Labeling of autophagic vacuoles in
epimastigotes cultivated in BHI medium supplemented with 10% FBS under standard
conditions. (B) Epimastigotes incubated in BHI medium without FBS for 24 hours,
showing numerous of MDC-labeled vesicles. Scale bar = 10 um.
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