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Abstract: A technique devised some years ago permits to study a theory in a regime of strong
perturbations. This translate into a gradient expansion that, at the leading order, can recover the BKL
solution. We solve exactly the leading order equations in a spherical symmetric case and we show
that the 4-velocity in such a case is multiplied by an exponential warp factor when the perturbation is
properly applied. This factor is always greater than one. We will give a closed form solution of this
factor for a simple case. Some numerical examples are also given.

Keywords: General relativity; Schwarzschild solution; Warp factor

1. Introduction

The study of Einstein equations in certain regimes is often reduced to solve them numerically [1].
The reason is that they form a set of nonlinear PDEs that are generally difficult to handle with analytical
tools for most interesting situations. Often, the reason relies on the fact that no small parameter can be
found to apply standard perturbation techniques while analytical solutions are very rare and difficult
to find. Some years ago, one of us (M.F.) proposed an approach based on earlier works in strongly
perturbed systems [2]. It was shown that, under a strong perturbation in the formal limit running to
infinity, the leading order is obtained by neglecting the gradient terms in the Einstein equations. The
leading order of this perturbation series was firstly proposed by Belinsky, Kalathnikov, Lifshitz for
their famous BKL conjecture [3–5], as is known today.

Some decades ago, Alcubierre proposed a solution of the Einstein equations [6] that describes
an observer moving with an unbounded velocity provided the condition of positivity of the energy
is violated. A recent paper [7] (see also Refs. therein) yields a short recount about Alcubierre metric
and its interaction with dust. Indeed, any kind of pathology has emerged about it and the difficulties
arise from the fact that this is an engineered metric that is imposed on the Einstein equations. It
would be desirable to have a metric like this one emerging as a solution of the Einstein equations and
conserving the positivity of the energy. A recent proposal goes in such a direction [8]. This is possible
by introducing a hyperbolic shift vector potential and the author shows how this can emerge from a
plasma.

In this paper we will show how a warp factor for the velocity can emerge when a strong
perturbation is applied to a spherical symmetric metric. So, any Eulerian observer will get its velocity
expanded when such perturbation is acting. This extends and complete our preceding work [2]. We
will get the exact solution of the leading perturbation equations and we will show how an exponential
factor can emerge that is systematically greater than one.

The paper is so structured. In Sec.2, we will introduce the technique to treat strongly perturbed
systems. In Sec.3, we apply this to the Einstein equations for a spherical symmetry metric with a
time-dependent perturbation. In Sec.4, we solve the leading order perturbation equations. In Sec.5,
we yield the geodesic equations. In Sec.6, we show how the expansion factor enters into the velocity
providing some examples and an analytic solution. In Sec.7, conclusions are presented.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2020                   doi:10.20944/preprints202010.0337.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-0163-0659
https://orcid.org/0000-0002-6944-9741
https://orcid.org/0000-0002-3200-7667
https://doi.org/10.20944/preprints202010.0337.v1
http://creativecommons.org/licenses/by/4.0/


2 of 12

2. Strong perturbations

Let us consider the following non-linear equation as a toy model for the Einstein equations

−�φ + λV(φ) = 0 (1)

being � = ∇2 − ∂2
t the wave operator (here and in the following c = 1), φ a scalar field and V(φ) its

self-interaction with a coupling λ. For 2D Einstein equations this would be a Liouville equation. We
would like to do perturbation theory in the formal limit of λ→ ∞. This ends up to obtain a non-trivial
series in 1/λ. This can be accomplished by rescaling the time variable [9]. We take t→

√
λt and the

equation above becomes
−∇2φ + λ∂2

t φ + λV(φ) = 0. (2)

Then, we take

φ = φ0 +
1
λ

φ1 +
1

λ2 φ2 + . . . (3)

and substitute this into eq.(2). This gives the set of perturbative equations

∂2
t φ0 = −V(φ0)

∂2
t φ1 = −V′(φ0)φ1 +∇2φ0

∂2
t φ2 = −V′(φ0)φ2 −

1
2

V′′(φ0)φ
2
1 +∇2φ1

... . (4)

We see that we have obtained a set of non-trivial equations that define the perturbation series in the
formal limit λ → ∞. This approach can be applied, exactly in this way, to the Einstein equations.
This also shows how consistent was the original BKL approach in [3–5]. Indeed, we have obtained a
gradient expansion.

3. Strongly perturbed spherical symmetry metric

We are assuming a spherical symmetry metric in the Arnowitt-Deser-Misner (ADM) formalism
given by

ds2 = −α2dt2 + γrrdr2 + γθθdθ2 + γφφdφ2. (5)

This implies a specific choice of the gauge where all the components of the shift vector, normally
named βi, are taken to be zero. Then, the perturbation α1 is just applied to the lapse function as follows
[1]

α2 = α2
0 + α1. (6)

The other components are written as a perturbation series [2]

γij = γ
(0)
ij + γ

(1)
ij + . . . . (7)
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Then, we present them here for completeness, the following set of perturbation equations in a gradient
expansion is given

∂τγ
(0)
ij = −2α0K(0)

ij (8)

∂τγ
(1)
ij = −2α1K(0)

ij − 2α0K(1)
ij

...

∂τK(0)
ij = −2α0K(0)

il Kl(0)
j + α0K(0)K(0)

ij

∂τK(1)
ij = −2α1K(0)

il Kl(0)
j − 2α0K(1)

il Kl(0)
j − 2α0K(0)

il Kl(1)
j

+α1K(0)K(0)
ij + α0K(1)K(0)

ij + α0K(0)K(1)
ij

−1
2

α0γlm(0)
{

∂l∂mγ
(0)
ij + ∂i∂jγ

(0)
lm − ∂i∂lγ

(0)
mj − ∂j∂lγ

(0)
mi

+γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂lγ

(0)
mp

+∂lγ
(0)
in ∂pγ

(0)
jm − ∂lγ

(0)
in ∂mγ

(0)
jp ]

−1
2

γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂pγ

(0)
lm + ∂iγ

(0)
ln ∂jγ

(0)
mp ]

}
−∂i∂jα0 +

1
2

γlm(0)(∂iγ
(0)
jm + ∂jγ

(0)
im − ∂mγ

(0)
ij )∂lα0

...

with (rg = 2GM is the Schwarzschild radius). For the exterior solution one has

α2
0 =

(
1−

rg

r

)
(9)

γ
(0)
rr =

1
1− rg

r

γ
(0)
θθ = r2 γ

(0)
φφ = r2 sin2 θ

and for the interior solution

α2
0 =

1
4

3
√

1−
rg

rs
−

√
1−

r2rg

r3
s

2

(10)

γ
(0)
rr =

(
1−

r2rg

r3
s

)−1

γ
(0)
θθ = r2 γ

(0)
φφ = r2 sin2 θ.

being rs is the value of the r-coordinate at the body’s surface. We also have, with our gauge’s choice
βi = 0, the general formula

Kij = −
1

2α
∂τγij. (11)

In our case is
α2 = α2

0 + α1 = α2
0 + A f (r, t), (12)

being A the amplitude of the perturbation. This yields

∂τγ
(1)
ij = α1

1
α0

∂τγ
(0)
ij − 2α0K(1)

ij , (13)
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that reduces to
∂τγ

(1)
ij = −2α0K(1)

ij , (14)

as γ
(0)
ij does not depend on time variable. Now, one has

∂τK(1)
ij = −2α1K(0)

il Kl(0)
j − 2α0K(1)

il Kl(0)
j − 2α0K(0)

il Kl(1)
j (15)

+α1K(0)K(0)
ij + α0K(1)K(0)

ij + α0K(0)K(1)
ij

+α1K(0)K(0)
ij + α0K(1)K(0)

ij + α0K(0)K(1)
ij

−1
2

α0γlm(0)
{

∂l∂mγ
(0)
ij + ∂i∂jγ

(0)
lm − ∂i∂lγ

(0)
mj − ∂j∂lγ

(0)
mi

+γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂lγ

(0)
mp

+∂lγ
(0)
in ∂pγ

(0)
jm − ∂lγ

(0)
in ∂mγ

(0)
jp ]

−1
2

γnp(0)
[
(∂iγ

(0)
jn + ∂jγ

(0)
in − ∂nγ

(0)
ij )∂pγ

(0)
lm + ∂iγ

(0)
ln ∂jγ

(0)
mp ]

}
−∂i∂jα0 +

1
2

γlm(0)(∂iγ
(0)
jm + ∂jγ

(0)
im − ∂mγ

(0)
ij )∂lα0

... .

This set of equations, written in this way, are too difficult to manage. As we will see below, we can
restate them to find an exact leading order solution.

4. Solving perturbation equations

Let us consider the following rewriting of the ADM equations of motion in exact form. We will
get (as already said, our gauge is βi = 0)

∂tγij = −2αKij

∂tKij = α
[

Rij − 2KilKl
j + KKij

]
− ∂i∂jα. (16)

The Ricci tensor Rij refers to the γij and all Latin indexes run from 1 to 3. We can exploit these equations
for the diagonal elements to obtain

∂tγ11 = −2αK11,

∂tγ22 = −2αK22,

∂tγ33 = −2αK33,

∂tK11 = α
[

R11 − 2K1lKl
1 + KK11

]
− ∂2

1α,

∂tK22 = α
[

R22 − 2K2lKl
2 + KK22

]
− ∂2

2α,

∂tK33 = α
[

R33 − 2K3lKl
3 + KK33

]
− ∂2

3α. (17)
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We notice that Kl
1 = γklKik and K = γklKkl . We are assuming, without proof, that off-diagonal

elements are zero due to the spherical symmetry. Then,

∂tγ11 = −2αK11, (18)

∂tγ22 = −2αK22,

∂tγ33 = −2αK33,

∂tK11 = α
[

R11 − γ11K2
11 + (γ22K22 + γ33K33)K11

]
− ∂2

1α,

∂tK22 = α
[

R22 − γ22K2
22 + (γ11K11 + γ33K33)K22

]
− ∂2

2α,

∂tK33 = α
[

R33 − γ33K2
33 + (γ11K11 + γ22K22)K33

]
− ∂2

3α.

These equation can be stated in a single set of equations for the γs as

∂2
t γ11 = −2α̇K11 − 2αK̇11 =

α̇

α
γ̇11 − 2α2

[
R11 − γ11 1

4α2 (γ̇11)
2 +

1
4α2 γ22γ̇22γ̇11 +

1
4α2 γ33γ̇33γ̇11

]
+ 2α∂2

1α

∂2
t γ22 = −2α̇K22 − 2αK̇22 =

α̇

α
γ̇22 − 2α2

[
R22 − γ22 1

4α2 (γ̇22)
2 +

1
4α2 γ11γ̇11γ̇22 +

1
4α2 γ33γ̇33γ̇22

]
+ 2α∂2

2α

∂2
t γ33 = −2α̇K33 − 2αK̇33 = (19)

α̇

α
γ̇33 − 2α2

[
R33 − γ33 1

4α2 (γ̇33)
2 +

1
4α2 γ11γ̇11γ̇33 +

1
4α2 γ22γ̇22γ̇33

]
+ 2α∂2

3α.

and so on for the other components. As said into Sec.3, this set of equations can be solved perturbatively
by the change of variable τ =

√
λt being λ just an ordering parameter that we will set to 1 to the end

of computations. This means that we can neglect spatial gradients at the leading order, yielding

∂2
τγ11 =

α̇

α
γ̇11 +

1
2

γ11(γ̇11)
2 − 1

2
γ22γ̇22γ̇11 −

1
2

γ33γ̇33γ̇11 =

α̇

α
γ̇11 +

1
2
(γ11)

−1(γ̇11)
2 − 1

2
(γ22)

−1γ̇22γ̇11 −
1
2
(γ33)

−1γ̇33γ̇11 (20)

This can be rewritten as

∂2
τγ11 = γ̇11

d
dτ

[
ln α +

1
2

ln
(

γ11

γ22γ33

)]
(21)

Then,

∂τ ln γ̇11 =
d

dτ

[
ln α +

1
2

ln
(

γ11

γ22γ33

)]
(22)

and finally

ln γ̇11 =

[
ln
(

rk
α

α0

)
+

1
2

ln
(

γ11

γ22γ33

)]
(23)

where we have properly fixed the integration constant in such a way that, in absence of perturbation,
the contribution from α disappears while dimensions are kept with the constant rk = rg for the exterior
solution and rk = rs for the interior solution. This gives the following set of differential equations

γ̇11 = rk
α

α0

√
γ11

γ22γ33
= rk

α

α0
γ11γ−

1
2

γ̇22 = rk
α

α0

√
γ22

γ11γ33
= rk

α

α0
γ22γ−

1
2

γ̇33 = rk
α

α0

√
γ33

γ11γ22
= rk

α

α0
γ33γ−

1
2 (24)
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This set can be solved exactly by multiplying in the following way

γ̇11γ22γ33 = rk
α

α0
γ

1
2

γ̇22γ11γ33 = rk
α

α0
γ

1
2

γ̇33γ11γ22 = rk
α

α0
γ

1
2 (25)

and summing up the three equations obtained in this way giving

γ̇ = 3rk
α

α0
γ

1
2 (26)

that has as a solution

γ(t) =
[

3
2

rkα−1
0

∫ t

0
α(t′)dt′ +

√
γ(0)

]2
(27)

and, e.g. one has

γ(0) = |γ(0)
11 γ

(0)
22 γ

(0)
33 | =

r4 sin2 θ

1− rg
r

. (28)

for the exterior solution. This yields the set of equations

γ̇11 =
rkα−1

0 α
3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
γ11

γ̇22 =
rkα−1

0 α
3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
γ22

γ̇33 =
rkα−1

0 α
3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
γ33. (29)

These can be solved exactly by

γ11(t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
γ
(0)
11

γ22(t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
γ
(0)
22

γ33(t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
γ
(0)
33 . (30)

We can derive the volume expansion from the equation [6]

Θ = −αTrK = −αγijKij =
1
2

γijγ̇ij (31)

and Kij are given by eq.(11). Then,

Θ =
3
2

rkα−1
0 α

3
2 rkα−1

0
∫ t

0 α(t′)dt′ +
√

γ(0)
exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
. (32)
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Here we can see the first appearance of the expansion (warp) factor given by

U(r, θ, t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
. (33)

As we will see, this is always greater than one..

5. Geodesic equations

We give here the geodesic equations in such a perturbed metric. For this aim, We need to consider
the metric

ds2 = −α2(r, t)dt2 + γ11(r, θ, t)dr2 + γ22(r, θ, t)dθ2 + γ33(r, θ, t)dφ2. (34)

From this it is easy to derive the Lagrangian

L = −α2(r, t)ṫ2 + γ11(r, θ, t)(ṙ)2 + γ22(r, θ, t)θ̇2 + γ33(r, θ, t)φ̇2 (35)

where the dot means derivative with respect to the proper time τ. Then, using the Euler-Lagrange
equations one has

d
dτ

∂t
∂ṫ
− ∂L

∂t
=

d
dτ

[−2α2(r, t)ṫ] +
∂α2

∂t
ṫ2 − ∂γ11(r, θ, t)

∂t
ṙ2 − ∂γ22(r, θ, t)

∂t
θ̇2 − ∂γ33(r, θ, t)

∂t
φ̇2

d
dτ

∂L
∂ṙ
− ∂L

∂r
=

d
dτ

[2γ11(r, θ, t)ṙ] +
∂α2

∂r
ṫ2 − ∂γ11(r, θ, t)

∂r
ṙ2 − ∂γ22(r, θ, t)

∂r
θ̇2 − ∂γ33(r, θ, t)

∂r
φ̇2

d
dτ

∂L
∂θ̇
− ∂L

∂θ
=

d
dτ

[2γ22(r, θ, t)θ̇]− ∂γ11(r, θ, t)
∂θ

ṙ2 − ∂γ22(r, θ, t)
∂θ

θ̇2 − ∂γ33(r, θ, t)
∂θ

φ̇2

d
dτ

∂L
∂θ̇
− ∂L

∂θ
=

d
dτ

[2γ33(r, θ, t)φ̇] (36)

Then, finally

d
dτ

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂γ11(r, θ, t)
∂t

ṙ2 +
1
2

∂γ22(r, θ, t)
∂t

θ̇2 +
1
2

∂γ33(r, θ, t)
∂t

φ̇2 = 0

d
dτ

[γ11(r, θ, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂γ11(r, θ, t)

∂r
ṙ2 − 1

2
∂γ22(r, θ, t)

∂r
θ̇2 − 1

2
∂γ33(r, θ, t)

∂r
φ̇2 = 0

d
dτ

[γ22(r, θ, t)θ̇]− 1
2

∂γ11(r, θ, t)
∂θ

ṙ2 − 1
2

∂γ22(r, θ, t)
∂θ

θ̇2 − 1
2

∂γ33(r, θ, t)
∂θ

φ̇2 = 0

d
dτ

[γ33(r, θ, t)φ̇] = 0 (37)

The case θ = π/2 will yield

d
dτ

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂γ11(r, t)
∂t

ṙ2 +
1
2

∂γ33(r, t)
∂t

φ̇2 = 0

d
dτ

[γ11(r, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂γ11(r, t)

∂r
ṙ2 − 1

2
∂γ33(r, t)

∂r
φ̇2 = 0

d
dτ

[γ33(r, t)φ̇] = 0 (38)

The last equation of the set can be integrated out to give

φ̇ =
L

γ33(r, t)
(39)
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that can be substituted in the other two to give

d
dτ

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂γ11(r, t)
∂t

ṙ2 +
1
2

∂γ33(r, t)
∂t

L2

γ2
33(r, t)

= 0

d
dτ

[γ11(r, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂γ11(r, t)

∂r
ṙ2 − 1

2
∂γ33(r, t)

∂r
L2

γ2
33(r, t)

= 0 (40)

Now, we know from eq.(30) that

γ11(r, t) = U(r, t)γ(0)
11

γ33(r, t) = U(r, t)γ(0)
33 (41)

and then

d
dτ

[α2(r, t)ṫ]− 1
2

∂α2

∂t
ṫ2 +

1
2

∂U(r, t)
∂t

[
ṙ2γ

(0)
11 +

L2

U2(r, t)γ(0)
33

]
= 0

d
dτ

[γ11(r, t)ṙ] +
1
2

∂α2

∂r
ṫ2 − 1

2
∂U(r, t)

∂r

[
ṙ2γ

(0)
11 +

L2

U2(r, t)γ(0)
33

]
= 0. (42)

This set can be solved only numerically. So, we take another approach to evaluate the radial velocity.

6. Radial Velocity

The definition of momenta is given by

pα = gαβ pβ. (43)

This yields the dispersion relation
pα pα = −m2. (44)

Similarly, we can derive the 4-velocity from this and is given by

uα = (−α2 ṫ, γ11ṙ, γ22θ̇, γ33φ̇). (45)

Then, the radial motion will be characterized by

vr =
γ11

α

dr
dt

=
U(r, θ, t)
α(r, θ, t)

γ
(0)
11

dr
dt

. (46)

One gets a warp factor, arising from the applied perturbation,

U(r, t) = exp

[
rkα−1

0

∫ t

0
dt′′

α(t′′)
3
2 rkα−1

0
∫ t′′

0 α(t′)dt′ +
√

γ(0)

]
(47)

and we realize that, with this geometry, we can have an exponential growth of the radial velocity
depending on the applied perturbation.

We can provide a closed form solution for a very simple case, a toy model. We take for a
perturbation

α1(t) =
t
θ

(48)

that is, a linear time increasing term. Then,

α2(r, t) = α2
0(r) +

t
θ

. (49)
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Then,

U(r, t) = exp

rkα−1
0

∫ t

0
dt′′

√
α2

0(r) +
t′′
θ

3
2 rkα−1

0
∫ t′′

0

√
α2

0(r) +
t′
θ dt′ +

√
γ(0)

 . (50)

This yields

U(r, t) = exp

rkα−1
0

∫ t

0
dt′′

√
α2

0(r) +
t′′
θ

3
2 rkα−1

0 θ

[
2
3

(
α2

0(r) +
t′′
θ

) 3
2 − 2

3 α0(r)
]
+
√

γ(0)

 . (51)

and

U(r, t) = exp

rkα−1
0

3
2

θ
∫ 2

3 (α2
0(r)+

t
θ )

3
2

2
3 α0(r)

dx
1

3
2 rkα−1

0 θ
[
x− 2

3 α0(r)
]
+
√

γ(0)

 . (52)

Final result is

U(r, t) =
a
(
α2

0(r) +
t
θ

) 3
2 − b

aα3
0(r)− b

, (53)

being a = rkθα−1
0 (r) and b = rkθ −

√
γ(0). It is to see that this factor is always greater than one (this

value is taken for t = 0) and increasing as time increases.
From the formula for radial velocity we can derive the force. This will be obtained by the first

derivative of eq.(46). This yields
dvr

dτ
=

d
dτ

[
γ11

dr
dτ

]
. (54)

This gives, for a mass M,

F = M
dvr

dτ
= M

dt
dτ

dγ11

dt
dr
dτ

+ γ11
d2r
dτ2 . (55)

This gives,

F = M
dvr

dτ
= M

1
α

dγ11

dt
dr
dτ

+ γ11
d2r
dτ2 . (56)

In our toy model, we consider α0 ≈ 1 and γ
(0)
11 ≈ 1, so that

dγ11

dt
=

a
θ

(
1 + t

θ

) 1
2 − db

dt
a− b

+
a
(
1 + t

θ

) 3
2 − b

(a− b)2
db
dt

. (57)

This yields,

dγ11

dt
≈

rk
(
1 + t

θ

) 1
2 + 2r dr

dt
r2 +

rkθ
(
1 + t

θ

) 3
2 − rkθ + r2

r4 2r
dr
dt

. (58)

Then, we get

F ≈ M
(

1 +
t
θ

)− 1
2

 rk
r2

(
1 +

t
θ

) 1
2
+

2
r

dr
dt

+
2rkθ

(
1 + t

θ

) 3
2 − 2rkθ + 2r2

r3
dr
dt

 dr
dt

+M
rkθ
(
1 + t

θ

) 3
2 − rkθ + r2

r2
d2r
dτ2 . (59)
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with the simple kinematic law of motion r(t) = r0 + v0t it is easy to get

F ≈ Mv0
rk

r2(t)
+ 2M

(
1 +

t
θ

)− 1
2 v2

0
r(t)

+

M
(

1 +
t
θ

)− 1
2 2rkθ

(
1 + t

θ

) 3
2 − 2rkθ + 2r2(t)
r3(t)

v2
0. (60)

Force is non-null and dependent on the initial velocity and the sphere radius. It is interesting to note
that the force tend to 0 as time increases but this corresponds to the unphysical case of a perturbation
never turned off. This equation simplifies a lot if we can neglect the terms dependent on rk. One has

F ≈ 3M
(

1 +
t
θ

)− 1
2 v2

0
r(t)

. (61)

This result is independent on the sphere geometry or the Schwarzschild radius. Such a perturbation
is not completely physical. So, we considered some others having the characteristic to be practically
realizable. Considering the interior solution, for a perturbation like α1 = At2 we get

Figure 1. Warp factor for a t2 perturbation with an equation of motion r(t) = h0 + v0t.,

and for a sinusoidal perturbation

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2020                   doi:10.20944/preprints202010.0337.v1

https://doi.org/10.20944/preprints202010.0337.v1


11 of 12

Figure 2. Warp factor for a sin(ωt) perturbation with frequency 1 MHz and equation of motion
r(t) = h0 + v0t + kt2 .

As expected from the toy model, the warp factor is always greater than one and can reach
significantly large values depending on the applied perturbation.

7. Conclusions

We have solved the Einstein equations for a strong perturbation in the case of a spherical
symmetry solution. In this case, the perturbation series reduces to the case of a gradient expansion
and the equations are amenable to an exact analytical treatment. We were able to show that, when a
perturbation is properly applied, there appears a multiplicative warp factor on the radial velocity that
can, in this way, increase exponentially in time. This warp effect does not require exotic energy and
everything is completely in the realm of positive energy solutions of the Einstein equations, even if as
a perturbation series.

We hope these results will find some application in the near future.

References

1. Cook, G., Teukolsky, S. Numerical relativity: Challenges for computational science. Acta Numerica 1999, 8,
1–45.

2. Frasca, M., Strong coupling expansion for general relativity. Int. J. Mod. Phys. D 2006, 15, 1373–1386.
3. Kalathnikov, I. M., Lifshitz, E. M., General Cosmological Solution of the Gravitational Equations with a

Singularity in Time. Phys. Rev. Lett. 1970, 24, 76–79.
4. Belinsky, V. A., Kalathnikov, I. M., Lifshitz, E. M., Oscillatory approach to a singular point in the relativistic

cosmology. Adv. Phys. 1970, 19, 525–573.
5. Belinsky, V. A., Kalathnikov, I. M., Lifshitz, E. M., A General Solution of the Einstein Equations with a Time

Singularity. Adv. Phys. 1982, 31, 639–667.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2020                   doi:10.20944/preprints202010.0337.v1

https://doi.org/10.20944/preprints202010.0337.v1


12 of 12

6. Alcubierre, M., The Warp drive: Hyperfast travel within general relativity. Class. Quant. Grav. 1994, 11,
L73–L77.

7. Santos-Pereira, O. L., Abreu, E. M. C., Ribeiro, M. B., “Dust content solutions for the Alcubierre warp drive
spacetime,” Eur. Phys. J. C 2020 80, no.8, 786 [arXiv:2008.06560 [gr-qc]].

8. Lentz, E. W., “Breaking the Warp Barrier: Hyper-Fast Solitons in Einstein-Maxwell-Plasma Theory,”
[arXiv:2006.07125 [gr-qc]].

9. Frasca, M., “Duality in perturbation theory,” Phys. Rev. A 1998, 58, 3439–3442 [arXiv:hep-th/9801069
[hep-th]].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2020                   doi:10.20944/preprints202010.0337.v1

https://doi.org/10.20944/preprints202010.0337.v1

