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Abstract: We developed a novel hybrid approach for solving global optimization, computer science,
bio-medical and engineering real life applications that is based on the coupling of the Whale Optimizer
and Sine Cosine Algorithms via a surrogate model. We relate the whale optimizer algorithm to balance
between the exploitation and the exploration process in the proposed method. There exist confirmed
techniques for searching approximate best optimal solutions, but our algorithm will further guarantee
that such numerical and statistical solutions satisfy physical bounds of the standard and real life
functions. Our experiments with the benchmark, bio-medical, computer science and engineering real
life problems have illustrated the advantages of using a newly hybrid approach based on mixing
Whale Optimizer and Sine Cosine algorithms. It holds considerable potential for reducing execution
time for solving standard and real life problems and at the same time improving the quality of the
solution.

Keywords: Function Optimization; benchmark function; Whale Optimization (WO) and Sine Cosine
(SC) Algorithm

1. Introduction

The use of nature inspired optimization algorithm has gained popularity in a wide variety of standard,
scientific, engineering and bio-medical real life applications as those techniques have some advantages
over deterministic global optimization techniques. Those advantages include the capability to
handle uninmodal, multi-modal and fixed dimension multi-modal objective problems without the
assumptions of differentiability, continuity and the lack of the need for a good initial guess.
Several metahuristics have been proposed in the literature during last two decades but quest for an
improved and efficient algorithm still continues. This manuscript proposes an efficient hybrid nature
inspired optimization technique.
The proposed algorithms have been tested on several benchmark and biomedical problems. It has
been observed that the proposed algorithm outperforms several other algorithms like Particle Swarm
Optimization (PSO) [1], Ant Lion Optimizer (ALO) [2], Whale Optimization Algorithm (WOA) [3],
Hybrid Approach GWO (HAGWO) [4], Mean GWO (MGWO) [5], Grey Wolf Optimizer (GWO) [6] and
Sine Cosine Algorithm (SCA) [7] in solving several real life problems. The numerical and graphical
presentation of results have been used to show the effectiveness of the proposed algorithm. The results
obtained have been compared with those obtained with in terms of solution quality, solution stability,
convergence speed and ability to find the global optimum and it has been concluded that our algorithm
is better to other recent metaheuristics.
Recently, researchers have originated most number of population based nature inspired metaheuristics
in order to search the best possible optimal solution of tested and real life problems. The first solution
algorithm for the OPF problem was proposed by Dommel and Tinney [8], and since then most numbers
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of other metaheuristics have been presented, some of them are: Particle Swarm Optimization (PSO)
[1], Ant Colony Optimization (ACO) [9], Genetic Algorithm (GA) [10,11], Differential Evolution (DE)
[12,13], fuzzy based hybrid particle swarm optimization (fuzzy HPSO) [14], Whale Optimization
Algorithm (WOA) [15], Hybrid Genetic Algorithm (HGA) [15], harmony search algorithm [16], Robust
Optimization (RO) [17], Grey Wolf Optimization (GWO) [6], Tabu Search (TS) [18], Gravitational
Search Algorithm (GSA) [19], Artificial Neural Network (ANN) [20], Sine Cosine Algorithm (SCA)
[7], Ant Lion Optimizer (ALO) [2], adaptive group search optimization (AGSO) [21], biogeography
based optimization algorithm (BBO) [22], krill herd algorithm (KHA) [23], Grasshopper Optimization
Algorithm (GOA) [24], Multi-Verse Optimizer (MVO) [25], Moth Flame Optimizer (MFO) [26],
Dragonfly Algorithm (DA) [27], Black-Hole-Based Optimization (BHBO) [28], Cuckoo Search (CS) [29]
and In addition, in case of the hybrid convergence, nature inspired algorithm hybridizations using
batch modeling are combinations amid evolutionary techniques and techniques of neighbourhood or
course.
A newly hybrid approach has been presented by Mafarja and Mirjalili [30] using of different feature
selection techniques and Whale Optimization Algorithm (WOA). The main purpose of applying
Simulated annealing here is to enhance the exploitation by finding the most promising regions located
by Whale Optimization algorithm. The accuracy of the newly variants is tested on several standard
functions and compared with three well-known wrapper feature selection methods in the literature.
B. Bentouati et al. [31] presents a new power system planning strategy by combining pattern search
algorithm (PS) with Whale Optimization Algorithm (WOA). The existing variant has been carried
out on the IEEE 30−bus test system considering several objective functions, such as voltage profile
improvement, generating fuel cost, emission reduction and minimization of total power losses are
also verified. The obtained numerical and statistical solutions are verified with recently published
population based metaheuristic variants. Simulation solutions clearly conceal the rapidity and the
effectiveness of the presented approach for solving the OPF function.

R.M.R. Allah [32] developed a new approach based on hybridizing the multi-orthogonal search
strategy (MOSS) with a sine cosine algorithm (SCA), called multi-orthogonal sine cosine algorithm
(MOSCA), for solving engineering design functions. The newly approach integrates the advantages of
the SCA and MOSS to eliminate SCA’s disadvantages, like unbalanced exploitation and the trapping
in local optima. The convergence performance of the newly approach is investigated by using it on
eighteen standard functions and four engineering design functions. The numerical solutions reveal
that newly existing approach is a promising variant and outperforms the other recent metaheuristics
in most cases.
O. E. Turgut [33] proposes a hybrid global optimization approach based on the combination of the
merits of the sine–cosine algorithm (SCA) and backtracking search (BSA) to achieve the optimal
design of a shell and tube evaporator. In order to verify the performance of the newly hybrid
approach, ten standard optimization problems have been solved. Simulation solutions obtained from
the newly hybrid variant have been verified with the literature optimizers including differential search,
quantum-behaved particle swarm optimization, big bang–big crunch optimization, bat algorithm,
backtracking search algorithm and intelligent tuned harmony search algorithm.

2. Whale Optimizer Algorithm (WOA)

The whale optimization algorithm is a newly population based meta-heuristics approach
proposed by Mirjalili at. el. [3]. This approach simulate bubble-net attacking technique of the
humpback whales when they hunting their preys.

In this variant includes three operators to simulate the find for prey, encircling prey, and bubble-net
foraging behavior of humpback whales.

• Encircling prey: Humpback whales can recognize the location of prey and then encircle them.
For the unknown position of the optimal design in the search area, the existing best agent possible
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solution is the target prey or is near to the optimal in Whale Optimization Algorithm. Once
the most excellent search candidate is defined, the next search candidates will thus make an
effort to update their positions towards the finest search candidate. The restructured technique is
represented by the following mathematical equations:

D = |C.X ∗ (t)− X(t)| (1)

X(t + 1) = X ∗ (t)− A.D (2)

Where t is the current generation, Aand Care coefficient vectors, X∗is the position vector of the
most excellent solution, and Xindicates the position vector of a solution, ||is the absolute value.

The vectors Aand Care mathematical calculated as below:

A = 2a.r.a (3)

C = 2.r (4)

Where components of aare linearly decreased from 2 to 0 over the course of generations and ris
random vector in [0; 1]

• Bubble-net attacking method: The humpback whales attach the prey with the bubble-net
mechanism. This mechanism is mathematical respresented as follows:

• Spiral updating position mechanism: In this mechanism, the distance amid the whale location
and the prey location is calculated then the helix-shaped movement of humpback is created as
shown in the equation:

X(t + 1) = D′.ebt. cos(2πl) + X ∗ (t) (5)

Where D′ = |X ∗ (t)− X(t)|is the distance amid the prey (best possible solution) and the
ithwhale, bis a constant, lis a random number in [−1; 1].

Note: We suppose that there is fifty percent probability that whale either follow the shrinking
encircling path during optimization procedure. Mathematical we modeled as belows:

X(t + 1) =

{
X ∗ (t)− A.D i f p < 0.5

D′.ebt. cos(2πl) + X ∗ (t) i f p ≥ 0.5
(6)

• Search for Prey: The vector Acan be apply for exploration to find for target and also takes the
values > 1or < −1. The exploration can follows the followings mathematical equations:

D = |C.Xrand − X| (7)

X(t + 1) = Xrand − A.D (8)

Where prepresent random number amid [0, 1].

3. Sine Cosine Algorithm (SCA)

Mirjaliliet al. [7] presented newly population based meta-heuristics called Sine Cosine Algorithm
(SCA) simply based on Sine and Cosine function apply for exploitation and exploration phases in
global optimization functions. This variant creates singular initial random agent best possible solutions
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in the search space and requires them to fluctuate outwards or towards the best possible result using
following mathematical model based on sine and cosine functions.

~xt+1
i = ~xt

i + p1 × sin (p2)×
∣∣p3 × lt

i −~xt
i
∣∣ (9)

~xt+1
i = ~xt

i + p1 × cos (p2)×
∣∣p3 × lt

i −~xt
i
∣∣ (10)

Where: ~xt
i current position,p1, p2, p3 ∈ [0, 1] are random numbers and li is targeted global optimal

result. The above mathematical equations (9)-(10) uses 0.5 ≤ p4 < 0.5 setting for exploitation and
exploration.

~xt+1
i =

{
~xt

i + p1 × sin (p2)×
∣∣p3 × lt

i −~xt
i

∣∣ , p4 < 0.5
~xt

i + p1 × cos (p2)×
∣∣p3 × lt

i −~xt
i

∣∣ , p4 ≥ 0.5
(11)

4. Motivation of this work

Despite the Whale Optimizer and Sine Cosine Algorithm are competent to reveal an efficient
performance in comparison with other population based nature inspired variants, it is not fitting for
highly complex functions and is still may face the difficulty of getting trapped in local optima.To
overcome these limitation and to improve its search performance, a new hybrid WOA-SCA variant
is proposed to solve standard benchmark and engineering design functions. The proposed variant
is called Hybrid WOA-SCA. In this variant, we improve the performance of exploitation in Whale
Optimizer algorithm with the performance of exploration in Sine Cosine Algorithm (SCA) to produce
both approaches’ strength.

By this method, it is intended to improve the global convergence by accelerating the search
seeking instead of letting the algorithm running several iterations without any improvement. The
performance of newly proposed variants have been verified with several standard functions and some
engineering design functions. Experimental solutions confirm that the newly proposed variant is a
robust search variant for various real life and standard optimization functions.

5. The Hybrid WOA-SCA algorithm

Hybridization is an enhancement in global optimization techniques in which operators from a certain
technique are combined with other operators from another technique to produce more effective and
reliable synergistic entity and get superior quality of results than that of the main parent technique.

Whale Optimizer Algorithm as well as most powerful techniques have disadvantage and
advantages in terms of their global optimization behavior. An advantage of generation upgrading
techniques is their good exploitation quality, that is, they exactly converge to a local optimum;
however, they have no method for a strong exploration of the search area. In contrast, whale optimizer
showed to have superior exploration performance, but has functions with the exploitation in a
promising area of the search space.

We developed a novel hybrid technique that combines whale optimizer with sine cosine
algorithms. Basis of this modification, we improve the performance of exploitation in Whale Optimizer
algorithm with the performance of exploration in Sine Cosine Algorithm (SCA) to produce both
approaches’ strength. The HWOASCA approach was mathematically modeled as follows:

In which newly hybrid variant the position of the agents has been improved by modifying the
spiral updating position equation (14) using position update equation (11) of sine cosine algorithm
for the purpose of extending the convergence performance of whale optimizer algorithm. The rest of
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the operations of whale optimizer algorithm are same. The following position update equations are
developed in this regard.

p5 = 2π × rand ∈ [0, 1] (12)

X(t + 1) =
((

D′.ebt. cos(2πl) + X ∗ (t)
)
× sin (2πlp5)

)
+ X ∗ (t) (13)

where p5 ∈ [0, 1]is a random number, D′ = |X ∗ (t)− X(t)|indicates the distance of the ith whale to
the pray, bis a constant, lis a random number in [−1; 1], X∗is the position vector of the most excellent
solution, and Xindicates the position vector of a solution.

X(t + 1) =

{
X ∗ (t)− A.D i f p < 0.5((

D′.ebt. cos(2πl) + X ∗ (t)
)
× sin (2πlp5)

)
+ X ∗ (t) i f p ≥ 0.5

(14)

6. Pseudo code of the HWOASCA algorithm

———————————————————————————————————————
Initialize crowd
find the fitness of each solution
X∗ ˜ the best search member
while (t < max _generation)
for each solution
update all constants
if 1 (p < 0.5)

if 2 (|A| < +1)
update the direction of the solution by equation (2)

else if 2 (|A| > +1)
select a random search agent ()
update the direction of the current search member by the equation (8)
end if 2
else if 1 (p > +1)
update the direction of the current search member by the equation (13)
end if 1
end for
check if any search agent goes beyond the search area and amend it
find the fitness of each search member
updatedX∗ if there is a better solution

t = t + 1

end while
returnX∗

————————————————————————————————————-

7. The steps of HWOASCA algorithm

• Step 1: The WOA starts by setting the all parameter values (crowd size n, coefficients Aand C,
the parameter a and maximum number of generations (max _generation).

• Step 2: Initialize the generation counter t.
• Step 3: The first crowd is generated randomly and all search member in the crowd is evaluated

by calculating its fitness function.
• Step 4: Allocate the best search member.
• Step 5: The all following steps are repeated until the termination condition satisfied. Step 5.1:

The generation counter is increasing t = t + 1.
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Step 5.2: All the parameters are updated using equations (3)-(4).
Step 5.3: Update the position of current search member by using the equations (14).

• Step 6: The best search member is updated.
• Step 7: The overall process is repeated until termination condition satisfied.
• Step 8: Produce the best found search member (solution) so far.

8. Standard Benchmark functions

The convergence, numerical, statistical, and time consuming performance of proposed variant have
been verified with several standard benchmark and real life engineering applications and experimental
results obtained are compared with recent nature inspired techniques. These standard benchmark
functions have been divided into three different parts i.e. Unimodal, Multimodal and fixed dimension
multimodal are listed in Appendix (Table A, Table B and Table C).

9. The performance of the newly proposed hybrid variant

In figures 1, we verify the general performance of the recent nature inspired algorithms with the newly
proposed variant in order to test the efficiency of the proposed variant on number of generations. We
set the similar parameter values for the entire algorithms to make fair comparison. We illustrate the
results in figures 1 by plotting the worst optimal values of problem values against the number of
iterations for simplified model of the molecule with distinct size from 20 to 100 dimension.

The figures proves that the benchmark function values quickly decrease as the number of iterations
increases for newly hybrid algorithm results than those of the other nature inspired algorithms. In
figures 1, PSO, ALO, WOA, HAGWO, MGWO, GWO and SCA algorithms suffers from the slow
convergence, gets stuck in the partitioning procedure, nevertheless and many local minima and
invoking the sine cosine algorithm in the proposed variant avoid trapping in local minima and
accelerate the search.

Figures 1. The performance graph of HWOASCA

10. Experiment and Results

We test the performance of the newly proposed variant on the several standard benchark and real
life engineering functions on with different number of generations then we compared it against PSO,
ALO, WOA, HAGWO, MGWO, GWO and SCA in MATLAB R2013a.

In the following subsections, we report more details the parameter settings of the newly hybrid
and all other existing variants.
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Table F Parameter setting

Parameter Values
Search Agents 20
Max. number of iterations 40-100

All simulation solutions obtained from the newly hybrid variant is reported in this section. The WOA
and SCA algorithms are compared to judge the effect of hybridizing Whale Optimizer Algorithm
variant with the native Sine Cosine Algorithm. To find out the best variant among WOA, SCA and
HWOASCA variants, all variants are verified together in Tables 1–6. The twenty two standard
functions and numerious real life application have been utilized to compare the convergence and time
consuming performance, efficiency and strength of the existing variant, where obtained experimental
solutions by the newly hybrid variant have been verified with the PSO, ALO, WOA, HAGWO,
MGWO, GWO and SCA algorithms. The standard function contains unimodal, fixed dimension
multimodal and multimodal problems. The convergence performance graph and results explanation
of the each benchmark function are compared in Tables 1–6 and figures 2–4, respectively.

Further, several real life applications have been used to verified the performance of the
metaheuristics. For these experiments, the all algorithms are coded in MATLAB R2013a, running on a
Laptop with an Intel HD Graphics, Pentium-Intel Core I, i5 Processor 430 M, 15.6” 16.9 HD LCD 320
GB HDD and 3GB Memory. In addition, to statistically asses the newly proposed algorithm compared
with other methodologies, standard deviation and average are introduced.

The PSO, ALO, WOA, HAGWO, MGWO, GWO, SCA and HWOASCA variants were run 30
times on each standard problem. The simulation solutions (min and max objective values, average and
standard deviation) are reported in Table 1 to Table 6. The all existing variants, have to be run at least
more than ten times to find the best global optimial solutions. It is again a common technique that a
variant is run on a standard problem several times and best solutions, min and max objective values,
average and standard deviation of the superior are obtained in the last iteration.

In order to confirm the convergence performance of PSO, ALO, WOA, HAGWO, MGWO, GWO,
SCA and HWOASCA variants are chosen. Here we use 40-100 iterations and 20 search members for all
of the approaches. Simulated solutions in Tables 1–6 and figures 2–4 reveal that the hybrid approach
is better to PSO, ALO, WOA, HAGWO, MGWO, GWO, SCA in terms of solution stability, solution
quality, convergence speed and ability to find the best global optimum.

The all simulation solutions of the PSO, ALO, WOA, HAGWO, MGWO, GWO, SCA and
HWOASCA variants on unimodal standard functions are shown in Table 1–4 and convergence
performance represented by Figure 2. In Table 1–4, we have comparing the accuracy of proposed
variant with other metaheuristics in terms of min and max objective values, average and standard
deviation. On the basis of obtained results, we confirms that the proposed algorithm gives highly
competitive results as compared to PSO, ALO, WOA, HAGWO, MGWO, GWO and SCA on unimodal
standard problems.

Therefore, all obtained results evidence high rate of exploitation capability of the HWOASCA
algorithm. Further, the experimental numerical and statistical results of the newly hybrid algorithm
and other metaheuristics on multimodal problems are represented in Table 3-4 and performance plotted
in Figure 3. We examine that the newly existing algorithm performs superior to other population
based nature inspired techniques i.e. PSO, ALO, WOA, HAGWO, MGWO, GWO and SCA. The optimal
solutions obtained in Table 3-4 strongly confirm that high exploration of HWOASCA algorithm is
competent to explore the search area widely and give promising regions of the search space.
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Table 1. 1-2. Numerical results of unimodal benchmark functions

Table 1 
Problem PSO ALO WOA HAGWO 

  fmin  fmax  fmin  fmax  fmin  fmax  fmin  fmax  

1.  11.6438 7.1632e+04 0.2136 4.4736e+04 6.2605e-10 7.4349e+04 3.2126e-08 7.5487e+04 
2.  30.2562 5.1076e+12 0.0356 5.5173e+10 2.8241e-09 4.5088e+10 1.6169e-06 4.7050e+09 
3.  2.2708e+03 1.9527e+05 1.2135e+05 2.0798e+04 9.1408e+04 1.1436e+05 296.2856 1.2816e+04 
4.  9.9128 83.1986 0.0098 75.1142 16.0602 77.1160 40.4453 84.4233 
5.  29.5918e+03 1.0804e+08 0 2.6145e+08 28.6354 3.0775e+08 28.4403 1.7418e+08 
6.  13.0936 7.3806e+04 0.9655 2.8730e+04 3.7422 6.4982e+04 2.7068 7.1263e+04 
7.  12.9822 82.9364 0.0066 45.9220 0.0069 156.7019 0.0186 120.2423 

 

Table 2 
Problem  MGWO GWO SCA HWOASCA 

  fmin  fmax  fmin  fmax  fmin  fmax  fmin  fmax  
1.  0.2152 6.8918e+04 0.2696 7.3865e+04 0.2125 7.4493e+04 0.2044e-22 7.8128e+04 
2.  0.1118 4.1689e+10 0.0645 2.5352e+11 0.0414 1.1689e+12 0.0156e-13 7.2473e+12 
3.  1.5945e+03 1.7421e+05 1.2447e+03 1.9873e+05 0 1.3256e+05 1.2031e+05 2.4550e+05 
4.  1.4447 87.8777 6.4444 90.2703 0.0099 90.5999 0.0097 90.6610 
5.  38.2207 2.8778e+08 661.4971 2.2601e+08 0 2.7298e+08 28.6610 3.1290e+08 
6.  3.3000 6.5228e+04 4.1960 6.6630e+04 0.8856 6.6416e+04 0.7600 7.4334e+04 
7.  0.0167 133.8492 0.0123 149.0505 0.0059 100.1166 0.0045 163.5383 

 

Table 2. 3-4. Statistical results of unimodal benchmark functions

 Table 3  
Problem  PSO ALO WOA HAGWO 

  
                

1.  5.0875e+03 1.4235e+04 2.8445e+04 6.1471e+03 3.4423e+03 1.1310e+04 2.7057e+03 1.1814e+04 
2.  5.1076e+10 5.1076e+11 4.9919e+09 1.6861e+10 4.5215e+08 4.5087e+09 4.7078e+07 4.7049e+08 
3.  2.2581e+04 4.9495e+04 4.3428e+04 1.3934e+04 1.2557e+05 6.8692e+03 1.1446e+04 1.7216e+04 
4.  19.4231 16.7300 37.5135 7.6313 43.7256 26.6360 66.3254 16.8860 
5.  3.9215e+06 1.6259e+07 8.3189e+06 2.7288e+07 1.5004e+07 5.0149e+07 4.5164e+06 2.2304e+07 
6.  5.1938e+03 1.4497e+04 2.1096e+04 4.7941e+03 4.7251e+03 1.3419e+04 3.9701e+03 1.3074e+04 
7.  51.0305 24.0970 5.7460 5.3025 8.5687 28.6718 3.8918 16.5765 

 

Table 4 
Problem  MGWO GWO SCA HWOASCA 

  
                

1.  3.9306e+03 1.1535e+04 4.7094e+03 1.3687e+04 2.2878e+04 3.1900e+04 2.2007e+03 1.0711e+04 
2.  4.1961e+08 4.1687e+09 2.5357e+09 2.5352e+10 1.6120e+10 1.61119e+11 1.3797e+11 1.5333e+11 
3.  1.7556e+04 2.2868e+04 1.7115e+04 2.8328e+04 7.1132e+04 3.5018e+04 1.0656e+05 1.1751e+04 
4.  16.7995 25.1076 31.9237 28.4636 87.4328 11.3600 21.2069 7.2216 
5.  1.01908e+07 4.1003e+07 1.0820e+07 4.0393e+07 1.8684e+08 1.0227e+08 1.0811e+07 1.3229e+07 
6.  3.7050e+03 1.0872e+04 3.7151e+03 1.1228e+04 2.7211e+04 2.6454e+04 1.2682e+03 1.0393e+04 
7.  3.9651 16.2223 7.0891 25.6128 61.1068 41.8549 3.3752 13.4561 

 

Table 3. 5-6. Numerical results of multimodal benchmark functions

 
Table 5   

Problem PSO ALO WOA HAGWO 

 
f
min 

f
max 

f
min 

f
max 

f
min 

f
max 

f
min 

f
max 

         

8. -2.5796e+03 -1.9428e+03 -5.4177e+03 -2.2656e+03 -1.1321e+04 -2.0998e+03 -4.5349e+03 -1.8046e+03 

9. 149.5336 447.2761 0 386.1930 2.1032e-12 432.1387 132.7207 441.8725 

10. 3.5128 20.6666 0 19.9637 2.5507e-07 20.5739 2.5543e-04 20.0075 

11. 25.2047 663.3607 0 193.2231 7.9915e-11 687.5772 0.1517 632.0270 

12. 6.0648 7.1155e+08 0.1596 5.1574e+08 0.1975 5.9744e+08 0.2834 5.2363e+08 

13. 2.3008 1.1074e+09 0.6025 1.2019e+09 1.4861 8.5625e+08 2.1346 1.6520e+09 
          

Table 6 
Problem  MGWO GWO SCA HWOASCA 

  fmin  fmax  fmin  fmax  fmin  fmax  fmin  fmax  

8.  -5.7333e+03 -2.1923e+03 -4.2010e+03 -1.9654e+03 -2.8348e+03 -2.9826e+03 -8.4894e+03 -2.7936e+03 
9.  45.5201 448.5309 38.7564 483.4556 0 475.5980 0 490.2454 
10.  0.1430 20.6511 0.0919 20.9136 0 20.5084 0 20.8137 
11.  0.1849 579.3254 0.4406 524.5783 0 615.4264 0 695.6860 
12.  1.1029 6.5947e+08 0.5639 5.0075e+08 0.2563 3.2515e+08 0.1319 6.8597e+08 
13.  3.1407 1.0822e+09 3.4109 1.1098e+09 0.5263 1.2946e+09 0.4935 6.3958e+09 

 

Finally, the accuracy of the all existing metaheuristics have been tested on fixed-dimension multimodal
functions and obtained results are presented in Table 5–6. The convergence performance of the
metaheuristics has been plotted in Figure 4. For these standard problems we have verified the rate of
convergence accuracy of the newly hybrid approach HWOASCA with PSO, ALO, WOA, HAGWO,
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Figure 2. 1-7. Convergence graph on unimodal benchmark functions

Table 4. 7-8. Statistical results of multimodal benchmark functions

Table 7 
Problem  PSO ALO WOA HAGWO 

  
                

8.  -2.4472e+03 250.1510 -2.5491e+04 3.9067e+03 -1.0480e+04 1.9866e+03 -3.9504e+03 472.3243 
9.  310.7920 71.4677 176.9291 69.3204 74.7250 127.8635 181.4831 55.7920 
10.  8.3231 3.9980 17.3101 1.8396 2.8178 5.4858 4.4686 7.4605 
11.  242.6257 194.5744 76.8344 35.8820 28.9251 110.5692 25.9122 96.1052 
12.  1.3154e+07 8.1407e+07 2.6852e+07 6.5171e+07 3.1953e+07 1.2035e+08 1.1748e+07 6.5621e+07 
13.  2.5692e+07 1.3810e+08 3.8775e+07 1.90454e+09 3.8292e+07 1.4759e+08 5.4586e+07 2.3120e+08 

 

Table 8 
Proble

m  
MGWO GWO SCA HWOASCA 

  
                

8.  -3.5274e+03 1.0874e+03 -2.7570e+03 725.4048 -2.8030e+03 283.1517 -7.7324e+03 1.1640e+03 

9.  149.9412 105.6169 129.0764 89.6508 238.5618 131.1048 48.4785 45.3625 
10.  4.1037 6.0601 4.4015 6.4260 19.2057 2.4196 2.2206 3.3575 
11.  32.8450 101.6196 27.9505 87.2026 256.6257 239.6093 21.0507 76.4345 
12.  1.8186e+07 8.0264e+07 1.4943e+07 6.8810e+07 2.5745e+08 1.1081e+08 1.0124e+07 1.2145e+08 
13.  3.1916e+07 1.4849e+08 4.4914e+07 1.9438e+08 5.7117e+08 6.0493e+08 3.8981e+07 1.3733e+08 

 

MGWO, GWO and SCA in terms of min and max objective function values, standard deviation and
average value. The results are consistent with those of the standard benchmark functions. On the basis
of obtained results, we prove that the newly hybrid approach provides highly competitive optimal
results verified with other recent nature inspired meta-heuristics, for these standard functions.
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Figure 3. (8)-(13). Convergence graph on multimodal benchmark functions

Table 5. 9-10. Numercial results of fixed-dimension multimodal benchmark functions

 
Table 9  

Problem  PSO  ALO  WOA HAGWO 

 
f
min  

f
max 

f
min  

f
max 

f
min  

f
min 

f
min 

f
max 

14. 2.9821  490.1471 1.2653  33.7293 10.7632  44.6647 10.7632 464.6207 

15. 0.9980  405.1082 0.9985  448.3523 6.1079  115.0247 10.7632 460.4717 

16. -1.0316  0.9034 -1.0316  0 -1.0316  2.5343 -1.0316 1.4981 

17. 0.3979  1.1174 0.3979  0.9955 0.3979  2.5717 0.3984 1.8658 

18. 3.0000  51.4284 3.0000  53.5096 3.0048  18.1178 3.0367 39.7544 

19. -3.8626  -3.6348 -3.8486  0 -3.8548  -2.8722 -3.8591 -3.3905 

20. -3.2029  -0.7090 -3.1905  -0.3156 -3.1956  -1.2831 -2.4103 -1.6624 

21. -9.1532  -0.3750 -2.6305  -0.2752 -9.3912  -0.4885 -5.0546 -0.3549 

22. -10.3029  -0.4586 -2.7659  -0.5623 -4.1871  -0.3516 -5.0789 -0.5582  
 

Table 10  
Problem MGWO GWO  SCA  HWOASCA 

 
f
min 

f
max 

f
min  

f
max 

f
min  

f
max 

f
min 

f
min 

14. 3.9683 446.4407 2.9821  7.4384 1.2536  3.0458 0.9981 498.6145 

15. 13.9250 490.2823 12.9705  155.2814 0.9989  20.3814 0.9980 557.7428 

16. -1.0316 0.5289 -1.0316  3.0769 -1.0316  0 -1.0316 68.5519 

17. 0.3979 0.8283 0.3982  2.8358 0.3979  1.9728 0.3979 5.3768 

18. 3.0095 44.1552 3.0419  40.3638 3.0000  7.8155 3.0000 79.1330 

19. -3.8626 -2.8765 -3.8624  -3.4917 -3.8415  0 -3.8626 0 

20. -3.3215 -2.7376 -3.2615  -0.7513 -3.0064  -0.3856 -3.2793 -0.2527 

21. -5.0529 -0.6108 -2.6774  -0.3277 -0.9642  -0.2615 -9.4871 -0.2598 

22. -10.3229 -2.0957 -2.7613  -0.5292 -1.436  -0.5234 -10.3783 -0.4924  

11. Clustering Problem in Wireless sensor network

In this text also we considered the accuracy of the existing variant on the clustering problem in wireless
sensor network, which is most difficult and NP hard function. The all simulation results proven
that the newly hybrid approach is gives most effective for these types of real life application due to
fewer chances to get stuck at local minima and fast convergence. It can be concluded that the newly
hybrid variant is competent to outperform the recent well known nature inspired metaheuristics in the
literature.

12. Bio-Medical Real life Applications

In this section two dataset biomedical applications: (i) Breast Cancer and (ii) Heart are employed
(Mirjalili, S. [14]). These dataset problems have been solved by HWOASCAvariant and compared
with PSO, ALO, WOA, HAGWO, MGWO, GWO and SCA approaches. Distinct parameter settings
have been applied for running code of all metaheuristics and these parameter settings are given in
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Table 6. 11-12. Statistical results of fixed-dimension multimodal benchmark functions

 
Table 11  

Problem PSO   ALO  WOA HAGWO 

 μ σ μ σ μ σ μ σ 
14. 7.1663 37.1474 3.4943  3.7517 11.5550  2.9851 14.8218 36.4007 

15. 5.8346 40.4429 16.8047  61.9692 10.3995  15.8564 15.5749 45.0393 

16. -9893 0.2158 -0.9633  0.4040 -0.9741  0.3635 -1.0015 0.2540 

17. 0.4397 0.1514 0.4221  0.1369 0.5045  0.4185 0.5112 0.2956 

18. 7.6383 23.3996 30.0126  6.1474 4.0585  2.6770 4.8511 5.9635 

19. -3.8349 0.0504 -3.7725  0.3881 -3.8306  0.1101 -3.8233 0.0721 

20. -2.9918 0.4060 -2.8820  0.6041 -2.8764  0.4850 -2.3037 0.1127 

21. -6.0626 4.2714 -2.4310  0.5391 -6.9909  3.4712 -4.6606 0.9365 

22. -5.8551 4.0298 -2.6262  0.4101 -3.5831  1.0727 -4.7096 0.9032  
 

Table 12  
Problem MGWO  GWO  SCA HWOASCA 

 μ σ μ σ μ σ μ σ 
14. 9.2797 42.6210 3.0774  0.6261 3.9844  0.2139 2.3740 0.0829 

15. 22.6305 51.4572 16.7241  20.1200 4.7706  3.6239 1.6236 5.6982 

16. -1.0120 0.1566 -0.9789  0.4152 -0.9968  0.1141 0.2962 7.6678 

17. 0.4658 0.1426 0.6212  0.5685 0.5643  0.3268 0.6272 0.8646 

18. 5.2550 8.1283 5.4930  7.5195 3.9192  1.4036 4.5897 5.3702 

19. -3.7851 0.1427 -3.8437  0.0636 -3.7550  0.3994 -3.8566 0.0450 

20. -3.1139 0.2268 -2.9812  0.5275 -2.5691  0.7842 -3.1652 0.3281 

21. -2.3893 1.2945 -1.7161  0.6715 -0.9085  0.1534 -8.6276 0.8129 

22. -5.9206 2.9124 -2.1733  0.5794 -0.7874  0.3612 -8.8468 0.4306  

Figure 4. (14)-(22). Convergence graph on multimodal benchmark functions

Appendix [Table D] [15]. The convergence performance of the all techniques have been verified in
terms of min and max objective values, standard deviation, average and classification rate[Table 14].

The all results optained in Table 8, prove that the proposed variant as comparison to others gives
the best quality of optimal solutions on the biomedical problems.The simulation results of proposed
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Table 7. Comparison best solutions of Clustering problem in Wireless sensor network.

Variants Best optimal cost of 
FF 

FND HND LND 

PSO 38.548 mJ 2085.4 2686.4 3355.9 
ALO 38.956 mJ 2020.9 2699.7 3318.1 
WOA 38.412 mJ 2032.5 2718.2 3376.7 

HAGWO 37.212 mJ 2043.7 2791.8 3396.2 
GWO 37.421 mJ 2024.5 2745.2 3375.5 

MGWO 37.102 mJ 2060.6 2785.1 3411.5 
SCA 37.252 mJ 2032.6 2726.8 3387.9 

HWOASCA 37.056 mJ 2096.1 2810.2 3496.1 
 

Figure 5. Comparison of variants on the best optimal cost of FF

variant prove that it has the highest capability to avoid the local optima and is considerably better than
other approaches i.e. PSO, ALO, WOA, HAGWO, MGWO, GWO and SCA.

Table 8. Comparison of variants on the best possible solution of Bio Medical applications

(i) Breast cancer dataset problem 
 
 
 
 
 
 
 
 
 

 

Algorithm Best Min value Best Max 
value 

Average S.D. Classification 
Rate 

GWO 0.0016 0.0471 0.0027 0.0039 99.00% 
PSO 0.0021 0.0236 0.0158 0.0251 27.99% 

WOA 0.0046 0.00876 0.0038 0.0125 63.29% 
HAGWO 0.0014 0.0502 0.0015 0.0029 99.23% 
MGWO 0.0014 0.0499 0.0019 0.0036 99.15% 

SCA 0.0016 0.0392 0.064 0.0082 89.99% 
ALO 0.0013 0.0326 0.0088 0.0090 79.56% 

HWOASCA 0.0009 0.00621 0.0010 0.0019 99.71% 
(ii) Heart dataset problem 

 Algorithm Best Min value Best Max 
value 

Average S.D. Classification 
Rate 

GWO 0.0612 0.2891 0.0999 0.0197 76.00% 
PSO 0.0699 0.2741 0.1377 0.0271 53.26% 

WOA 0.1339 0.2786 0.1311 0.0253 58.41% 
HAGWO 0.0678 0.2811 0.0991 0.0188 76.60% 
MGWO 0.0501 0.2882 0.0984 0.0161 77.12% 

SCA 0 0.2911 0.0934 0.0176 78.48% 
ALO 0 0.2751 0.1291 0.0248 59.00% 

HWOASCA 0 0.3158 0.0681 0.0101 78.71% 
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13. HWOASCA algorithm for a tension/compression spring

In this section, the accuracy of HWOASCA algorithm was also tested with four constrained
engineering design application like tension/compression spring Mirjalili, S. et al. [3] and comparison
with the optimal solutions of GA, ES, PSO, SCA and WOA metaheuristics.

The main motive of this test function is to reduce or minimize the weight of the
tension/compression spring. Optimum design must satisfy constraints on deflection, surge frequency
and deflection. There are three design variables: number of active coils (N), mean coil diameter (D)
and wire diameter (d). The mathematical optimization function is formulated as bellows:
Consider

Y = [y1, y2, y3] = [d, D, N] = Min f (Y) = (y3 + 1)y2y2
1 (15)

Subject to

l1(Y) = 1−
y3

2y3

71785y4
1
≤ 0 (16)

l2(Y) =
4y2

2 − y1y2

12566(y2y3
1 − y4

1)
+

1
5108y2

1
≤ 0 (17)

l3(Y) = 1− 140.45y1

y2
2y3

≤ 0 (18)

l4(Y) =
y1 + y2

1.5
≤ 0 (19)

Variable range
0.05 ≤ y1 ≤ 2.00, 0.25 ≤ y2 ≤ 1.30, 2.0 ≤ y3 ≤ 15.0 (20)

Table 9. Comparison of HWOASCA optimization solutions with literature for the tension/compression
spring design problem.

Algorithm Optimum variables Optimum weight 
 d D N  

HWOASCA 0.051198 0.344389 12.078036 0.0126648 
WOA 0.051207 0.345215 12.004032 0.0126763 
SCA 0.051203 0.345035 12.005536 0.0126735 
PSO 0.051728 0.357644 11.244543 0.0126747 
ES 0.051989 0.363965 10.890522 0.0126810 
GA 0.051480 0.351661 11.632201 0.0127048 

 

This function was solved using different metaheuristics like Genetic Algorithm (GA) [35],
Evolution Strategy (ES) [36], Particle Swarm Optimization (PSO) [3] and Whale Optimizer algorithm
(WOA) [3].

The optimal solution of newly existing variant and sine cosine algorithm are compared with
literature in Table 9. A several penalty problem constraint handling technique was utilized in order
to perform a reasonable comparison with literature [34]. It can be notice that HWOASCA variant
outperforms all others metaheuristics.

14. Economic Dispatch Problem (EDP)

During last few years, many researchers have used different types of optimization techniques to find
the best quality solutions of Economic Dispatch Problems in the literature such as General Algebraic
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Modeling System (GAMS) [37], Hybrid PSO-SQP [38], Quadratic Programming (QP) [39], MPSO
[40], Simulated Annealing (SA) [41], Particle Swarm Optimization (PSO) [42], PSO-LRS [43], Variable
Scaling hybrid differential evolution (VSHDE) [44], qPSO [45], HGPSO, HGAPSO and HPSOM
[46], Anti-predatory Particle Swarm Optimization (APSO) [47], Self-organizing Hierarchical PSO
(SOH-PSO) [48], Mean PSO [49,50], Quantum PSO (QPSO) [51], Biogeography-Based optimization
(BBO) [52], Simulated Annealing (SA) [53], Quadratic Approximation Particle Swarm Optimization
(qPSO) [54] and Particle Swarm Optimization (PSO) [55].

In this section, the performance of the existing variant has been also tested with economic
dispatch problem and comparsion with the generation cost of Mean PSO, VSHDE, SA, QP, GAMS,
HGPSO, HGAPSO, MPSO, HPSOM, PSO-SQP, PSO-LRS, NPSO-LRS, APSO, SPSO, SOH-PSO, qPSO,
BBO, HPSO (Park 2007), QPSO and MSPSO metaheuristics

The purpose of ED problem is to reduce the total fuel cost of power plants subject to the operating
constraints of a power system. Commonly, it can be formulated with an two constraints and objective
function (Park, J.B.,[42] and Deep, K. and Bansal, J.C., [54]):

Min CT =
N

∑
i=1

Ci(Pi) (21)

where,
CT : Total generation cost, Ci: Cost function of generatori,Pi: Power output of function generator i,
Nnumber of generators and

Ci(Pi) = li + miPi + niP2
i ∀i = 1, 2, ..., N (22)

li, mi, ni : are cost coefficients of generatori.
(a) Equality constraints

PD + PL −
N

∑
i=1

Pi = 0 (23)

where PD and PL are total system demand and transmission loss of the system.
(b) Inequality constraint

Pi,min ≤ Pi ≤ Pi,max (24)

where Pi,minand Pi,maxare minimum and maximum power output unit.
The generation cost function Ci(Pi) may be written as:

Ci(Pi) = li + miPi + niP2
i + |ei × sin( fi × (Pi,min − Pi))| ∀i = 1, 2, ..., N (25)

where eiand fiare the cost coefficient of generatori. The results obtained by Table 10, illustrate
the performance of the newly hybrid variant and other recent metaheuristics in the terms of least
generation cost, mean and standard deviation. The results are also compared with newly published
economic dispatch problem solutions. From Table 10, it is clear that HMOASCA variant gives a
superior quality of results and signifies HWOASCA’s higher efficiency to find the solution of economic
dispatch problem as compared to other meta heuristics.

Further the generation cost obtained by difference metaheuristics has been compared by Figure 6.
On the basis of experimental results and performance plotted by Figure 6, it can be observed that for
power system economic dispatch problem of greater size with higher non-linearities, the HWOASCA
algorithm is proved to be the best approach among all the variants.
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Table 10. Comparison of HWOASCA optimization solutions with literature for the Economic Dispatch
Problem

Method Unit Total Power 
(MW) 

Generation Cost Mean S.D. 

Mean PSO 40 10,500 153562.45 160178.5514 3762.512976 
VSHDE 40 10,500 143943.90 -- -- 

SA 40 10,500 143930.41 -- -- 
QP 40 10,500 143926.32 -- -- 

GAMS 40 10,500 143926.32 -- -- 
HGPSO 40 10,500 124797.13 126,855.70 1160.91 

HGAPSO 40 10,500 122780.00 124,575.70 906.04 
MPSO 40 10,500 122252.26   

HPSOM 40 10,500 122112.40 124,350.87 978.75 
PSO-SQP 40 10,500 122094.67 122,245.25  
PSO-LRS 40 10,500 122035.79 122,558.45  

NPSO-LRS 40 10,500 121664.43 -- -- 
APSO 40 10,500 121663.52 122,153.67  
SPSO 40 10,500 121504.29 121632.3979 97.617794 

SOH-PSO 40 10,500 121501.14 -- -- 
qPSO 40 10,500 121500.93 121565.906 39.777128 
BBO 40 10,500 121479.50 121,512.06  

HPSO (Park 2007) 40 10,500 121452.67 121537.1906 -- 
QPSO 40 10,500 121448.21 -- -- 

MSPSO 40 10,500 121433.73 121588.6508 109.929025 
HWOASCA 40 10,500 121156.12 122951.1253 125.659238 

 

Figure 6. Comparison of HWOASCA variant optimization results with literature for the of Economic
dispatch problems

15. Conclusion and future work

In this article, we propose a new hybrid whale optimizer algorithm with Sine Cosine algorithm in
order to find the best possible solutions of the twenty two standard benchmark problems and real life
applications. We call the newly proposed variant by Whale Optimizer algorithm and Sine Cosine
algorithm (HWOASCA). We relate the whale optimizer algorithm to balance between the exploitation
and the exploration process in the newly proposed variant. The obtained optimal solutions proved
that the newly hybrid variant benefits form high exploration in comparison to the recent metaheuristics.

Further, we also tested the clustering problem in wireless senor network, breast cancer, heart
dataset problem, tension/compression spring and economic dispatch problems is verified the
performance of the existing variant with recent metaheuristics. The results show that the HWOASCA
algorithms is found to be highly effective for real life applications due to fast convergence and fewer
chances to get stuck at local minima. Hence the HWOASCA algorithm is able to outperform the recent
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well known and powerful nature inspired metaheuristics in the literature. The solutions prove the
capability and advantage of HWOASCA to existing metaheuristic variants and it has an capability to
become and helpful tool for solving real life optimization applications.

The future work will be concentrated on two parts: (i) composite functions, aircraft’s wings,
feature selection, Structural Damage Detection, the gear train design problem, Welded beam design,
Cantilever beam, Pressure vessel design problem, bionic car problem, and mechanicial engineering
problems (ii) Developing newly modified population based nature inspired metaheuristics for these
tasks. To end with, we expectation that this work will encourage young researchers and other scientists,
who are working on recent evolutionary metaheuristics concepts.
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16. Appendix

Table A. Unimodal benchmark functions

Function Dimension Range Min. function value

F1(x) =
n
∑

i=1
x2

i 30 [-100,100] 0

F2(x) =
n
∑

i=1
| xi |+

n
∏
i=1
| xi | 30 [-10,10] 0

F3(x) =
n
∑

n=1
(

i
∑

j−1
xj)

2 30 [-100, 100] 0

F4(x) = maxi{| xi |, 1 ≤ i ≤ n} 30 [-100, 100] 0

F5(x) =
n−1
∑

i=1
[100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [-30, 30] 0

F6(x) =
n
∑

i=1
([xi + 0.5])2 30 [-100, 100] 0

F7(x) =
n
∑

i=1
ix4

i + rand[0, 1) 30 [-1.28, 1.28] 0

Table B. Multimodal benchmark functions

Function Dimension Range Min. function value

F8(x) =
n
∑

i=1
−xi sin(

√
| xi |) 30 [-500,500] 0

F9(x) =
n
∑

i=1
[x2

i − 10 cos(2πxi) + 10] 30 [-5.12,5.12] 0

F10(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i 30 [-32, 32] 0

− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 30 [-600, 600] 0

F12(x) = π
n {10 sin(πyi) 30 [-50, 50] 0

+
n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1) + (yn−1)

2]}

+
n
∑

i=1
(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k, m) = {
k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

F13(x) = 0.1{sin2(3πxi) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] 30 [-50, 50] 0

+
n
∑

i=1
u(xi, 5, 100, 4)
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Table C. Fixed-dimension multimodal benchmark functions

Function Dimension Range Min. function value

F14(x) =
(

1
500 +

25
∑

j=1

1

j+
2
∑

j=1
(x2−aij)6

)−1

2 [-65,65] 1

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi xi+x4

]2

4 [-5,5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [-5, 5] -1.0316

F17(x) =
(

x2 − 5.1
4π

2
x2

1
5
π x1 − 6

)2

2 [-5, 5] 0.398

+10
(

1− 1
8π

)
cos x1 + 10

F18(x) =
[

1 + (x1 + x21)2(19− 14x1 + 3x2
1 2 [-2, 2] 3

−14x2 + 6x1x2 + 3x2
2)

]
×
[

30 + (2x1 − 3x2)2

×(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)

]
F19(x) = −

4
∑

i=1
ci exp

(
−

3
∑

j=1
aij(xj − pij)

2
)

3 [1, 3] -3.86

F20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij(xj − pij)

2
)

6 [0, 1] -3.32

F21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci
]−1 4 [0, 10] -10.1532

F22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci
]−1 4 [0, 10] -10.4028

F23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci
]−1 4 [0, 10] -10.5363

Table D. Bio-Medical Classification datasets (Mirjalili et al. (2014))[56]

Classification
datasets

Number of
attributes

Number of
training samples

Number of test
samples

Number of classes

Breastcancer 9 599 100 2
Heart 22 80 187 2
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