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Abstract: Type-2 diabetes and obesity are among the leading human diseases and highly complex
in terms of diagnostic and therapeutic approaches and are among the most frequent and highly
complex and heterogeneous in nature. Based on epidemiological evidence, it is known that the
patients suffering from obesity are considered to be significantly at higher risk for type-2 diabetes.
There are a number of evidences which support the hypothesis that these diseases interlinked and
obesity may aggravate the risk(s) of type-2 diabetes. Multi-level unwanted alterations such as (epi-
) genetic alterations, changes at the transcriptional level, and altered signaling pathways (receptor,
cytoplasmic, and nuclear level) are the major source which promotes a number of complex diseases
and such heterogeneous level of complexities are considered as the major barrier in the development
of therapeutic. With so many known challenges, it is critical to understand the relationships and the
common shared causes between type-2 diabetes and obesity which is difficult to unravel and
understand. For this purpose, we have selected publicly available datasets of gene expression for
obesity and type-2 diabetes and unraveled the genes and the pathways associated with immune
system and have also focused on T cell signaling pathway and its components. We have applied
simplified computational approach to understand differential gene expression and patterns and the
enriched pathways for obesity and type-2 diabetes. Furthermore, we have also analyzed the genes
by using network-level understanding. In the analysis, we observe that there are less number of
genes which are commonly differentially expressed while comparatively higher number of
pathways are shared between them. There are only four pathways which are associated with
immune system in case of obesity and ten immune-associated pathways in case of type-2 diabetes
and among them only two pathways are commonly altered.

Keywords: Type-2 diabetes; obesity, insulin action and resistance; immune system; enriched
pathways, differentially expressed genes; TCR network; network-level understanding.

1. Introduction

Type 2 diabetes (T2D) is a global epidemic, strongly correlated which is more common among
the obese[1,2]. Adipose tissue inflammation associated with obesity is known as a major cause for the
decreased insulin sensitivity in case of T2D[1,3,4]. There are a number of works where the crosstalk
between the immune system and metabolism have been presented and a number of evidences which
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support the hypothesis that these diseases interlinked and obesity may aggravate the risk(s) of T2D[5-
8]. In such cases, it is critical to understand multi-level unwanted alterations such as (epi-)genetic
alterations, changes at the transcriptional level, and altered signaling pathways (receptor,
cytoplasmic, and nuclear level). These are the major source which promotes a number of complex
diseases and such heterogeneous level of complexities are considered as the major barrier in the
development of therapeutic approach(es). With such diverse challenges, it is crucial to understand
and unravel the relationships and the common shared causes between type-2 diabetes and obesity[9-
13].

So far, there are a number of previous study where a number of factors have been investigated
to understand the biological mechanism of obesity and T2D and the relationship between each
other[1,2,14-16]. T2D is mainly characterized by a progressive status of chronic and inflammation of
low grade and inflammatory responses are triggered by many factors. The well-known factors
contributing to T2D are age, metabolic syndrome, systematic low-grade inflammation, insulin
resistance, islet cell auto-antibodies, beta cell dysfunction, and C-peptide. Some of the factors which
promotes inflammation are altered function of specific T lymphocyte cells, B lymphocytes, Thl, and
Th17[17-21]. As mentioned above that T2D is also linked with obesity and these diseases are also the
case of metabolic disorder and there exist strong evidences of immune—metabolic
connection[10,22,23].

For this purpose, we have selected publicly available datasets of gene expression for obesity and
T2D and unraveled the genes and the pathways associated with immune system and have also
focused on T cell signaling pathway and its components. We have applied simplified computational
approach to understand differential gene expression and patterns and the enriched pathways for
obesity and T2D. Furthermore, we have also analyzed the genes by using network-level
understanding. In the analysis, we observe that there are less number of genes which are commonly
differentially expressed while comparatively higher number of pathways are shared between them.
There are only four pathways which are associated with immune system in case of obesity and ten
immune-associated pathways in case of T2D and among them only two pathways are commonly
altered. Here, we have studied the differentially expressed genes (DEGs), enriched pathways, and
the connection between immune signaling pathways via their components between obesity and T2D
and with the major focus on the roles TCR signaling components.

2. Results

As mentioned above that we have compared immune signaling genes by using gene expression
profiling of T2D and obese for which the datasets have been collected from publicly available data.
Here, the results have been presented from work from generalized analysis (i.e., DEGs, enriched
pathways) to precise analysis i.e., TCR signaling.
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2.1. Gene expression profiling for type-2 diabetes and obesity

For diabetes and kidney cancer collected data, we have performed comparative analysis in terms
of altered gene expression pattern and their respective functions. Here, we have presented the DEGs
for both the cases T2D and obesity (Figure 1a) and we observe that there are only 12 genes which are
differentially expressed in both the cases while T2D-specific genes are 456 and 580 genes are obesity-
specific genes while in terms of the altered functions they share 14 pathways and the T2D and obesity
specific pathways are 17 and 18 (Figure 1b and Table 1), respectively. Based on this it appears that
there are only few genes which differentially expressed in both the cases while in terms of biological
functions, a large number of pathways are affected which means that T2D and obesity share more
biological functions in terms of alterations and their source of alterations i.e., DEGs are not shared at
large scale. The green color nodes are the DEGs which either belong to T2D or obesity case. For this
reason, we have mapped out the network for common DEGs and highlighted common DEGs in red
color (Figure 1c). Among these common DEGs, FN1, SFRP1, and SNX5 appears to be the major source
of alteration. FN1 appears to be associated with a large number of DEGs leading to the conclusion
that either FN1 is overexpressed by those genes or it promotes the over expression of the directly
associated genes. For understanding the alteration in biological function, a heatmap has been
displayed in Figure 1d for those pathways which are commonly enriched. For this plot, the p-values
in both the conditions have been used. Cell adhesion molecules, PI3K—AKT, and MAPK pathways
appear highly enriched in both the conditions, regulation of actin cytoskeleton, cAMP, phospholipase
D, and Focal adhesion are exclusively and highly enriched in case of T2D, and hematopoetic cell
lineage and phagosome are potentially enriched mainly in case of obesity. There are additional
pathways which are enriched in both the cases but have comparatively higher p-values and these
pathways are Rapl, tight junction, leukocyte transendothelial migration, ECM-receptor interaction,
and Ras signaling pathways. The complete details about the fold changes of the genes have been

presented in supplementary data S1 and S2.
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Figure 1. Gene expression profiling. (a) Venn diagram for differentially expressed genes. (b) Venn
diagram for enriched pathways. (c) Network representing the DEGs common between T2D and
obesity. (d) Commonly enriched pathways.

Table 1. Pathways common between T2D and obesity and specific to T2D and obesity (venn
diagram outcome).

Name Total Pathways
Cell adhesion molecules (CAMs); PI3K-Akt signaling pathway; cAMP signaling
2D pathway; Phospholipase D signaling pathway; Focal adhesion; Hematopoietic cell
and 14 lineage; Rap1 signaling pathway; Tight junction; Leukocyte transendothelial
Obese migration; Phagosome; MAPK signaling pathway; ECM-receptor interaction;

Regulation of actin cytoskeleton; Ras signaling pathway
Neurotrophin signaling pathway; Insulin signaling pathway; Vascular smooth
muscle contraction; Sphingolipid signaling pathway; cGMP-PKG signaling
pathway; mTOR signaling pathway; T cell receptor signaling pathway; Natural
T2D 17 killer cell mediated cytotoxicity; Jak-STAT signaling pathway; Progesterone-
mediated oocyte maturation; B cell receptor signaling pathway; Oxytocin
signaling pathway; Platelet activation; Thyroid hormone signaling pathway; Wnt
signaling pathway; ErbB signaling pathway; Ubiquitin mediated proteolysis
Fatty acid metabolism; Cell cycle; Tyrosine metabolism; Thyroid hormone
synthesis; Starch and sucrose metabolism; Purine metabolism; Cytokine-cytokine
receptor interaction; Metabolism of xenobiotics by cytochrome P450; Retinol
Obese 18 metabolism; Drug metabolism - cytochrome P450; Neuroactive ligand-receptor
interaction; Tryptophan metabolism; p53 signaling pathway; Complement and
coagulation cascades; Antigen processing and presentation; Arachidonic acid
metabolism; Axon guidance; Retrograde endocannabinoid signaling

2.2. Genes associated with immune system

After analyzing the overall DEGs and the all the enriched pathways, we have performed
immune system specific analysis for the genes and the pathways. Here, we observe that there are 10
pathways associated with immune system in case of T2D while there are four pathways in case of
obese which are associated with immune system (Figure 2). Hematopoetic cell lineage and leukocyte
transendothelial migration pathways are commonly altered in both the cases T2D and obese and
these two pathways are known to play roles blood cell development and immune survilliance and
inflammation leading to the conclusion that in both the cases T2D and obesity, the blood cell
development, immune survilliance, and the inflammation process are affected. Obesity-specific
immune signaling pathways are oxytocin and antigen processing and presentation (APP). Oxytocin
signaling pathway is known to exert a wide range of effects which could be central or peripheral
effects and this pathway itself is known to crosstalk with a number of critical pathways such as RhoA,
GPCR, MAPK, ANP-cGMP, and NO-cGMP. APP is one of the most important part of entire immune
system and is the process by which protein antigen is ingested by an antigen-presenting cell (APC),
partially digested into peptide fragments and then displayed on the surface of the APC associated
with an antigen-presenting molecule (MHC class I or MHC class II), for recognition by specific
lymphocytes (T cells). While there are eight immune system specific pathways in case of T2D which
are NK cell-mediated cytotoxicty, insulin signaling, TCR signaling, ubiquitin-mediated proteolysis,
platelet activation BCR signaling, neurotrophin, and oxytocin signaling pathways. Almost all these
pathways are major part of immune system. Based on this, we could conclude that in case of T2D,
there is more alterations in the gene expression pattern of those genes which are known to control
major part of immune system while in case of obesity there is less effect than T2D but these few
pathways are also known to be associated with controlling critical roles of immune system.
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Figure 2. Genes associated with immune systems. Green color genes belong to the immune system
when the patient is suffering from T2D and cyan color genes belong to the immune system in case of
obese.

2.3. DEGs of T2D and TCR signaling network

As mentioned above that there are a number of pathways which are affected as a result of T2D
and obesity while in comparison to T2D, because of obesity there are only four pathways which are
mainly affected and TCR signaling pathway is not affected here. TCR signaling pathway is affected
in case of T2D. Therefore, we have now mapped out the individual genes which are associated with
TCR signaling pathway and presented the networks for all the five genes (SPNS1, PTPN6, CD247,
FOS, and PIK3R5) which are the component of TCR signaling pathway and their association with the
other TCR genes (Figure 3a—3e). In addition, we have also presented the TCR network (Figure 3f).

SPNSI gene is the direct component of TCR, NK cell mediated cytotoxicity, and FC-epsilon RI
signaling pathways, PTPN6 belongs to TCR, BCR, NK cell-mediated cytotoxicity, JAK-STAT, and
adherens junction, CD247 belongs to TCR and NK cell-mediated cytotoxicity, and FOS belongs to
TCR, BCR, TLR, MAPK, TNF, cAMP, estrogen, oxytocin, prolactin, circadian entrainment, and
osteoclast differentiation. PIK3R5 alone belongs to a large number of critical pathways such as TCR,
BCR, NK cell-mediated cytotoxicity, JAK-STAT, ErbB, chemokine, phosphatidylinositol, mTOR,
apoptosis, VEGEF, focal adhesion, regulation action cytoskeleton, etc., and the complete details of the
list of pathways for all these five genes have been presented in Table 2.
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Figure 3. DEGs of T2D and TCR signaling network. (a) SPNS1 network, (b) PTPN6 network, (c) CD247
network, (d) FOS network, (e) PIK3R5 network, and (f) Overall association of these T2D DEGs with

the TCR genes and also the intra-associations.

Table 2. Selected gene specific pathways.

Gene Pathways

T cell receptor signaling pathway
SPNSI1 Fc epsilon RI signaling pathway
Natural killer cell mediated cytotoxicity

Adherens junction
PTPN6
Jak-STAT signaling pathway
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Natural killer cell mediated cytotoxicity

T cell receptor signaling pathway
B cell receptor signaling pathway
CD247 Natural killer cell mediated cytotoxicity
T cell receptor signaling pathway
MAPK signaling pathway
Toll-like receptor signaling pathway
T cell receptor signaling pathway
B cell receptor signaling pathway
TNF signaling pathway
FOS cAMP signaling pathway
Osteoclast differentiation
Circadian entrainment
Estrogen signaling pathway
Prolactin signaling pathway
Oxytocin signaling pathway
ErbB signaling pathway
Chemokine signaling pathway
Phosphatidylinositol signaling system
mTOR signaling pathway
Apoptosis
VEGEF signaling pathway
Focal adhesion
Toll-like receptor signaling pathway
Jak-STAT signaling pathway
Natural killer cell mediated cytotoxicity
T cell receptor signaling pathway
PIK3RS B cell receptor signaling pathway
Fc epsilon RI signaling pathway
Fc gamma R-mediated phagocytosis
Leukocyte transendothelial migration
Neurotrophin signaling pathway
Regulation of actin cytoskeleton
Insulin signaling pathway
Progesterone-mediated oocyte
maturation
Type II diabetes mellitus
Aldosterone-regulated sodium
reabsorption

Bacterial invasion of epithelial cells

3. Discussion
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Diabetes mellitus (DM) and obesity are considered as metabolic disorder related diseases and
DM is characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or
both[1,24,25]. The diabetic chronic hyperglycemia is associated with long—term damage,
dysfunction, and failure of various organs such as kidneys, eyes, nerves, blood vessels, and
heart[1,17,25-29]. T2D is most often found to be frequent in case of the obese and is characterized by
abnormal insulin secretion and/or a decreased sensitivity for insulin which is also known as insulin
resistance and results in increased blood glucose levels and T2D is known to be strongly associated
with obesity. There are a number of biological processes and mechanisms which are considered as
the source of association between these conditions via mediating inflammation in adipose tissue and
systemic insulin resistance such as oxidative stress, endoplasmic reticulum stress, hypoxia, amyloid
and lipid deposition, lipotoxicity and glucotoxicity.

With such level of complexities, there exist a number of challenges for understanding the
mechanism of so we have thoroughly analyzed the DEGs, enriched pathways with major focus on
immune signaling pathways and the networks of DEGs belonging to the immune system. Among the
top enriched pathways are: cell adhesion molecules, PI3K—AKT, MAPK, regulation of actin
cytoskeleton, cAMP, phospholipase D, Focal adhesion, hematopoetic cell lineage, phagosome, Rap1,
tight junction, leukocyte transendothelial migration, ECM-receptor interaction, and Ras signaling
pathways.

For immune systems—related analysis, we observe that there are 10 pathways associated with
immune system in case of T2D while there are four pathways in case of obese which are associated
with immune system. Hematopoetic cell lineage and leukocyte transendothelial migration pathways
are commonly altered in both the cases T2D and obese and are known to play roles blood cell
development and immune survilliance and inflammation. Oxytocin and APP are obesity-specific
immune signaling pathways and NK cell-mediated cytotoxicty, insulin signaling, TCR signaling,
ubiquitin-mediated proteolysis, platelet activation BCR signaling, neurotrophin, and oxytocin
signaling pathways are T2D immune system specific pathways. Almost all these pathways (obese
and T2D immune signaling pathways) are major part of immune system known to control major part
of immune system. Furthermore, it is also known that altered TCR signaling is associated with T2D.
Therefore, we have now mapped out the individual genes which are associated with TCR signaling
pathway and presented the networks for all the five genes (SPNS1, PTPN6, CD247, FOS, and PIK3R5)
which are the component of TCR signaling pathway and their association with the other TCR genes
(Figure 3). These five genes SPNS1, PTPN6, CD247, FOS, and PIK3RS5 are the potential components
of TCR and also a number of additional immune system associated pathways. Among those
pathways are NK cell mediated cytotoxicity, FC-epsilon RI signaling pathways, BCR, JAK-STAT,
adherens junction, TLR, MAPK, TNF, cAMP, estrogen, oxytocin, prolactin, circadian entrainment,
and osteoclast differentiation. PIK3R5 alone belongs to a large number of critical pathways such as
TCR, BCR, NK cell-mediated cytotoxicity, JAK-STAT, ErbB, chemokine, phosphatidylinositol,
mTOR, apoptosis, VEGF, focal adhesion, regulation action cytoskeleton, etc[30].

As we can see in the results that PIK3R5 and FOS which are the components of TCR signaling
pathway and also control a large set of biological functions most of them part of immune system and
CD247, PTPN6, and SPNS1 comparatively controls less number of pathways but in terms of
connectivity PTPNG6 has the highest connectivity then SPNS1, CD247, FOS, and PIK3R5. It means that
PIK3R5 simultaneously controls large number of biological functions but does not impact more genes
or in other words the higher connectivity of the gene will have more chance to affect the expression
patterns of the gene or vice versa. In terms of future perspective, this study will be helpful for
therapeutic approach also for drug targeting.

4. Materials and Methods

For obese, GSE12050[31] dataset used where there are 36 samples out of which nine lean needle
biopsy have been compared with 9 obese biopsy samples. For sample details, it has been mentioned
that abdominal subcutaneous fat specimens have been collected by using needle biopsy approach
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from nine obese patient samples and 10 lean samples. Then nine obese patient samples have been
collected from abdominal subcutaneous fat biopsies and nine lean samples from abdominal fat
biopsies[31]. For T2D, GSE121 (GPL101 platform)[32] has been used for type-2 diabetes gene
expression profiling which contains 5 (insulin resistant (IR)) and 5 samples (Insulin sensitive (IS)) are
with type II diabetes while 11 are control samples. The samples were non-diabetic Pima Indians or
Tohono O’Odham Indians who were classified as IS or IR[32].

These gene expression datasets were collected from GEO have been processed for expression
value calculation, fold change, and p-value calculation by the in-built code at GEO i.e., GEO2R
[33,34]. The list of DEGs have been processed for pathway enrichment analysis and
understanding[35,36]. KEGG[30] database have been used for calculating enriched pathways and
further, own developed code have been used for pathway and network analysis. To retrieve DEGs
association as a network, FunCoup2.0 network database[37] has been utilized throughout the work
and the network has been visualized with the help of cytoscape[38]. For most of our coding and
calculations MATLAB has been used.

Now, we briefly summarize all the steps used are raw file processing, intensity calculation and
normalization. Since, the high-throughput data mainly microarray-based gene expression values are
calculated as intensity which ranges from lowest values to extremely high so it is needed to have
optimized values or scaled down values so we normally convert them to log2 values. For
normalization[39-41], GCRMA[42-46], RMA, and EB are the most commonly used approaches. Here,
we have used EB for raw intensity normalization. After normalization, we proceed for our goal which
is to understand the gene expression patterns[35,47] and its inferred functions[35,36]. For differential
gene expression prediction and statistical analysis, MATLAB functions (e.g., mattest) has been used
and volcano plot. From mattest, we get the p-values and then we go for p-values corrections and
assign the p-value threshold and finally volcano plot has been used for fold change calculation and
the selection of genes with p-values less than 0.05 and fold changes within this range >= +2.0 and <=
-2.0 and this range of fold change as well as the p-value cutoff are commonly used while in our study
we have selected the top ranked genes to have strict condition of selection based on fold change so
the fold changes are either extremely high or extremely low than the cutoff fold change. For pathway
analysis, we used KEGGI[30] database and have our own code designed to pathway and network
analysis[48-50]. We have described about the fold change and by default for considering genes as
DEGs, we have applied the threshold for FC >= +2.0 (up regulated genes) and FC <= -2.0 (down
regulated genes) and these DEGs have been considered for pathways enrichment analysis. But for
heatmap and network presentations the top 100 DEGs (50 up and 50 down) genes have been
presented[51,52].

5. Conclusions

Here, we observe that there are less number of genes which are commonly differentially
expressed while comparatively higher number of pathways are shared between them. There are only
four pathways which are associated with immune system in case of obesity and ten immune-
associated pathways in case of T2D and among them only two pathways are commonly altered. Here,
we have studied the differentially expressed genes (DEGs), enriched pathways, and the connection
between immune signaling pathways via their components between obesity and T2D and with the
major focus on the roles TCR signaling components. We conclude that in case of T2D, there is more
alterations in the gene expression pattern of those genes which are known to control major part of
immune system while in case of obesity there is less effect than T2D but these few pathways are also
known to be associated with controlling critical roles of immune system.
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Appendix A

The appendix is an optional section that can contain details and data supplemental to the main
text. For example, explanations of experimental details that would disrupt the flow of the main text,
but nonetheless remain crucial to understanding and reproducing the research shown; figures of
replicates for experiments of which representative data is shown in the main text can be added here
if brief, or as Supplementary data. Mathematical proofs of results not central to the paper can be
added as an appendix.

Appendix B

All appendix sections must be cited in the main text. In the appendixes, Figures, Tables, etc.
should be labeled starting with ‘A’, e.g., Figure A1, Figure A2, etc.
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