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Abstract: A triangular lattice model for pattern formation by core-shell particles at fluid interfaces is
introduced and studied for the particle to core diameter ratio equal to 3. Repulsion for overlapping
shells and attraction at larger distances due to capillary forces are assumed. Ground states and
thermodynamic properties are determined analytically and by Monte Carlo simulations for soft
outer- and stiffer inner shells, with different decay rates of the interparticle repulsion. We find that
thermodynamic properties are qualitatively the same for slow and for fast decay of the repulsive
potential, but the ordered phases are stable for temperature range depending strongly on the shape of
the repulsive potential. More importantly, there are two types of patterns formed for fixed chemical
potential - one for a slow and another one for a fast decay of the repulsion at small distances. In the
first case two different patterns - for example clusters or stripes - occur with the same probability for
some range of the chemical potential. For fixed concentration, an interface is formed between two
ordered phases with the closest concentration, and the surface tension takes the same value for all
stable interfaces. In the case of degeneracy, a stable interface cannot be formed for one out of four
combinations of the coexisting phases, because of a larger surface tension. Our results show that
by tuning the architecture of a thick polymeric shell, many different patterns can be obtained for
sufficiently low temperature.

Keywords: core-shell particles; liquid interfaces; triangular lattice; thermodynamics; ground states;
structure; line tension; phase coexistence; competing interaction; fluctuations.

1. Introduction

Metal or semiconducting nanoparticles find numerous applications in catalysis, optics,
biomedicine, environmental science, etc.. In order to prevent the charge-neutral nanoparticles from
aggregation, recently various types of core-shell particles (CSNP) have been produced [1,2]. In the
CSNPs, the hard, typically metal or semiconducting nanoparticle with a diameter ranging from a few
tens to a few hundreds of nanometers is covered by a soft polymeric shell. The polymeric chains can
interpenetrate, and the distance between the particles can become smaller than the shell diameter at
some energetic cost. This energetic cost, or the softness of the shells, can be controlled in particular by
crosslinking of the polymeric chains. The shell- to core diameter ratio in majority of the experiments
varies from about 1.1 to about 4 [2-5]. Since the shell thickness can be controlled independently of
the core diameter, and the effective interactions between the CSNPs depend on the thickness and
the architecture of the shells, the desired effective interactions can be obtained by choosing different
protocols for the synthesis.

Properties of the CSNPs have been intensively studied not only in the bulk, but also at fluid
interfaces [1-12]. It turned out that while in the bulk the effective interaction consists of the hard core
followed by the soft repulsive shoulder, at fluid interfaces strong capillary attraction can be present for
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separations larger than the shell diameter, in addition to the above mentioned repulsive interactions at
shorter distances [2—4].

Experimental results show that the CSNPs at fluid interfaces can form interesting patterns,
depending on the properties of the particles and on the fraction of the interface area covered by
them [2-4]. For small area fraction, highly ordered arrays of hexagonally packed particles are typically
observed. Compression may lead to sudden formation of particle clusters [1]. The surface pressure
- area isotherms can have a characteristic shape of alternating segments with very large and quite
small slope, and the large compressibility signals structural changes [2,3]. The origin of these patterns
and of the structural changes, their nature and dependence on the properties of the CSNP are not
fully understood yet. Theory of CSNP that at fluid interfaces repel each other at short-, and attract
each other at large separations, is much less developed than the experimental studies [13-15]. This is
in contrast to theoretical and simulation studies of patterns formed by particles with soft repulsive
potentials [16].

Because there are many factors controlling the core- and shell diameter and the architecture of
the shell, there is a need for a simplified, coarse-grained theory that could predict general trends in
pattern formation for various ranges, strengths and shapes of the effective potential. In Ref. [13], a
one-dimensional (1D) lattice model with repulsion between nearest neighbors and attraction between
second or third neighbors was solved exactly. The obtained isotherms consist of alternating segments
with very large and quite small slope as in experiments. The steep parts of the isotherms are associated
with periodic patterns. The number of the steps, however, is larger in the case of third-neighbor
attraction (i.e. thicker shell), and depends on the strengths of the repulsive and attractive parts of the
potential. There are no phase transitions in thermodynamic sense in 1D, but the correlation function
shows oscillatory decay with the correlation length that for strong attraction can be very large (10*
times the core diameter). These results show strong dependence of the structure and mechanical
properties of monolayers of the CSNPs on the range, shape and strength of the effective interactions,
and agree with the experimental observation of more complex behavior of the CSNPs with thick
shells. However, any 1D model cannot answer the question if different patterns correspond to different
phases, and obviously only 1D patterns can be examined.

Particles with the size equal or larger than a few tens of nanometers are practically irreversibly
adsorbed at the interface, but can move freely in the interface area [2]. For this reason, the particles
trapped at the interface can be modeled as a two-dimensional system. Since closely packed CSNPs
form a hexagonal pattern, triangular lattice models with the lattice constant a equal to the diameter of
the hard core (or the distance of the closest approach of the particles upon compression) are appropriate
and convenient generic models for CSNPs at fluid interfaces. In Ref. [15], lattice models for CSNPs
with thin and thick shells were introduced and studied. Following Ref. [16], we assumed that the
shell-to-core ratio separating the thin and thick shells is v/3. According to this criterion, the shell is
thin when the shells of the second neighbors of closely-packed particle-cores do not overlap, otherwise
it is thick.

For thin shells, nearest-neighbor repulsion and second neighbor attraction between particle cores
occupying sites of the triangular lattice were assumed. The shell-to-core ratio in this model is v/3.
We have found four phases in this model - very dilute gas, hexagonal lattice of closely packed shells,
hexagonal lattice of vacancies, and closely packed cores. We have calculated the surface tension
between coexisting phases for different orientations of the interface, and found that the particles at
the stable interfaces corresponding to the smallest surface tension lie on straight lines. The interface
lines meet at the angles 60° or 120°. When the fixed area fraction of the CSNPs is smaller than the area
fraction of the hexagonal phase, large voids with hexagonal shape are formed. The results are in good
agreement with experiment [2—4].

In order to study the effect of the shell thickness, in the second model we have assumed that the
inner shell is covered by a much softer outer shell, and the nearest-neighbor repulsion is followed
by vanishing interactions for the second, third and fourth neighbors, and by attraction between the
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fifth neighbors. The shell- to core ratio in this model is equal to 3, as in experiments of Ref.[1,3]. Six
more phases, including honeycomb lattices of particles or vacancies and periodically ordered rough
clusters were found, but these additional phases were stable only at the coexistence with the phases
found for the thin-shell model. For fixed area fraction of the particles, two phases with the closest
area fraction to the mean one, and the interface between them were present at low temperature. For
increasing T, islands of different phases in the sea of the hexagonally packed shells were observed in
the course of simulations for the area fraction exceeding the value at close packing of the shells. Such
complex patterns, somewhat similar to the patterns observed in experiments [2—4], occur because of
metastability of several ordered phases and large interface fluctuations in 2D.

The results of Ref.[15] concern CSNPs with composite shells with stiff inner shell and very
soft outer shell. In this work we focus on the question of the role of the shape of the repulsive
shoulder, associated with the architecture of the crosslinked polymeric chains. We assume first-
and second-neighbor repulsion, and fifth-neighbor attraction, and consider different second- to
first-neighbor repulsion ratio. The model is introduced in sec.2. Ground state (GS) of an open
system and of the system with fixed number of particles is determined in sec.3.1 and 3.2, respectively.
We find the same patterns as in Ref.[15] for weak second-neighbor repulsion, but the patterns absent
for thin shells are present for some intervals of the chemical potential. For the second-to-first neighbor
repulsion ratio larger than 1/3, the stable patterns are completely different. Moreover, for some ranges
of the chemical potential the ground state is degenerated, and two quite different patterns are stable.
In. sec. 4, thermodynamic properties obtained for T > 0 by Monte Carlo simulations are described.
We present the chemical potential, compressibility and specific heat as functions of the concentration.
Sec. 5 contains our conclusions.

2. The model

The system that models the core-shall particles on a surface is described in Ref.[15]. The
thermodynamic Hamiltonian of the system is:

1 kmax  Zk M
5 Z Z Jifitye, — u* Y i, (1)
=1 k;=1i= i=1

where k; numerates the sites of the k-th coordination sphere around the site i, z is the coordination
number, J is the interaction constant for the k-th coordination sphere, 7; is the occupation number (0
or 1), and p* is the chemical potential. The particles can occupy sites of a triangular lattice containing
M = L x L lattice sites.

The lattice parameter 4 is equal to the diameter of the hard core of the particles. It is supposed
that the particles repel each other with the intensity ;' = J;] (J; = 1) if the particles occupy the nearest
neighbor sites, and feel weaker repulsion on the next nearest sites with the intensity /5 = J»]. The
intermediate third and fourth neighbors do not interact (J3 = J4 = 0), while the fifth neighbors attract
each other with the energy J2 = —J5]. Thus, ], and J5 are the dimensionless interaction energies
in units of the nearest neighbor interaction J. The dimensionless chemical potential 4 = p*/] and
dimensionless temperature T = kpT™ /] will be used as well. In the terminology of Ref.[15] it is model
II with additional repulsive interaction of the second neighbors.

The interaction potential as a function of the distance between the particle cores is shown in Fig.1.
As it is demonstrated below, the variation of the second and fifth neighbor interactions can lead to
different symmetry-breaking (heterostructural) transitions in the system, like it was recently attained
using the augmented potential [17].

In accordance with the range of the interparticle interactions (up to the fifth neighbors), the unit
cell contains nine (3 x 3) lattice sites. For describing the ordered states of the system, the lattice is
decomposed in nine sublattices (Fig.2).
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Figure 1. The interaction potential as a function of the distance between the particle centers in units of
the first-neighbor repulsion J. The symbols denote the interaction between the cores occupying the
lattice sites, and the line is to guide the eye. The shown interactions J, = J5 = 1/3 correspond to a
crossover between different patterns formed by the particles, as described in sec.3.1.
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Figure 2. The system of unit cells with particles belonging to nine sublattices and the lattice vectors
e;,i =1,2,3. The particles 1 and 2 or 1 and 4 are the nearest neighbors, the particles 1 and 5 or 2 and 7
are the next nearest neighbors, the particles 1 and 3 or 1 and 7 are the third neighbors, the particles
1 and 6 are the fourth neighbors. The particles with the same texture in nearest unit cells with the
separation 34 are the fifth neighbors.
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Figure 3. The possible distributions of particles over the unit cell for the concentrations ¢ = n/9 with
2 < n < 4. For the concentrations with 5 < n < 7, the particles and vacancies have to be interchanged.
For the concentrations with n = 1 or 8, the particle or vacancy can occupy any lattice site of the unit
cell. There are several equivalent distributions of particles over the unit cell for the concentrations with
2 < n < 4 or vacancies for the concentrations with 5 < n <7.

TR

3. The ground states

3.1. The ground states of open systems

In the system with repulsive interactions of the first and second neighbors and attraction of the
fifth neighbors, the ground states with ten concentrations n/9, n = 0, 1, ..., 9 with different distribution
of the particles over the unit cell are possible. At zero temperature, the stable configurations are
determined by minima of the dimensionless thermodynamic Hamiltonian per lattice site

w = H*/M] ()

because the entropy does not contribute to the thermodynamic functions.
In the vacuum state wy = 0. In the ¢ = 1/9 phase, each particle has six neighbors of the fifth order.
Calculating the system energy, each interacting bond is taken into account twice. Thus,

w9 = (=3J5 —u)/9. 3)

For ¢ = 2/9, two possibilities exist for distribution of two particles over the unit cell (Fig.3). The
calculated potentials are as follows:

a) wy9=(3J»—6J5—2u)/9,

4)
c) wy9=(1-6J5—2u)/9.

1 in Eq.(4c) originates from the nearest neighbor interaction for this configuration.
For larger concentrations, we can write the expressions corresponding to the columns a-c in Fig. 3

a) ws9=(9]2—9J5—3u)/9,
b) w39 = (2+3]2—9]5—3;4)/9, 5)
¢) ws9=3-95—3u)/9,

a) wy9=(3+9—12]5—4u)/9,
b) wys9 = (4+6J2—12]5 —4u)/9, (6)
c) wyyg=(5+3r—12]5 —4u)/9.

For the concentration ¢ = n/9 with n > 5, the distribution of the vacancies in the unit cell is the

same as the distribution of the particles for ¢ = (9 — n)/9. In the dense state (1 = 9, ¢ = 1), all the
lattice sites are filled by the particles. The w for these states can be calculated as

Wy9g=wi_pn9g+(2n—=9)BA+—J5) —u]/9, 5<n<9 7)
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Figure 4. The dimensionless thermodynamic Hamiltonian per lattice site versus the chemical potential
for the concentrationsc = n/9,n=0,1,2,..9at J,5 = 1/4.
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Figure 5. The cartoons of the distribution of particles over the lattice sites and the corresponding
chemical potential intervals for the system with 5 = 1/4.

for each particular distribution of the particles/vacancies over the unit cell.

Comparing the r.h.s. of Egs.(4)-(6), we can see that at J, < 1/3 the system states shown in the
column a) of Fig.3 are more stable, while at [ > 1/3 the system states shown in the column c) are
preferable. The system states of the column b) could occur if additional interactions of the third and/or
fourth neighbors were taken into account.

Thus, the presence of the interaction between the second neighbors eliminates the phase
degeneration observed in the system without it[15], and results in additional stable phases in certain
regions of the chemical potential.

To make further analysis more transparent, we consider the case |5 = J» = J>5. There exists the
crossover value of the interaction parameter J,5 = 1/3, which separates the possible states of the
system. Let us consider particular values of the interaction parameter, below and above the crossover,
Jos =1/4 <1/3and Jo5 = 1/2 > 1/3, that correspond to slower and faster decay of the interaction
potential for short separations as compared with V() shown in Fig.1, respectively.

In Fig.4, the grand thermodynamic potentials per lattice site, Eqs.(3)-(7), are shown as functions of
the chemical potential at J, 5 = 1/4. The stable states correspond to the lowest value of w for given y,
i.e. to the lowest line segments between the intersection points. These segments determine the chemical
potential intervals corresponding to particular concentrations of the particles. Each intersection point
corresponds to coexistence of two phases with the closest concentrations. The stable system states and
the corresponding chemical potential intervals are shown in Fig.5. The phase diagram of the system at
J2,5 < 1/3is shown in Fig.6.
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Figure 6. The phase diagram of the system. The vertical lines show the chemical potential intervals for
the system states at J5 = 1/4, J5 =1/3and Jo5 = 1/2.

The phase coexistence lines between the phases with the concentrations (n — 1) /9 and /9 can be
represented by the expression

ey =3k+3(1-1)o5, k=012, 1=0,1,2,

8
n=1+3k+1L ®)

The phase diagram of the system for the larger interaction parameter, 5 > 1/3, is shown in Fig.6
as well. In this case, the phase coexistence lines between the phases with concentrations (n —1)/9 and
1/9 obey the expression

Mkl :k—|—21+3(l—1)]2’5, k=0,1,2, 1=0,1,2,

9
n=1+k+3l ©)

The dependence of the potential w on the chemical potential at J, 5 > 1/3 is shown in Fig.7. The
stable states correspond to the lowest line segments between the intersection points, which indicate
the chemical potential values for the phase coexistence.

The structure of the stable phases at [, 5 > 1/3 is shown in Fig.8. At the concentrations 3/9, 4/9,
5/9 and 6/9, the degenerated ground states exist. E.g., either triangles of the nearest neighbors or
stripes parallel to the lattice vectors can exist with equal probabilities at c = 3/9. Ordered rhombuses
or stripes with additional particles attached to them can occur at the concentration ¢ = 4/9.

At the crossover value of the parameter /5 = 1/3, all the system states for the concentration
between 2/9 and 7/9 are degenerated. The w,, /9 functions of the chemical potential y according
to Eqgs.(3)-(7) coincide for all possible system states for a given value of n. Any distribution of
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Figure 7. The dimensionless thermodynamic Hamiltonian per lattice site versus the chemical potential
for the concentrationsc =n/9,n=0,1,2,...,9at o5 = 1/2.
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Figure 8. The cartoons of the distribution of particles over the lattice sites and the corresponding
chemical potential intervals for the system with J5 > 1/3.
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Figure 9. The cartoon of the interface between the c = 1/9 and 2/9 phases for the system at J,5 < 1/3.

particles shown in columns a) and c) of Fig.3 can occur at this value of the parameter J; 5 on the line
segments between the intersection points at 4 = n — 2 for the coexisting phases ¢ = (1 —1)/9 and
c=n/9,n=1,2,..,9.

3.2. The ground states for fixed number of particles

In systems with a fixed number of particles, an arbitrary mean concentration can be considered.
At c # n/9, two phases separated by an interface line coexist. Like in the previous case [15], the
interface lines can be parallel or perpendicular to the lattice vectors e;,i = 1,2,3 (Fig.3). We have
verified that the interface lines parallel to the lattice vectors are preferable because their line tensions
are smaller.

On the coexistence line between vacuum and the ¢ = 1/9 phase, each particle of the latter phase
looses two interacting bonds with the fifth neighbors in the vacuum phase. The distance between
particles along the interface is equal 3a, where a is the nearest neighbor distance. Thus, the line tension
is equal to o = [ 5/3a. At the interface line perpendicular to the lattice vectors e;, each particle in the
first row looses 3 interacting bonds and in the second row one interacting bond. The distance between
particles along the interface line is equal to 3av/3. The line tension is 2], 5/3av/3 > J»5/3a. Thus, the
interface lines between the coexisting phases ¢ = 0 and ¢ = 1/9 are parallel to the lattice vectors. The
same conclusion, o = J,5/3a, follows for the interface line between the phases c =1/9 and c =2/9in
both cases o5 < 1/3 and Jo5 > 1/3. Fig.9 demonstrates that one of the particles in the near interface
unit cell of the ¢ = 2/9 phase has 6 neighbors of the fifth order, while the other one has four such
neighbors. The minimum of the line tension is assumed when one of the particles of the c = 2/9 phase
in the unit cell has two fifth neighbors and no first and second neighbors in the phase c = 1/9. We
finally note that the interface is twofold degenerated for the case of /o5 > 1/3 at the concentrations
3/9 < ¢ <6/9 (see Fig.8).

As an example of a structure in a system with fixed number of particles, the simulation snapshot
for the system of 37 particles on the lattice of 36 x 36 lattice sites (the concentration ¢ = 0.029) is shown
in Fig.10. In the ideal case of T = 0, the particles have to form a regular hexagon. However, the
simulation was done at quite low but nonzero temperature T = 0.1. As a result, the coexistence of
the rarefied gas phase (the vacuum state with a few evaporated particles as defects) and the phase
with ¢ = 1/9 is obtained. The interface lines are parallel to the lattice vectors in agreement with the
analytical calculation for T = 0.

At J5 < 1/3, the system states for a subsequent concentration can be produced from the previous
one by adding a particle in the unit cell. At the interface line, this particle has no counterparts in
the lower concentration phase loosing two interacting bonds with the fifth neighbors and the line
tension is equal o = J,5/3a for all the coexisting phases with concentrations (n —1)/9 and n/9 for
n=12,..,09.

The situation at [, 5 > 1/3 is more complicated. The neighboring system states in the upper row
in Fig.3 differ from each other by one particle in the unit cell and the line tension for all the interfaces
parallel to the lattice vectors is equal to [ 5/3a. The system state for the ¢ = 3/9 phase in the lower row
can coexist with the ¢ = 2/9 phase, because this state differs from the previous phase by one particle
as well. Thus, the degeneracy of the phase coexistence between the phases c = 2/9 and ¢ = 3/9 is
observed.
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Figure 10. The snapshot of the system of 37 particles on the lattice of 36 x 36 lattice sites (c ~ 0.029)
after 9 000 MCS at [, 5 = 1/2. The interface lines are parallel to the lattice vectors e;.

However, the ¢ = 4/9 phase in the lower row in Fig.3 can coexist with the ¢ = 3/9 phase of
the upper row, but not with that of the lower row, because they differ by positions of more than one
particle. Thus, three combinations of coexisting phases exist at the mean concentration 3/9 < ¢ < 4/9.
The same situation exists for the coexistence of the c = 4/9 and c = 5/9 phases. The states of the upper
row can coexist between themselves as well as with the cross phases of the lower row. However, these
phases in the lower row cannot form a stable interface between themselves. There are no counterparts
for two particles in the more concentrated phase as well as for one particle of the less concentrated
phase. The line tension in this case is three times larger. Three combinations of coexisting phases
separated by a stable interface exist at the mean concentration 4/9 < c < 5/9 as well.

The system states are symmetric with respect to 4 = 3 or ¢ = 0.5 and the particle-vacancy
interchange[18]. The phase coexistence at larger chemical potentials and concentrations are symmetric
to their lower values.

4. The thermodynamics of the system at T > 0.

At low dimensionless temperatures T = kpT* /] (where T* is the absolute temperature and kg
the Boltzmann constant), the ordered states found in the GS remain present in the system, while the
ordering is destroyed gradually with the temperature increase due to thermal fluctuations. In this
section, the MC simulation results for y(c) isotherms, isothermal compressibility and specific heat
are presented for the system at two values of the interaction parameter [5 = 1/4 and Jo5 = 1/2
below and above the crossover value [, 5 = 1/3. The Metropolis importance sampling simulations
were performed with the chemical potential step Ay = 0.02 for the system of 96 x 96 lattice sites with
periodic boundary conditions. 1000 Monte Carlo simulation steps (MCS) were used for equilibration.
The subsequent 10 000 MCS were used for calculating the average values.

The isotherms displaying the concentration dependence on the chemical potential at 5 = 1/2
demonstrate typical behavior at low temperatures T = 0.1, 0.2 and 0.3 (Fig.11). The wide empty
horizontal segments in the (c) plots indicate forbidden regions of concentrations. These two-phase
segments are separated by very steep parts of the ji(c) plots, where y increases rapidly for very narrow
range of ¢, centered at n/9. These intervals of c separating the horizontal segments expand with
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Figure 11. The chemical potential as a function of the concentration at 5 = 0.5 and several

temperatures. The isotherms are shifted in the vertical direction by 3 from each other for clarity.
The isotherm at T = 0.1 is not shifted.

increasing temperature. The concentration intervals around n/9,n = 0,1, ...,9 correspond to the
ordered patterns discussed in the previous section in the case of the grand canonical ensemble. At
larger temperature T = 0.5, the horizontal regions in the y(c) plot almost disappear. Thus, the critical
temperature can be estimated as T, ~ 0.6. The concentration increases continuously as a function of
the chemical potential at this temperature. The repulsion interaction between the second neighbors
not only removes the degeneracy of the system states at the concentrations 1/3 and 2/3, but also
significantly reduces the critical temperature, which is around 1.1 when the second neighbors do not
interact [15].

The structure of stable phases resembles the ground state configurations. In Figs.12, 13, 14 the
snapshots of the system at the concentration close to 4/9 are shown as examples. At the interaction
parameter /o5 > 1/2 above its critical value 1/3, the system is degenerated and in different runs the
final state Figs.13,14 corresponds to the possible ground state configurations given in Fig.8 with a few
defects due to thermal fluctuations.

The phase transitions can be more clearly revealed by considering fluctuations ( Fig. 15). The
inverse value of the thermodynamic factor xt = c(9(Bu)/oc)r is proportional to the concentration

fluctuations ((N —(N))?)
e P (10)

that in turn is proportional to the isothermal compressibility xr = (dc/dp)r/c, X1 ! = ¢Tkr, where
the angular brackets (...) denote averaging over the grand canonical ensemble, N is the number of
particles in the system, ¢ = (N) /M is the mean lattice concentration,and p is the pressure.

At the lowest temperatures, T = 0.1 and T = 0.2, the concentration fluctuations of each phase
exist in narrow concentration regions. At the temperature T = 0.4, the minima of the concentration
fluctuations are well distinguishable. They are attained at the most ordered system states with
concentrations equal to a multiple 1/9. At T = 0.5, the concentration fluctuations span almost over the
entire concentration range (0,1), indicating the approach to the critical temperature.
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Figure 12. The snapshot of the system at T = 0.2, u = 2.6, [ 5 = 1/4 after 8 000 MCS. The extra particle
(defect) is shown in red. This structure corresponds to the ground state configuration shown in Fig.5.

Figure 13. The snapshot of the system at T = 0.3, u = 2.6, J 5 = 1/2 after 8 000 MCS. The additional
vacancies (defects) are shown in yellow. This structure corresponds to the ground state configuration
shown in the bottom row of Fig.8.

Figure 14. The snapshot of the system at T = 0.3, u = 2.6, [5 = 1/2 after 8 000 MCS. The extra
particles and additional vacancies (defects) are shown in red and yellow, respectively. This structure
corresponds to the ground state configuration shown in the upper row of Fig.8.
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Figure 15. The inverse thermodynamic factor as a function of the concentration at J, 5 = 0.5 and several
temperatures. The curves are shifted in the vertical direction by 3" from the lowest one for clarity.

Similar behavior is observed for the dimensionless specific heat (Fig.16), which is proportional to

the energy fluctuations
_ 1 (E _{E—(E))
%‘mm<w0{‘<MP ' )

where E = E*/] is the dimensionless system energy (see the first term on the RHS in Eq.(1)), and

® = 5 y Y ffkﬁiﬁki>. (12)

k=1k=1i=1

As an example, the fine structure of the concentration and energy fluctuations is shown in Fig.17
simulated with the reduced chemical potential step. The minima of these characteristics are close to
the concentration ¢ = 1/3 of the most ordered system state.

Structural peculiarities of the system can be tracked by considering the order parameters (OP).
The occupancy of particular sublattices (Fig.2) represents nine such order parameters. At the lowest
temperatures, T = 0.1 and 0.2, the succession of the order parameters is in fact represented by the step
functions rising from 0 to 1 when the concentration attains the value equal to a multiple of 1/9. The
OPs become smoother when the temperature increases.

For the interaction parameter below its critical value 1/3, in particular for J, 5 = 1/4, the chemical
potential isotherms look like in the previous case (Fig.18), but the critical temperature is even lower,
around 0.4. At low temperatures, the inverse thermodynamic factor and the specific heat as well as the
order parameters, have the same prominent features at the concentrations around a multiple of 1/9.
The rapid changes of the above quantities for ¢ ~ #/9 are smoothed out with the temperature increase.

Despite very similar thermodynamic properties of the systems with the interaction parameter
J25 above and below its crossover value J5 = 1/3, the structural characteristics are completely
different above and below the crossover. The particle distribution over the lattice sites corresponds
to the structures of Fig.5 or Fig.8 in the former and in the latter case, respectively. Due to thermal
fluctuations at non-zero temperatures, the structures contain defects, which are particles on the sites
do not belonging to the ideal configurations or vacant sites on these configurations. The number of
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Figure 16. The dimensionless specific heat as a function of the concentration at /5 = 0.5 and several
temperatures. The curves are shifted in the vertical direction by 3% from the lowest one for clarity.
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Figure 17. The fine structure of the inverse thermodynamic factor and dimensionless specific heat at
T = 0.3 and Jp5 = 0.5 simulated with the reduced chemical potential step Ay = 0.002. The scatter of
the results characterizes the precision of the simulation.
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Figure 18. The chemical potential as a function of the concentration at J,5 = 0.25 and several

temperatures. The isotherms are shifted in the vertical direction by 3 from each other for clarity.
The isotherm at T = 0.1 is not shifted.

defects increases with the temperature increase, and the concentration range corresponding to the
ordered phases increases as well.

5. Conclusion

We considered pattern formation by particles with hard cores covered by thick polymeric shells on
a fluid interface. The structure of the shell can be designed in experimental studies, and it determines
the effective repulsion between the particles. For this reason, the aim of our study was determination
of the effect of the shape of the repulsive potential on the patterns formed by the particles. We focused
on the question how the rate at which the repulsion decreases with the distance influences the pattern
formation. We considered a triangular lattice model with the lattice sites occupied by the particle cores.
The nearest and next nearest neighbors repel each other due to the overlapping polymeric shells, while
the fifth neighbors attract each other because of the capillary forces.

The second neighbor repulsion in addition to the nearest and fifth neighbor interaction results in
significant enrichment of the GS structures. Alongside with the concentrations equal to a multiple of
1/3, the states with the concentrations equal to a multiple of 1/9 are present for certain intervals of the
chemical potential.

Importantly, the patterns formed for the concentration ¢ = n/9,n = 2,...,7, are completely
different for the repulsion that shows a fast and a slow decrease with the interparticle separation (see
Fig. 5 and Fig. 8 for the first and the second case, respectively). In the second case, two quite different
patterns can occur with the same probability for given y. The crossover value of the second-neighbor
repulsion (equal to the fifth neighbor attraction) separating the two types of patterns is J5 = 1/3. Our
model is suitable for thick composite shells, with stiff inner part and soft outer part. The results show
that by modifying the thickness and the structure of the stiff inner part, we can obtain completely
different patterns on an interface.

In systems with a fixed number of particles, the energetically preferable interface lines are parallel
to the lattice vectors for all stable interfaces. We have shown that in the case of the degenerated GS,
two types of patterns with lower density can coexist with two patterns with higher density, giving
together 4 pairs of coexisting patterns. A stable interface, however, cannot be formed for one of these
pairs.
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At non-zero but not too large temperatures, the system passes through the structures
corresponding to the GS with thermally initiated defects. At low temperatures, the stable states
exist in very narrow concentration intervals close to the concentrations equal to a multiple of 1/9. The
concentration intervals enlarge with the temperature increase. At temperatures slightly above the
critical one, the concentration versus chemical potential isotherms become continuous. The critical
temperature depends strongly on the shape of the interaction potential too. In the case of J,5 = 1/2,
i.e. when the intensity of the second neighbor repulsion is equal to the fifth neighbor attraction and
twice as low as the first neighbor repulsion, the critical temperature is almost two times lower than in
the system with vanishing interaction between the second neighbors [15]. The critical temperature
decreases with decreasing interaction between the second and the fifth neighbors.

The fluctuations of the number of particles and energy are maximal at the concentrations
corresponding to the phase transition points, and minimal in the most ordered states at concentrations
close to a multiple of 1/9. The order parameters determined as the mean concentrations on the
sublattices demonstrate fast increase from 0 to 1 while the mean system concentration crosses a value
equal to a multiple of 1/9.

To summarize, we stress that our model indicates that by careful construction of the polymeric
shell, one should be able to obtain HCSS forming variety of different patterns on an interface.
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