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Abstract: Drops are the most important and most common energy dissipator in irrigation networks 

and erodible canals and consequently, their performance must be well understood. This study was 

designed to evaluate the capability of Artificial Intelligence (AI) methods including ANN, ANFIS, 

GRNN, SVM, GP, MLR, and LR to predict the relative energy dissipation (∆E/E0) in vertical drops 

equipped with a horizontal screen. For this study, 108 experiments were carried out to investigate 

energy dissipation with variable discharge, varying drop height, and porosity of the horizontal 

screens. Parameters yc/h, yd/yc, and p are considered as input variables and ∆E/E0 is the output 

variable. The efficiency of models was compared using Taylor's diagram, Box Plot of the applied 

error distribution, correlation coefficient (CC), mean absolute error (MAE) and root-mean-square 

error (RMSE). Results indicate that the performance of the ANFIS_gbellmf based model with CC 

value of 0.9953, RMSE value of 0.0069 and MAE value of 0.0042 was superior to other applied 

models. Also, the linear regression model with CC=0.9933, RMSE=0.0083, and MAE= 

0.0067performs better than the multiple linear regression model in this study. Results of a sensitivity 

study suggest that yc/h is the most effective parameter for predicting ∆E/E0. 
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1. Introduction 

Screens are structures that are used to increase energy dissipation and reduce the length of the 

settling basin[4]. Screens do not replace the settling basin, but they can be used when settling basins 

are not technically or economically viable. Screens often cause energy dissipation downstream of 

hydraulic structures by imposing a hydraulic jump and by promoting turbulence. Vertical drops can 

be used as a kinetic energy reducer. The inlet flow is one of the most important design components 

and the flow is usually sub-critical. However, supercritical flow is also possible in some situations. 

Many researchers have carried out extensive experimental and numerical studies to calculate energy 

dissipation for these devices (Rajaratnam and Hurtig [4]); (Chamani et al. [10]); (Kabiri-Samani et al.     

); (Daneshfaraz et al. ). 

Rouse [4] was one of the first research studies on this topic; he presented an equation to calculate 

the discharge by measuring the brink depth. Chamani and Beirami [8]  studied the effect of 

supercritical flow upstream of a vertical drop on the hydraulic parameters. They showed that 

increasing the Froude number for a constant discharge decreases the relative pool depth, the relative 
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downstream depth, and the relative energy dissipation. Balkiş   studied the effect of the slope of the 

screens on the energy dissipation. The results showed that the slope of the screens do not affect the 

energy dissipation rate. Esen et al. [4] investigated the effect of different dimensional steps 

downstream of a drop with an upstream subcritical flow. They observed that stairs downstream of a 

vertical drop increased the relative downstream depth and the relative energy dissipation. Hong et 

al. [1] studied the influence of downstream slopes on hydraulic parameters of vertical drop. The 

researchers tested four different slopes downstream of the vertical drop and they indicated that by 

increasing the slope, the slope length and impact parameters increase. 

Sadeghfam et al. [2] studied energy dissipation in a submerged hydraulic jump that employed 

dual vertical screens. They showed dual vertical screens dissipate more energy by imposing a 

hydraulic jump formation. Daneshfaraz et al. [10]  evaluated screen performance in the dissipation of 

energy using numerical simulation. The numerical model results were compared with experimental 

results. Results showed an ability of the numerical simulation to provide solutions with high 

accuracy. Kabiri-Samani et al.  Investigated the behavior of grid drop-type dissipators. Their results 

revealed that the use of grid drop-type dissipators increased the relative downstream depth of the 

pool and the relative energy dissipation compared to a vertical drop. Sharif and Kabiri-Samani and 

(Kabiri-Samani et al. ) investigated the effect of downstream depth on the hydraulic performance of 

grid drop-type dissipators.  

Daneshfaraz et al. [6] Investigated the behaviour of screens in movable-bed channels. They 

derived a set of equations to describe the dimensions of the scouring pit induced by screens. Using 

an experimental study, (Daneshfaraz et al. ) investigated the effect of dual horizontal screens on 

hydraulic behavior. Their results indicated that by using dual horizontal screens, the flow regime can 

be transformed from supercritical to subcritical downstream of the drop. Machine learning systems 

have recently been utilized to predict energy dissipation in hydraulic structures. Norouzi et al.  

Studied the performance of an adaptive neuro-fuzzy inference system (ANFIS) on the energy 

dissipation of inclined drops equipped with downstream vertical screens. The showed that the 

ANFIS model values of R2 and RMSE are 0.996 and 0.006, respectively. ANFIS has an excellent ability 

to calculate the energy dissipation associated with inclined drops that are equipped with downstream 

vertical screens. Sadeghfam et al. [5] used artificial intelligence to combine multiple models (AIMMs) 

for calculating supercritical jet flow upstream of screens. The results showed that the AIMM model 

has a good capability in modelling scouring dimensions. 

Despite this large body of prior work, little research has been done on the performance of an 

intelligent model for predicting energy dissipation in drops. Therefore, in the present study, 

independent intelligent models such as Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Support Vector Machine (SVM), Generalized Regression Neural Network 

(GRNN), Gaussian Process regression (GP), and both multiple linear and nonlinear regression 

methods were applied to evaluate energy dissipation in drops and with a horizontal screen. In the 

present study, the performance of standalone intelligent models was used to estimate the energy 

dissipation in drops. 

2. Materials and Methods 

 2.1. Experimental Set-up 

Experiments were carried out in a laboratory flume 5 m in length, 0.3 m in width and with a 

variable depth that ranged from 0.45 - 0.75 m. The test facility was housed in the hydraulic laboratory 

at the University of Maragheh. Inlet flow was regulated by two pumps, each with a capacity of 450 

liters per minute. Flowrate was measured using a rotameter mounted on the pump with ± 2% 

accuracy. The inlet flow is pumped into the upstream reservoir by the pump and enters the flume 

bypassing the baffle. Water depths were measured at five points along the channel width with a ±1 

mm precision point gauge. The characteristics of the laboratory model made in the present study are 

presented in Table 1 and shown in Fig. 1. 
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Table 1. Specification of the laboratory model 

Vertical drop  Screen 

Type Height (m) 
Width 

(m) 

Length 

(m) 

 
Type 

Porosity 

(%) 

Thickness 

(m) 

Length 

(m) 

Glass 
0.15-0.2-

0.25 
0.3 1.2 

 
Polyethylene 40-50 0.01 0.7 

 

 

Figure 1. Schematic of the experimental setup and water circulation system 

Using the laboratory apparatus just described, 108 experiments were carried out to investigate 

energy dissipation with varying flow, drop height and porosity of the horizontal screens. 

Calculation of energy dissipation 

To calculate the energy upstream of the vertical drop, Eq. (1) from (Bakhmeteff ) was used: 

                      u cE = 1.5 y + h
                                                                         (1) 

where Eu is the total energy upstream of the drop, h is the drop height and yc is critical depth 

upstream of the drop. Equation (2) is used for calculating the energy downstream of the drop. 

                 

2

d d 2

d

q
E = y +

2gy
 

 
(2) 

In Eq. (2), Ed is the total energy downstream of the vertical drop, yd is the downstream depth, g 

is the acceleration of gravity, and q is the discharge per unit width. Next, Eq. (3) was used to calculate 

the relative energy dissipation for the vertical drop structures. 

 

u d

u u

E - EE
=

E E



 
(3) 

 

2.2. Dimensional Analysis 

The geometric and hydraulic parameters affecting the flow are given in Eq. (4): 
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            1 c u b d p mix uf (r,m,g,Q,h,p, t, y , y , y , y , y ,L , E,E ) = 0
 (4) 

where 𝜌 is the water density, μ is dynamic viscosity, g is the gravitational acceleration, Q is the 

discharge, h is the drop height, t is the screen thickness, Lmix is mixing length, p is the screen porosity 

ratio, yc is the critical depth, yu is the upstream drop depth, yd is the downstream depth, yp is the pool 

depth under the falling jet, ∆E is the dissipated energy, yb is the drop brink depth, and Eu is the total 

energy upstream of the drop. 

By using the π-Buckingham theory and with repeated parameters yu, 𝜌 and g, the following 

non-dimensional equation is achieved: 

          

pc b d 0mix
2 0 0

yy y y ELh t E
f (Re ,Fr , ,p, , , , , , , , ) = 0

y y y y y y y y yu u u u u u u u u



 

(5) 

with some simplification, Eq. (6) is obtained: 

 

                 

pc b d mix
3 0 0

c c 0

yy y y Lt E
f (Re ,Fr ,p, , , , , , , ) = 0

h h y y h h E



 

(6) 

Considering that the Reynolds number range is 10000-35000, the flow is fully turbulent and 

viscous effects can be neglected. The measurement of the upstream depth was performed to 

determine the Froude number range for subcritical flow  and it was observed that in all tests, the 

Froude number is in the range 0.68-0.84. Therefore, the effect of the upstream Froude number is 

ignored . Also, previous research on the thickness of screens indicates that it can be ignored as well . 

By simplifying and disregarding the unimportant parameters, the dependent parameters were 

obtained as a function of the independent parameters as shown below. 

 

                                

c d
5

0 c

y yE
= f ( ,p, )

E h y



 
(7) 

 

Since the purpose of this paper is to investigate energy dissipation, Eq. (7) is modified to become 

the following. 

 

                                

c d
5

0 c

y yE
= f ( ,p, )

E h y



 
(8) 

 

In Eq. (7), ∆E/E0 is the relative energy. The terms p and yc/h are the porosity of screens and relative 

critical depth and are independent parameters. The nondimensional ratio of the relative critical depth 

is in the range 0.07-0.39 and the porosity ratio of the screens are equal 40% or 50%.  

 

2.3. Artificial neural networks (ANN) 

ANN is a soft computing-based approach and can be used to predict energy dissipation. The 

ANN model is developed using WEKA software. A trial-and-error method is used to develop the 

most suitable ANN-based model. The networks are controlled by factors such as momentum 

coefficients, learning rate, number of hidden layers and neurons. The major drawback of the ANN 

approach is that it represents knowledge in terms of a weight matrix that is not fully understood. 

Therefore, usually, it is considered a black-box model. Also, the ANN approach needs to find network 

parameters such as the number of neurons in hidden layers and the number of hidden layers by a 
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trial-and-error method which is very time-consuming. A detailed theoretical description of ANN is 

available in . The main advantage of ANN is that it is easy to use and that it can approximate any 

input/output map [7]. Prior research, such as have used ANN to model a monthly pan evaporation 

process and calculated scour depths. Figure 2 shows the structure of ANN with three layers including 

input, middle, and output layers. 

 
 

Figure 2. Structure of ANN 

2.4. Adaptive neuro-fuzzy inference system (ANFIS) 

An adaptive network is a multilayer structure whose overall output behavior is determined by 

the value of a set of modifiable parameters. The adaptive network structure consists of a set of 

interconnected nodes that are directly connected wherein each node is considered a processing unit. 

These systems have solved the main problem in fuzzy system design (if-then rules) by making 

effective use of ANN's automatic production of rule-learning capability and parameter optimization. 

The two rules of this system are also expressed by Eqs. (9) and (10): 

 

(9) 
1 1 1

1 1 1 1

     &     &      

          

If x is A yis B z isC

Then f p x q y k z r= + + +
 

(10) 
2 2 2

2 2 2 2

      &     &      

          

If x is A yis B z isC

Then f p x q y k z r= + + +
 

ANFIS is one of the most common fuzzy nervous systems that runs a Sugeno fuzzy system in a 

neural structure. The system utilizes a combination of backpropagation training and minimum error 

squares for the training process. With ANFIS, it is necessary to specify the type of membership 

function and its number in the first layer. For this purpose, in the first layer, there are two methods 

of network separation and cluster separation for data classification. The types of functions available 

in this network include Trimf, Gaussmf, Gbellmf, Trapmf. The adaptive neural fuzzy model operates 

based on the change in the number of center values and the range of belonging functions in different 

iterations to reach the appropriate network based on the minimum error present. Some of the ANFIS 

model effectiveness includes the ability to estimate the rectangular side weir discharge capacity , 

predict side weir discharge coefficient , and study energy decreases of the drop . Figure 3 has been 

prepared to schematically show the structure of the ANFIS methodology. 
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Figure 3. Structure of ANFIS 

2.5. Support vector machine (SVM) 

The SVM algorithm is a classifier that is one of the branches of kernel methods in machine 

learning. This type of learning system is used to classify and estimate a data fitting function so that 

minimal error occurs in the data-fitting function. The SVM algorithm was developed by (Vapnik), a 

Russian mathematician, based on statistical learning theory. The purpose of the support vector 

machine is to identify a function f(x) for training patterns such that it has the maximum margin of 

training values y. In other words, the SVM is a model that fits a curve of thickness € to the data so 

that minimal error is observed in the experimental data. In a SVM regression model, it is necessary 

to estimate the relationship of the dependent variable y to a set of independent variables x. It is 

assumed that, like other regression problems, the relationship between the dependent variables plus 

a value of independent f is determined by an additional noise function. 

 

 

                                y = f(x) + noise (11) 

 

The key is to find the form of the function f that can correctly predict new quantities that SVM 

has not experienced before. This function is accessed by training the SVM model on a training dataset. 

The training includes a process to permanently optimize the error function. Based on the definition 

of this error function, two well-known models are SVM type regression models, known as SVM-v 

models and second-order SVM regression models, known as the SVM -ε models. In this study, the 

SVM-ε model was used because of its widespread use in regression problems. For this model, the 

error function is defined as follows. 

                                
0

1 1

1

2

N NT

i ii i
W W c c 

= =
+ +   (12) 

 

The error function should be minimized using the following constraints. 
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 (13) 

where, C is the capacity constant, W is the coefficient vector, WT is the vector of the coefficients, 

i i
0 are the deficiency coefficients, b is a constant, N is the training model and Φ is the kernel 

function. The radial basis function kernel is the best choice among other kernel functions. In this 

study, the function defined by γ in the following relation is applied. 
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2

( , ) exp( )K xi x xi x= − −  (14) 

 

Various SVM model results have been used to calculate discharge coefficients modified oblique 

side weirs . AVM models have also been used to investigate labyrinth and arced labyrinth weir 

discharge coefficients and to study trapezoidal labyrinth weir discharge coefficients [7]. 

2.6. Generalized regression neural network (GRNN) 

A GRNN neural network is a basic radial neural network and a general-purpose approximator 

for smooth functions. It is capable of smoothly approximating any function provided sufficient data 

is available. The GRNN is a three-layer neural network in which the number of neurons in the first 

and the last layer is equal to the dimensions of the input and output vectors. But, unlike other 

networks, the number of the hidden layer neurons in the GRNN model is equal to the number of 

observational data. This type of neural network uses the normal efficiency function in each of the 

hidden layer neurons, and the input data to this function for each neuron is the Euclidean distance 

between the input data and the observations of that neuron. This calculation is facilitated by Eq. (15). 

                                

2-I

r

r b

f (X , b) = e

I = X - X 0.836 / h
 (15) 

Here, Xr is a vector input to the network with an unknown output, Xb is the input value of the 

observations in time and b and h of the radius range parameter. By changing h, the value of the 

function will be changed so that the function will find the best fit to the data. The output values of 

this function are in the range 0-1 so that as the Euclidean distance between the two vectors Xr and Xb 

approaches zero, the value of the function approaches one. As the vectors differ, the value of the 

function approaches zero. The GRNN neural network uses Eq. (16) to calculate the output. 

 

                                 r b

1

1

1
f(X ,b)×T

( , )

n

r n
b

r

b

Y

f X b =

=

= 


 
(16) 

 

where Tb is the output value of the observations corresponding to the input vector b and n is the 

number of observational data. Several prior research studies have used the GRNN method for tasks 

such as estimating stream water temperature , soil temperature , and GPK Weir discharge coefficients 

. The structure of the GRNN neural network is shown in Fig. 4. 

 

 
 

Figure 4. Physical structure of GRNN 
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2.7. Gaussian process model (GP) 

“The Gaussian Process regression model (GP) has increasingly become a statistic tool for data-

driven modeling. GP methods are non-parametric systems that can resolve assortment and regression 

modeling problems. It has been used for identifying the system, responding to surface modeling, and 

calibrating spectroscopy analyzers ” and group learning. The primary aim of the GP technique was 

to place a priority directly on the space of functions. A formation of previous data and distribution 

resulted in a posterior distribution of functions . Several different applications of the GP method 

include the calculation of water temperature and the determination of weir Cd . 

2.8. Linear regression (LR) 

Regression analysis is a statistical method in which the relationship between two or more 

independent variables is used to predict the dependent variable response. A multiple linear 

regression model is expressed as follows: 

 

                                
N

i i

i=1

y = b X + e  (17) 

where βi indicates regression coefficients, Xi is the independent variable, ε is eccentricity and N 

is the number of independent variables. The least-squares method is used to estimate the regression 

coefficients [12]. LR has been used in prior applications, for example for trapezoidal labyrinth side 

weir discharge coefficients [5]  and evaporation modeling [6]. A schematic diagram showing the 

algorithm is provided in Fig. 5. 

 
 

Figure 5. The LR algorithm 

2.9. Multiple linear regression (MLR) 

Multiple non-linear regression (MLR) is applied to more than one of the predictor’s parameters. 

The common structure of the MLR model is: 
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                                1 2 nC C C

0 1 2 nR = C X X ...........X  

R = c0x1
c1x2

c2x3
c3x4

c4 … … … … … … xn
cn 

(18) 

where R is the dependent variable and X1, X2,……, and Xn are independent variables. 

2.10. Performance measures 

Three performance measures, correlation coefficient (CC), mean absolute error (MAE) and root-

mean-square error (RMSE), are used to assess the performance of the models. The CC, which ranges 

from -1 to 1, is a statistical measure of how well the regression line matches the observed data, and a 

coefficient of ±1 indicates that the regression line perfectly fits the observed data. The RMSE and MAE 

can provide a balanced evaluation of the goodness of fit of the model as it is more sensitive to larger 

relative errors that occurs with low values; the perfect model would have a value of zero. These 

performance measures are calculated by : 

 

( )( )

( ) ( ) ( ) ( )
2 22 2

n ab- a b
CC =

n a - a n b - b

  

   
 (19) 

                                
1

MA = a- b
n

 (20) 

                                ( )
n

2

i=1

1
RMSE = a- b

n
  (21) 

where: 

𝑎 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑏 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

 

Data set  

A total of 108 experimental observations were used for this investigation. The dataset was 

divided into two groups. The larger part (74 observations) was used for the model development and 

a smaller part (34 observations) was used for validation. The correlation matrix of the total data set is 

listed in Table 2 and the range and features of both parts are provided in Table 3. The symbols yc/h, 

yd/yc, and p are independent variables so these are selected as input variables whereas ∆E/E0 is an 

output. 

Table 2. Correlation matrix of the total data used in this study 

Variables yc/h yd/yc p ∆E/E0  

yc/h 1 0.9917 -0.0953 -0.9928 

yd/yc 0.9917 1 -0.1332 -0.9872 

P -0.0953 -0.1332 1 0.0711 

∆E/E0  -0.9928 -0.9872 0.0711 1 

Table 3. Range and Feature of the data set 
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Range 
yc/h yd/yc p ∆E/E0  yc/h yd/yc p ∆E/E0  

Training data set Testing data set 

Minimum 0.0768 0.0982 0.4000 0.6321 0.1111 0.1352 0.4000 0.6372 

Maximum 0.3743 0.4373 0.5000 0.8909 0.3659 0.4287 0.5000 0.8525 

Mean 0.2097 0.2413 0.4595 0.7594 0.2270 0.2629 0.4559 0.7471 

Standard Deviation 0.0689 0.0849 0.0494 0.0609 0.0785 0.0949 0.0504 0.0680 

Skewness 0.6268 0.6358 -0.3934 -0.3330 0.3857 0.3985 -0.2480 -0.2800 

Confidence Level(95.0%) 0.0160 0.0197 0.0115 0.0141 0.0274 0.0331 0.0176 0.0237 

 

A Taylor diagram is a visual tool to evaluate the accuracy of estimated data by simultaneously 

depicting statistical parameters. In this diagram, each point represented the performance of the 

corresponding method, and the closer the points of the methods to the observational data point in 

the polar coordinates, the higher the accuracy and the lower the error. 

 

 

3. Results and Discussion   

In this study, the modeling methodology involves two stages: training, and testing. This process 

is used to reduce the generalization error and control overfitting. The suitability of the modeling 

approach is measured by the statistical measures demonstrated in Table 3 for both modeling stages. 

The performance of the above-discussed modeling techniques is illustrated in Figs. 6~10. The data 

predicted with soft computing is plotted against the actual data and represented with the best fit line 

(y=x) to quantify the scattering.  

LR and MLR equations are developed using least square techniques with the help of XLSTAT 

software. The developed equations are as follow: 

 

( )c d

0 c

y yE
= 0.9602 - 0.6636 - 0.1763 - 0.0416 p

E h y

   
  

   
 (22) 

 

( )
-0.1206-0.1111

-0.0017c d

0 c

y yE
= 0.5285 × × p

E h y

   
  

   
 (23) 

 

Figure 6 shows the agreement plot of LR and MLR equations. Predicted values using the LR 

equation are closer to the line of perfect agreement with R2 value as 0.986. The LR equation is suitable 

for the prediction of ∆E/E0. Figure 6 and Table 4 indicate that the LR model perroms better than MLR 

with CC is 0.9933, RMSE is 0.0083 and MAE is 0.0067. 
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Figure 6. Comparison of actual and predicted values of ∆E/E0 using testing data with (a) LR (b) 

MLR 

The preparation of the Gaussian process-based model uses an iterative method. A Pearson VII 

kernel function and radial basis kernel functions are used for the model preparation. The 

performance of GP_PUK and GP_RBF models are listed in Table 4. The results suggest that the 

GP_PUK outperforms the GP_RBF model. Performance evaluation parameters for GP_PUK for the 

prediction of ∆E/E0 are: CC = 0.9949, MAE = 0.0040 and RMSE = 0.0071 for the testing stage. Results 

from the GP_PUK and GP_RBF models during the testing stage are plotted in Fig. 7. 
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Figure 7. Comparison of actual and predicted values of ∆E/E0 using testing data with (a) 

GP_PUK (b) GP_RBF 

Preparation of a Support Vector Machine based model is an iteration method. A Pearson VII 

kernel function and radial basis kernel functions are used for the model preparation. The 

performance of SVM_PUK and SVM_RBF models are listed in Table 4. The results suggest that the 

model SVM_PUK model outperforms the SVM_RBF model. The SVM_Puk model for predicting 

∆E/E0 result in CC = 0.9950, MAE = 0.0043 and RMSE = 0.0072 for the testing stage. Results of 

SVM_PUK and SVM_RBF models are plotted in Fig. 8. 
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Figure 8. Comparison of actual and predicted values of ∆E/E0 using the testing dataset (a) 

SVM_PUK (b) SVM_RBF 

The preparation of a neural network-based model is also an iteration method. The performance 

of ANN and GRNN models are listed in Table 4. The results suggest that the model ANN model 

outperforms the GRNN model. The performance evaluation parameters for the GRNN based model 

the prediction of ∆E/E0 are: CC = 0.9944, MAE = 0.0047 and RMSE = 0.0076. Results of ANN and 

GRNN models during the testing stage are plotted in Fig. 9. 
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Figure 9. Comparison of actual and predicted values of ∆E/E0 using testing data (a) ANN (b) 

GRNN 

As with other cases, the preparation of ANFIS based model is also an iteration method.  Four 

different types of membership functions (Triangular, Trapezoidal, Gaussian and Generalized bell 

shape) were used in this study. The performance of various ANFIS based models is listed in Table 4 

and the results suggest that the Generalized bell shape-based ANFIS model (ANFIS_gbellmf) 

outperforms the other ANFIS based models. Performance evaluation parameters for the 

ANFIS_gbellmf model for the prediction of ∆E/E0 are: CC = 0.9953, MAE = 0.0042 and RMSE = 0.0069. 

Results of ANFIS based models during the testing stage are plotted in Fig. 10. 
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Figure 10. Comparison of actual and predicted values of ∆E/E0 using ANFIS based models 

Comprehensive comparison among regression and soft-computing-based models (Table 6) 

suggests that the ANFIS_gbellmf based model performs better than the others. The linear regression 

model is superior to the MLR model for this dataset. Table 4 suggests that the GP model works better 

than SVM-based models for predicting ∆E/E0. A Pearson VII kernel function performs better than the 

radial basis kernel function with GP and SVM techniques. The ANN model outperforms the GRNN 

model. The results listed in Table 4 indicate that ANFIS_gbellmf is superior to other membership-

based ANFIS and other applied models. Single-factor ANOVA results are listed in Table 5. Table 4 

suggests that there is no significant difference among actual and predicted values using the various 

models. Box plot (Fig. 11) was plotted where the overall error distribution is shown. As a result, the 

negative and positive error values correspond to over-estimation and under-estimation from the 

models, respectively. The values of minimum error, first quartile, median, mean, third quartile, and 

maximum error are listed in Table 6 and displayed in Fig. 11 for all applied models. As can be seen, 

the maximum and minimum errors from the ANFIS_gbellmf model are -0.0163 and 0.0185, 

respectively, which verifies the capability of ANFIS_gbellmf to predict the ∆E/E0. Figure 11 shows 

results from the ANFIS_gbellmf based model. Figure 12 presents Taylor's diagram for all applied 

models; Taylor's diagram was used to illustrate the performance of the applied models. The three 

statistic parameters standard deviation, correlation, and root mean square error, were evaluated and 

comparisons between the actual and predicted results are shown for the Baitarani River. Figure 12 

suggests that the ANFIS_gbellmf model achieves a higher correlation with the minimum standard 

deviation. Taylor's diagram also confirms that the ANFIS_gbellmf model is superior to the other 

models. 

Table 4. Performance evaluation parameters for all models and both training and testing datasets 

Models 
CC RMSE MAE CC RMSE MAE 

Training data set Testing data set 

LR 0.9939 0.0067 0.0047 0.9933 0.0083 0.0067 

MLR 0.9861 0.0101 0.0075 0.9850 0.0127 0.0099 

GP_PUK 0.9986 0.0032 0.0017 0.9949 0.0071 0.0040 

GP_RBF 0.9935 0.0077 0.0056 0.9930 0.0089 0.0071 

SVM_PUK 0.9983 0.0035 0.0013 0.9950 0.0072 0.0043 

SVM_RBF 0.9923 0.0100 0.0074 0.9925 0.0108 0.0083 

ANN 0.9977 0.0042 0.0025 0.9944 0.0076 0.0047 

GRNN 0.9990 0.0027 0.0016 0.9923 0.0090 0.0065 
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ANFIS_trimf 0.9981 0.0038 0.0022 0.9946 0.0072 0.0042 

ANFIS_trapmf 0.9979 0.0039 0.0027 0.9938 0.0078 0.0055 

ANFIS_gbellmf 0.9986 0.0032 0.0021 0.9953 0.0069 0.0042 

ANFIS_gaussmf 0.9986 0.0032 0.0019 0.9928 0.0081 0.0046 

 

Table 5. Single Factor ANOVA results 

No

. 
Source of Variation F P-value F crit 

Variation among 

groups 

1 Between Actual and LR 0.028359 0.866783 3.986269 Insignificant 

2 Between Actual and MLR 0.003051 0.956115 3.986269 Insignificant 

3 Between Actual and GP_PUK 0.017902 0.89397 3.986269 Insignificant 

4 Between Actual and GP_RBF 0.013371 0.908295 3.986269 Insignificant 

5 
Between Actual and 

SVM_PUK 
0.022424 0.881422 3.986269 Insignificant 

6 
Between Actual and 

SVM_RBF 
0.027302 0.869265 3.986269 Insignificant 

7 Between Actual and ANN 0.026635 0.870859 3.986269 Insignificant 

8 Between Actual and GRNN 0.040323 0.841467 3.986269 Insignificant 

9 
Between Actual and 

ANFIS_trimf 
0.01097 0.9169 3.986269 Insignificant 

10 
Between Actual and 

ANFIS_trapmf 
0.019206 0.890199 3.986269 Insignificant 

11 
Between Actual and 

ANFIS_gbellmf 
0.019345 0.889806 3.986269 Insignificant 

12 
Between Actual and 

ANFIS_gaussmf 
0.001845 0.965868 3.986269 Insignificant 
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Figure 11. Box Plot of applied model error distribution using the test data set 

Table 6. Error statistics for all applied models 

Statistic LR MLR GP_PUK GP_RBF SVM_PUK SVM_RBF 

Minimum -0.0203 -0.0296 -0.0160 -0.0250 -0.0140 -0.0290 

Maximum 0.0151 0.0288 0.0200 0.0160 0.0210 0.0230 

1st Quartile -0.0022 -0.0055 0.0000 -0.0028 0.0000 -0.0045 

Median 0.0031 0.0036 0.0010 0.0020 0.0010 0.0020 

3rd Quartile 0.0090 0.0071 0.0028 0.0087 0.0020 0.0098 

Mean 0.0028 0.0009 0.0022 0.0019 0.0025 0.0026 

 ANN GRNN ANFIS_trimf ANFIS_trapmf ANFIS_gbellmf ANFIS_gaussmf 

Minimum -0.0200 -0.0162 -0.0201 -0.0176 -0.0163 -0.0251 

Maximum 0.0210 0.0259 0.0190 0.0215 0.0185 0.0183 

1st Quartile 0.0007 -0.0013 -0.0007 -0.0014 -0.0007 -0.0008 

Median 0.0015 0.0023 0.0006 0.0005 0.0011 0.0003 

3rd Quartile 0.0031 0.0061 0.0024 0.0061 0.0033 0.0014 

Mean 0.0027 0.0033 0.0017 0.0023 0.0023 0.0007 
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Figure 12. Taylor Diagram (a) LR, LR, GP & SVM (b) ANN, GRNN & ANFIS based models 

Sensitivity study 

A sensitivity study is used to determine the impact of each independent variable on the output. 

Numerous methods have been introduced to perform such a sensitivity study artificial intelligence-

based models and the best performing model (ANFIS_gbellmf) was used to assess sensitivity. The 

models are prepared by removing one input parameter from the input combination of the best-

developed model. The performance of each model in the absence of one of the inputs was assessed 

and listed in Table 7. The results show that yc/h is the most effective parameter for predicting ∆E/E0. 
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Table 7. Sensitivity investigation based on the ANFIS_gbellmf model 

No 
Input combination Output ANFIS_gbellmf 

yc/h yd/yc p ∆E/E0  CC RMSE MAE 

1     0.9953 0.0069 0.0042 

2     0.9933 0.0082 0.0054 

3     0.9930 0.0082 0.0056 

4     0.9910 0.0098 0.0076 

 

 

4. Conclusions 

This study assessed the performance of regression and soft-computing-based models for 

predicting ∆E/E0. The performance of all respective models remained satisfactory during the training 

and testing stages. The performance of the ANFIS_gbellmf based model is better than other models 

and has a higher correlation coefficient and a minimum of mean absolute error and root mean square 

error. A linear regression model is superior to MLR based models. Another observation is that the 

GP model works better than SVM-based models. A Pearson VII kernel function performs better than 

a radial basis kernel function with GP and SVM techniques. The ANN model outperforms the GRNN 

model. A sensitivity investigation reveals that yc/h is the most effective parameter for predicting the 

∆E/E0 using ANFIS_gbellmf based model.  
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