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Abstract: In the present work we revise and extend the Characteristic Crystallographic Element
(CCE) norm, an algorithm used to simultaneously detect radial and orientational similarity of
computer-generated structures with respect to specific reference crystals and local symmetries.
Based on the identification of point group symmetry elements, the CCE descriptor is able to gauge
local structure with high precision and finely distinguish between competing morphologies. As test
cases we use computer-generated monomeric and polymer systems of spherical particles interacting
with the hard-sphere and square-well attractive potentials. We demonstrate that the CCE norm is
able to detect and differentiate, between others, among: hexagonal close packed (HCP), face
centered cubic (FCC), hexagonal (HEX) and body centered cubic (BCC) crystals as well as non-
crystallographic fivefold (FIV) local symmetry in bulk 3-D systems; triangular (TRI), square (SQU)
and honeycomb (HON) crystals, as well as pentagonal (PEN) local symmetry in thin films of one-
layer thickness (2-D systems). The descriptor is general and can be applied to identify the symmetry
elements of any point group for arbitrary atomic or particulate system in two or three dimensions,
in the bulk or under confinement.

Keywords: crystallization; crystal, hexagonal close packed, face center cubic, body center cubic,
hexagonal crystal, square lattice, honeycomb lattice, trigonal lattice, Monte Carlo, crystallography,
crystallographic elements, symmetry, entropy, hard sphere, polymer, square well, local structure,
dense packing, thin film

1. Introduction

Over the last decades computer simulations at the molecular level [1,2] have steadily proved to
be an invaluable tool in understanding the connection between atomic structure and behavior and
macroscopic properties of materials [3,4]. Significant advances have been made in numerical methods
and algorithms enhancing simulation aspects like speed, accuracy, general applicability, user
friendliness and robustness. In parallel, advanced software packages are now available that allow
efficient atomic/molecular visualization and/or analysis of the computer-generated structures
including animation of the corresponding trajectories [5-9]. For crystallization and phase transitions
visual inspection is vital as it allows a better understanding of structural changes and provides a
preliminary identification of the established ordered morphologies. However, visual inspection has
two disadvantages: possible observer’s bias and lack of systematic quantification. It is thus critical to
employ objective and quantitative methods in the analysis of local structure in computer-generated
atomic and particulate systems.

The simplest possible form of information on structure can be extracted through the pair radial
distribution function, g(r), which calculates the normalized probability of finding a pair of atoms
lying at a distance r [10]. In computer simulations the calculation of g(r) is of particular importance
as it is related, through a Fourier transform, to the static structure factor S(k) which can be measured
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experimentally through X-ray scattering [1]. The g(r) data, especially of the first two peaks, can be
further used as input for more refined analysis, such as the calculation of normalized abundancies of
pairs, as in the work of Honeycutt and Andersen [11]. A simplified variant has been presented by
Ganesh and Widom [12] to gauge the structure of liquid and supercooled liquid copper. Common
neighbor analysis (CNA) [13] proceeds by decomposing the radial distribution function based on the
local environment of pairs. While simple in implementation, it allows for distinction between
different crystals in particular of face centered cubic (FCC), hexagonal close packed (HCP), body
centered cubic (BCC) and icosahedral symmetry. The bond orientation order parameter, introduced
in [14], is based on the quantum mechanical concept of rotationally invariant combinations of
spherical harmonics and is a widely used tool to study orientational order in general liquids.
Recently, the polyhedral template matching (PTM) has been proposed [15] which classifies atomic
structure according to the topology of the local environment. In parallel, geometric approaches focus
on extracting the corresponding structural information of the local environment through analysis of
the Voronoi polyhedron (cell) [16,17], first employed by Finney [18] to study random close packing
(RCP) of simple liquids. Further examples include the topological analysis of Voronoi faces [19] or
superposition of simplexes and calculation of the corresponding Procrustean distance [20]. An
heuristic approach to gauge local structure is also available based on angular and radial histograms
as explained in Ref. [21].

Different local structural parameters have been developed over the years. Some examples
include the free-volume approach [22], the definition of internal stresses and the symmetry
coefficients at the atomic level [23], the concept of flexibility volume [24], the topological cluster
classification algorithm [25], the neighbor-distance analysis [26] and the community inference [27].

In an effort to gauge local environment and identify possible phase transitions in computer
simulations of general atomic and particulate systems we introduced the Characteristic
Crystallographic Element (CCE) norm [28]. The CCE norm is a descriptor able to quantify
simultaneously the orientational and radial similarity (or lack of it) of a local configuration with
respect to a reference crystal. Furthermore, it can distinguish and differentiate between competing
ordered structures. Through its application we studied crystallization in dense packings of hard
sphere (HS) monomers and polymers investigating the effect of volume fraction, chain length and
bond gaps [29-33]. Additionally, the structural competition between the formation of close packed
crystals composed of face center cubic (FCC) and hexagonal close packed (HCP) segments and of the
fivefold (FIV) local symmetry has been studied for both monomeric and polymeric systems [34-36].
The CCE algorithm has also been successfully implemented in the simulation studies of vitrification
and crystallization of flexible and semi-flexible polymer systems based on a hybrid bead-spring
model [37,38]. A CCE variant, denoted as short-range order symmetry parameter (SSP), has also been
adopted to explore short-range order and distortion in bulk metallic glasses [39]. More recently it has
been applied to study cluster, crystal formation and vitrification, under dilute conditions, of polymers
whose sites interact through the square well (SW) potential [40].

The initial implementation of the CCE norm included analysis only with respect to the HCP,
FCC and FIV morphologies, a choice justified by the athermal nature and the high packing density
of the initial HS systems. Here, we revise and generalize the original CCE norm formalism by
expanding the original concept to identify and distinguish among additional reference crystals,
including those belonging to the same crystallographic system. In parallel, the new CCE descriptor
is readily extended to 2-D systems such as ordinary 2-D assemblies (i.e. of disks) or thin-films of
spherical particles under extreme, plate-like confinement where film thickness corresponds to a
single layer.

The paper is organized as follows: section 2 presents the CCE algorithm, its fundamentals and
its practical implementation in two and three dimensions, including a short description of the
simulation method to create the samples to be used as test cases. Section 3 hosts results from
application on reference 2-D and 3-D crystals and on computer-generated, hard sphere and square
well configurations. Finally, section 4 summarizes the main results and lists potential applications of
the CCE descriptor.
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2. Materials and Methods

2.1. Characteristic Crystallographic Element Norm

Crystals can be classified and effectively distinguished by means of their point group, loosely
speaking, the set of symmetry operations which leave at least one point fixed, under which the crystal
is invariant. These symmetry operations or elements of the point group can be intuitively and
conveniently organized as being generated by geometric elements of symmetry, such as inversion
center, rotation and rotoinversion axes [41],[42-44].

The CCE algorithm is based on the univocal correspondence between a given crystal and its
point group. The identification of the symmetry elements of the arrangement of atoms around a given
one permits the assignment of a specific point group to this atom. If the point group, as well as the
number of closest neighbors (coordination number), are found to match that of a given crystal, such
as FCC, HCP, etc, the atom is declared to have FCC-, HCP-character, etc.

In a strict sense, the search for symmetry elements around a given atom should include all
elements of the point group in question; in practice however, it is very often enough to identify a
subgroup of the point group in order to discriminate between two competing crystal types.

Previously we have demonstrated [26] that, in practice, identifying a properly selected subset
only, does indeed provide the desired accuracy and power of discrimination, while being simpler in
algorithmic implementation and faster in computational time.

The CCE norm is always defined with respect to a specific reference crystal X (X-CCE norm). In
the present analysis we use as reference templates the following 3-D crystals: hexagonal close packed
(HCP), face centered cubic (FCC), hexagonal (HEX) and body centered cubic (BCC), as well as the
non-crystallographic fivefold (FIV) local symmetry. In 2-D the corresponding reference crystals are:
triangular (TRI), square (SQU), honeycomb (HON) as well as the pentagonal (PEN) local symmetry.
Figure 1 and Figure 2 present fragments of the reference crystals in 3-D and 2-D, respectively, studied
here for the demonstration of the CCE descriptor. One aspect that we should consider by comparing
the reference 3-D crystals of Figure 1 is the difficulty to identify and distinguish, through visual
inspection, each one of them especially in a traditional 2-D image. This further highlights the
importance to establish a metric which would allow for a robust characterization of ordered
structures. In parallel, visual inspection is enhanced when 3-D images of the computer-generated
structure are used. Such images are provided in the supplementary material and in the interactive,
3-D version of the present manuscript.

Figure 1. Reference 3-D crystals used for the demonstration of the CCE descriptor. From left to right:

hexagonal close packed (HCP), face centered cubic (FCC), hexagonal (HEX) and body centered cubic
(BCC) lattices. Color convention according to which HCP, FCC, FIV (not shown here), HEX and BCC
sites are represented in blue, red, green, purple and cyan is used throughout the present manuscript.
Image created with the VMD software [5]. Each figure panel is also available as stand-alone image in 3-

D, interactive format in supplement material.
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Figure 2. Reference 2-D crystals used for the demonstration of the CCE descriptor. From left to right:
triangular (TRI), square (SQU) and honeycomb (HON). The color convention, according to which TRI,
SQU, PEN (not shown here) and HON sites are represented in blue, red, green and cyan is used
throughout the present manuscript. Image created with the VMD software. Each figure panel is also

available as stand-alone image in 3-D, interactive format in supplement material.

In the continuation we demonstrate the fundamentals of the CCE norm when applied on a system
of Nat spherical particles or atoms, where each particle i (i € [1, ..., N,]) is defined by its position
vector, ri.

First, for a given site i we calculate the number of its nearest neighbors, N(i), and their identities
(numerical labels) j (j € [1,N(i)]) through Voronoi tessellation, as implemented in the voro++
software [45] in 3-D and the ghull software [46] in 2-D . This number of nearest neighbors is compared
against the coordination number of the reference crystal, Neoora(X) taking the values of 3, 4, 5, 6, 8 and
12 for HON, SQU, PEN, TRI, HEX/BCC and HCP/FCC/FIV, respectively. Figure 3 and Figure 4
present the reference atom, the closest neighbors as well as the corresponding Voronoi polyhedron
(cell) for the reference crystals in 3-D (HCP, FCC, HEX and BCC) and 2-D (TRI, SQU and HON),
respectively. In the 3-D case atoms are shown with reduced dimensions for visualization purposes.

0o .?. . e 0
©80600508°8 § &

Figure 3. Voronoi polyhedron and nearest neighbors for a given site (red) in the 3-D reference crystals.

From left to right: HCP, FCC, HEX and BCC. Voronoi edges are shown as green lines, and tangent
neighbor sites in blue. Sphere radii have been reduced by 2:5 for visualization purposes. Image created
with the VMD software. Each figure panel is also available as stand-alone image in 3-D, interactive

format in supplement material.
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Figure 4. Voronoi polygon and nearest neighbors for 2-D reference crystals. From left to right: TRI, SQU
and HON. Voronoi edges are shown as green lines, neighbor sites in blue and reference sphere in red.
Image created with the VMD software. Each figure panel is also available as stand-alone image in 3-D,

interactive format in supplement material.

If N(i) < Ncoord, i.e. if the number of Voronoi neighbors is smaller than the coordination number of the reference

crystal X, a penalty function is introduced in the form:

C= WO(Ncoord(X) -N@®) = WOAN(i) )

where w0 is a constant whose value is equal to 0.07. This value is empirically determined so that
the CCE can differentiate crystals that belong to the same point group but have different number of
neighbors and Voronoi polyhedra (for example BCC vs. FCC), as will be explained in the Results
section. In computer-generated systems the local environment does not correspond to the Voronoi
polyhedron of a perfect crystal due to fluctuations in atom positions. Such typical Voronoi cell has a
higher number of vertices and faces as some of the second-nearest neighbors to lie closer to the
central, reference atom than those of a perfect crystal, i.e. N(:) > Neoord(X). In such case the penalty
function is zero and the CCE proceeds by sorting the neighbors based on their distance from the
reference atom and selecting only the Ncoord(X) closest ones.

The following step is also the central one in the CCE execution: given the reference X crystal, the
characteristic geometric symmetry elements are identified along with the corresponding symmetry
actions for each one of them. As stated earlier, it is not necessary to search for the complete set of
geometry symmetry elements for each reference crystal X. It is possible to clearly differentiate
between competing and structurally similar crystals by using a subset only. In the current
implementation of the CCE norm we consider two geometric symmetry elements: axis (or set of axes)
and inversion center (wherever applicable). For example, to distinguish between HCP and HEX-like
environments, it is enough to take a single sixfold axis (6) and the five distinct actions 6} , 62, 63,
6¢, 62, (as the unitelement 6% = E needs not be taken into account) for the HCP crystal; and a single
sixfold rotation axis (6) and its 5 actions: 6% , 62 , 62, 6%, 62, plus an inversion center at the reference
site i, for the HEX crystal.

The nearest neighbors (Neword(X)), the geometric symmetry elements, Ne(X), and the
corresponding actions for each element, Na«(k,X) (k € [1, ..., Ney (X)]) for each X crystal in 3-D and 2-
D are presented in

Table 1 and Table 2, respectively. Also included are the analogous combinations for the fivefold
(FIV) local symmetry in 3-D and the pentagonal (PEN) local symmetry in 2-D.

The geometric symmetry elements and their actions allow us to quantify similarity of the atomic
environment with respect to the reference crystal X. This is done by comparing, through the CCE
operations, the “real” local environment formed by the nearest neighbors with coordinates 1,
considered relative to the ones of the reference atom, against the “ideal” coordinates RJ’-‘ (j €
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[1, ... Neoora(X)]) of the sites that constitute the coordination polyhedron of the perfectly ordered

structure X. In the most general form the CCE norm can be defined as:

1

X,0 :
& =g +min

No1(X
JJNcoord(X) Zk:ll( )

&z
Nact(k,X)

Nei(X)
k=1

Nact(k.X)

NCOOI‘ X 2
g yeoont®(r - sX RN)’| (2)

Table 1. Number of nearest neighbors, Neoord(X), number of distinct geometric symmetry elements Ne(X), along

with their type, number of actions per element, Nact(k,X) and their type for the 3-D crystals (X = HCP, FCC, HEX

and BCC) as well as the fivefold (FIV) local symmetry.

Reference Structure —»

HCP FCC HEX BCC FIV
Fingerprint ¢
Ncnord(X) 12 12 8 8 12
Nea(X) 1 5 2 5 2
Geometric Symmetry (k=1) k=1,...4) (k=1) (k=1,...,4) (k=1)
Element k Roto- Roto- Rotation Roto- Rotation
inversion inversion Axis inversion Axis
(k €[1,N,;(X)D Axis Axes Axes
(k=2) (k=2)
(k=5) Inversion (k=5) Inversion
Inversion Center Inversion Center
Center Center
Nact(k,X) (k=1)5 (k=1,...4)5 (k=1)5 (k=1,...4)5 (k=1)4
(k=5)1 (k=2)1 (k=5)1 k=2)1
Symmetry Actions of (k=1) k=1,...,4) (k=1) k=1,...,4) (k=1)
Geometric Element k
6, 62 62,  3%,3%3% 6,67 3¢, 32 3 5¢, 5%,
6¢, 67 38 32 63, 6¢, 62 3¢ 32 5%, 5¢ 52
(k=5) (k=2) (k=5) k=2)
1 1 1 1

where &° is the penalty function based on the coordination number as defined in Eq. 1 and o is the
characteristic length of the system to render the CCE norm dimensionless. In past studies as well as
in here ¢ is taken to be equal to the diameter of the spherical particles. Summation in Eq. 2 runs over
all Neord(X) sites, geometric elements Ne(X) and Nac«(k,X) symmetry actions corresponding to the
reference crystal X. Sf,is the orthogonal matrix that performs the mu action of the kn element. For
example, the corresponding matrix for the point inversion for the FCC, HEX and BCC crystals is
simply:
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-1 .0 0
SECC = sHIEX — gBCC = [ 0 -1 0 ] ®3)
0 0 -1

Table 2. Number of nearest neighbors, Neoord(X), number of distinct geometric symmetry elements Ne(X), along
with their type, number of actions per element, Nact(k,X) and their type for the 2-D crystals (X = TRI, SQU and
HON) as well as the pentagonal (PEN) local symmetry.

Reference
Structure —» TRI SQU HON PEN
Fingerprint 4
Ncoord(X) 6 4 3 5
Nei(X) 2 2 1 1
Geometric (k=1) (k=1) (k=1) (k=1)
Symmetry Element  Rotation Axis Rotation Axis  Rotation Axis  Rotation Axis
k
(k=2) (k=2)
(k € [1,N (X)) Inversion Inversion
Center Center
Naetlk, X) (k=1)5 (k=1)3 (k=1)2 (k=1)4
k=2)1 (k=2)1
Symmetry Actions (k=1) (k=1) (k=1) (k=1)
of Geometric
Element k 6L, 62, 63, 41,42, 43 3L, 32, 5L, 52 53, 5%
63/ 6?
(k=2) (k=2)
1 1

The orthogonal transformation is applied to the position vectors of all neighbors of the reference
site and for as many actions and symmetry elements as required by the reference crystal. After its
application the new and transformed coordinates of atom j are compared against the positions
corresponding to the perfect ordered structure, i.e. the term (r; — ¥, RS s calculated, selecting
the pairs (transformed and ideal) of coordinates that produce the minimum possible discrepancy.
Through proper selection of the S§,,, operator the “real” and “ideal” set of coordinates are expressed
in the same reference frame:

1 = SEnRY J € [1, . Nooora ()] @)
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When the geometric symmetry element corresponds to an inversion center, whether it is 2-D or 3-
D, its position is fully defined as it coincides with the reference site, i. Similarly, in 2-D the rotation
axis is perpendicular to the plane where the atoms or particles lie.

In the general, 3-D case the orientation of the axis(axes) is not known a priori and its(their)
orientation has to be determined by a minimization process where the spherical domain is scanned
in small steps dg and d6 leading to pairs of polar, 8, (€ [0,/2]) and azimuthal angles, ¢, (€ [0, 2m])
corresponding to the axis orientation. The minimization scheme is performed for each axis belonging
to the characteristic symmetry fingerprint.

For example, for the FCC and BCC crystals the procedure, in practice, is the following: the first
symmetry axis S1 is found by scanning the whole spherical domain (61, ¢1); given the S1 orientation,
the second axis is built with an angle of 62=70.53¢ with respect to the first, and a search is now carried
out in the azimuthal space: @2 (€ [0,27/3]). Given S1 and S: the third (Ss) and fourth (S4) symmetry
axes are fully defined and no further search must be carried out. Each time the geometric element is
defined, the analogous symmetry actions (roto-inversions for FCC and BCC) are performed over all
coordination neighbors according to Eq. 2; as a result, each possible axis orientation, or their
combination in case of more than one, provides a different norm value. For reference site, i, and given
ordered structure X, the final CCE norm, & , is set to be the minimum of this iteratively refined set
of values. By construction, the closer the norm to zero the higher the similarity of the local
environment to the ideal X crystal. Also, by definition the X-CCE norm of the X reference crystal
should be zero, subject to the statistical error imposed by the size of the scanning grid imposed on
the spherical domain (see below). Furthermore, by utilizing the characteristic elements and actions
as the fingerprint of X-crystal the CCE algorithm is highly discriminating: for two different crystals
Xand Y, if ¢f - 0 then & > 0 and vice versa.

Once the CCE norm is calculated it is compared against an empirically determined threshold
value, etres which is the same for all reference crystals. If the CCE norm is lower than this threshold
(i-e. &f< ethres) the reference i site has similarity to that crystal and is thus labelled as X-like. Past
studies on bulk, 3-D systems consisting of non-overlapping [28-30,33-35] or fused [37,38] spheres
adopted thresholds of 0.245 and 0.200, respectively. The threshold value is identified through parity
(gff vs. &) plots over all particles in the system as the ones to be presented below. As it will be
demonstrated in the results section the same threshold (ethres = 0.245) can be adopted in the case of
hard spheres in 2-D films.

To illustrate specific examples, given the elements and actions, as reported in Table 1, the CCE
norm adopts the following forms for HEX (Eq. 5) and FCC (Eq. 6):

HEX _ _HEX0 . 1 2 2
A = P i s[5 51 S+ 30 -SR] 0

FCC,0 : 1 2 2
61 = 600+ min [t By B ZP2 (5~ SESRI)’ + 22,0 - SERR)|

where SYEX and SESY correspond to the inversion orthogonal matrix (Eq. 3). SHEX and
S,Iicnf transform coordinates according to six-fold rotations and three-fold roto-inversions,
respectively, and the minimizations are carried out over axis/axes orientations.

The CCE analysis, as described above, is applied to all atoms/particles of the system and for all
required reference crystals. For the ordered structures demonstrated here (HCP, FCC, HEX and BCC)
due to the increased number of geometry elements (four roto-inversion axes) the CCE descriptor is
significantly more expensive computationally for the crystals of the cubic class (FCC and BCC).
Among them the FCC analysis is slower than the one for BCC because of the higher coordination
number (12 vs. 8). The required computational time as well as the precision (numerical error) in the
calculation of the norm are both significantly affected by how fine the scanning grid is in the
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minimization in the multi-parameter space of all possible polar and azimuthal. Obviously, finer
scanning grids result in higher accuracy but also increased processing time.

The CCE analysis described above is repeated over each atom/particle of the system, i (i €
[1, ..., Nat]) and with respect to any desired reference crystal, X. After this information is accumulated
over all atoms, the probability distribution function of norms, P(e%), is computed for each recorded
system configuration (frame). Given that once the CCE norm value is below a certain threshold (e¥ <
gthres) the site i is labeled as having X similarity, an order parameter with respect to the reference
crystal X, S%, can be calculated:

gthres

s¥=]

5 P(e%)deX (7)

with S* € [0,1]. The value of the order parameter (Eq. 7) is specific to the given crystal or local
structure X. If we focus on the reference crystals, excluding pentagonal symmetry, in a system of
dimensionality d (d = 2 or 3) Ns. corresponds to the number of such crystal templates. In the present
demonstration of the CCE norm Ns;3 =4 (HCP, FCC, HEX and BCC) and Ns2 =3 (TRI, SQU, HON).
Additionally, a degree of ordering or crystallinity, 7., can be calculated as the sum of all CCE order
parameters:

Ng Ng thres
T =X 0sk =22 0 P(eF) dek 8)

where index k runs over all different reference crystal structures. For the atomic systems to be used
for the demonstration of the CCE descriptor Eq. 8 becomes:

To = é:lsk — SHCP + SFCC + SHEX + SBCC (9)
T = Yjo; SF = STRI 4 §5QU 4 GHON (10)

where crystallinity in Eqs. 9 and 10 corresponds to 3-D and 2-D systems, respectively.

2.2. Molecular Simulations

All systems have been generated and equilibrated through extensive Monte Carlo (MC)
simulations. The protocol behind these simulations is a generalization of those presented in Refs.
[40,47,48] containing chain-connectivity-altering moves, cluster identification/displacement
algorithms, and compression/volume fluctuation processes in the bulk or under various conditions
of confinement. In the present work two different models have been used to describe interactions
between atoms. For a pair of atoms i and j, whose centers lie in a distance i, according to the hard
sphere (HS) model the energy is either zero or infinite:

0, rij = 01
U(ry) = e r <o (11)

where o1 is the collision diameter, also taken as the characteristic length of the system. The second
model is the square well (SW), which further includes an attractive range (if 7;; € [0y, 0;]) with a
coresponding intensity, esw:

0, rij > (]
U(rij) = —&sw, (4] < rij < (o} (12)
o, rij < (4]

Initial simulations are based on the HS potential on linear chains of tangent hard spheres of
uniform size under constant volume in the bulk [47] or under confinement. The latter is realized


https://doi.org/10.20944/preprints202010.0294.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 October 2020 d0i:10.20944/preprints202010.0294.v1

10 of 32

through the presence of parallel, flat and impenetrable walls in one dimension [48]. Extreme
conditions correspond to the case where the distance between the walls, dway, is equal (within a
tolerance of 10+) to the sphere diameter, o1. Once this situation is met the system is practically
converted into a 2-D, thin film whose thickness corresponds to a single layer (dwan — 01). Two different
sets of simulations were carried out containing 100 chains of average length Nav =12 and 50 chains of
Nav=24. Due to the application of chain-connectivity-altering moves dispersity is introduced in chain
lengths, which fluctuate uniformly in the intervals Nix € [6, 18] and [12, 36] for Nav = 12 and 24,
respectively.

In all 3-D cases initial system configurations are borrowed from fully equilibrated athermal
polymer samples at very low packing density (¢ = 0.05). Then, two patterns are followed: i) a SW
potential is activated on the polymer configurations at dilute (3-D) or dense (2-D) conditions under
constant volume and temperature (T = 1/ks, ks being the Boltzmann constant); ii) all bonds are
eliminated so that the system consists now of monomers and the SW potential is further activated.
For the polymer-based systems the equilibration algorithm and the corresponding MC moves are
similar to the ones used for HS [29,32,33,47-52] and SW [40] chains. For the monomer-based systems
two moves are employed: simple sphere displacements whose amplitude is auto-configured based
on the acceptance rate and cluster-based displacements following the cluster detection/translation
algorithm presented in Ref. [40]. Simulations on 3-D SW polymers and monomers are conducted
under conditions of constant volume (NVT ensemble) and pressure (NPT ensemble), respectively.

2-D, thin-film configurations are generated either from fully confined 3-D analogs according to
the wall-wrapping algorithm described in [48] or through adsorption onto the surface with
simultaneous repulsion from the opposite side until full surface coverage is achieved. Two different
realizations have been used: 48-chain Nav = 100 system at ¢ = 0.40 under full confinement and 100-
chain Nav = 12 system at ¢ = 0.48 with confinement imposed in the short dimension and periodic
boundary conditions enforced in the long ones. In both cases the wall thickness is approximately
equal to the monomer diameter, effectively corresponding to 2-D thin films. Succesive steps include
compaction of the athermal HS chain systems to even higher volume fractions or activation of SW
attractive interactions under constant volume (chains) or constant pressure (monomers).

Once simulation trajectories are collected, the CCE analysis is performed on every frame or using
regular intervals (i.e. every 100 frames) depending on the system under study. First, based on the
atomic coordinates and the presence of periodic boundary conditions or impenentrable walls, a
Voronoi tessellation is performed through the voro++ [45] and ghull [46] for 3-D and 2-D systems,
respectively. Then, the CCE descriptor is employed, in a trivially and massively parallel manner, with
all trajectory frames being analyzed simultaneously. Technically, the present implementation of the
CCE algorithm allows the inclusion/exclusion of specific geometric symmetry elements, for example
the points of inversion as presented in Table 1 and Table 2.

The output of the CCE analysis consists of a file with a list of the atom index, i, coordinates, r;, the
(minimum) CCE norms with respect to all tested reference crystals, ¢X, and optionally the
orientation(s) of the corresponding symmetry axi(e)s. Additionally, a pair of pdb/pstf files is provided
to be used for successive visualization through appropriate software (for example VMD [5], as used
in the present work).

3. Results
3.1. CCE norm application to perfect crystals
According to the definition of the CCE descriptor, when applied to local structures

corresponding to a perfect crystal X, the corresponding norm should be equal to zero (g = 0).
However, in practice a discretization error is associated with the CCE application in the case of 3-D
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systems where the orientation of the axis (or axes) is not known a priori. As explained in the methods
section the spherical coordinate system has to be divided into a discrete mesh. The finner the mesh
the lower the associated error but the higher the required computational time. Except otherwise
stated, all results to be presented in the continuation have been obtained with a discretization step of
0.1 rad for all polar and azimuthal angles needed for the identification of the symmetry axi(e)s that
minimize the CCE norm.

As a first test of validity we apply the revised and extended CCE descriptor on selected reference
crystals: HCP, FCC, HEX and FIV in 3-D, as seen in Figure 1 (segments of the infinite crystal) and
Figure 3 (local environment), and TRI, SQU and HON in 2-D, as seen in Figure 2 (infinite crystal) and
Figure 4 (local environment). Table 3 and
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Table 4 host the results from the CCE application to perfect reference crystals in 3-D and 2-D,
respectively. In the CCE analysis we have further included the non-crystallographic fivefold (X = FIV)
and pentagonal (X = PEN) local symmetry in 3-D and 2-D, correspondingly. Inspection of the data in
both tables reveals that the X-CCE produces, as expected, a norm equal to zero when applied on the
X reference crystal. The only two exceptions to this rule are the FCC and BCC crystals where the
corresponding norms are very low (e"¢¢=2.44 x 10~ and £5°¢=1.90 x 104) but non-zero. This is because
both crystals belong to the cubic system and the fingerprint corresponds to a set of 4 threefold roto-
inversion axes. The determination of the orientation of the first axis follows the same procedure as
for the other crystals but another search (plus discretization) in space is required to establish the
orientation of the second axis, as explained in the methods section. Accordingly, for a given mesh
size (0.1 rad) it is more difficult to find the optimal set of axes for the BCC and FCC cases than the
other crystals. Unavoidably, these crystals will have higher uncertainty in their detection compared
to the other ordered motifs. However, we should note that the established values are already 10°
times lower than the identification threshold, eFCC =(.245.

Table 3. Characteristic Crystallographic Element (CCE) norm, ¥, when the analysis is applied on
reference 3-D hexagonal close packed (HCP), face center cubic (FCC), hexagonal (HEX) and body center

cubic (BCC) crystals. Also reported are results from CCE application with respect to the fivefold (FIV)

local symmetry.

& >
HCP FCC HEX BCC FIV
Reference Lattice 1
HCP 0 0.257 0.290 0.412 0.228
FCC 0.246 0.000244 0.377 0.518 0.229
HEX 0.280 0.239 0 0.239 0.185

BCC 0.284 0.165 0.246 0.000190 0.276
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Table 4. Characteristic Crystallographic Element (CCE) norm, X, when the analysis is applied on
reference 2-D honeycomb (HON), square (SQU) and trigonal (TRI) lattices. Also reported are results
from CCE application with respect to the pentagonal local symmetry (X = PEN).

&
TRI SQU HON PEN
Reference Lattice ¥
TRI 0 0.275 0.699 0.397
SQU 0.301 0 0.613 0.318
HON 0.649 0.465 0 0.420

The dependence of the value of the CCE norm on mesh discretization, which is the same for any
polar or azimuthal angle required to identify the orientation of the first and second axes for the FCC
crystal is presented in Figure 5. The increase of accuracy in the detection, as quantified by the
reduction of the corresponding CCE norm is not monotonic for specific mesh intervals. This is
because the axis orientations may be closer to specific values of the polar and azimuthal angles even
if these are produced by a coarser grid of the 3-D space.

Another point to notice is the ability of the CCE descriptor to distinguish between competing
crystals. The X-CCE norm when applied on the Y reference crystal (Y # X) in 2-D provides a norm
which, in the vast majority of the cases, is significantly higher than the threshold value. For 3-D there
are X-Y combinations where the value is lower than the threshold. In this case, which is only very
seldom encountered in computer-generated configurations, the site is labelled according to the lowest
norm. Furthermore, we should note that when the HCP-CCE descriptor is applied on the perfect HEX
structure the corresponding value (0.28) is a result of the &“""°

Eq. 1. This is because the Voronoi polyhedron of the local environment that corresponds to the perfect

contribution in Eq. 2 as calculated by

HEX structure, as seen in the third panel of Figure 3, is a hexagonal prism with 8 faces and thus 8
closest neighbors. When the actions of the 6-fold roto-inversion axis of the HCP are applied on the
HEX Voronoi cell they produce zero HCP-CCE norm according to Eq. 5. However, as the HEX
Voronoi polyhedron has 8 neighbors, which are fewer than the 12 ones used for the HCP-based
operations, according to Eq. 1 we have ¢“"* = 0.07 (12 — 8) =0.28. So that the HCP-CCE norm
when applied on the reference HEX crystal has this high value (0.28) as seen in Table 3. Again, this is
a particular case of an “ideal” (reference) structure that is never encountered in practice in computer-
generated configurations. In the latter the number of closest neighbors, as calculated by the Voronoi
tesselation, is either similar or significantly higher than the one that corresponds to the perfect HEX
(as will be demonstrated in the continuation).
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Figure 5. Value of the FCC-CCE norm (£<¢), when applied on a local environment corresponding to a
perfect FCC crystal, as a function of the step of the mesh discretization used to explore the orientation of

the first and second three-fold roto-inversion symmetry axes.

3.2. CCE norm application to computer-generated, 3-D bulk systems

Our test cases consist of computer-generated packings of monomers or polymers whose sites
interact through the hard-sphere (HS) or the square-well (SW) potential. In all systems studied here
the collision diameter is taken as the characteristic length of the system (o = 01 in Eq. 2). The aim of
the present work is not to present new physics on 2-D (thin film) or 3-D (bulk) crystallization of
athermal or attractive chains but rather to demonstrate the efficiency of the CCE algorithm to
accurately identify local structure and to detect and quantify crystal nucleation and growth in general
particulate and atomic systems. Initial configurations correspond to bulk, 3-D HS chains at low
packing density (¢ = 0.05), as can be seen in Figure 15 of the Appendix.

Once the SW potential is activated, chains or monomers form clusters, whose stability depends
strongly on the values of the intensity and range of attraction [40]. Under specific conditions the
clusters grow in size and aggregate, eventually leading to a single cluster which contains all sites.
Crystal nucleation and growth inside such clusters, as well as the type and morphology of the ordered
structure, also depend strongly on attraction intensity and range. Typical configurations for SW
polymers and monomers at the end of the NVT (chains) and NPT (monomers) simulations, after
application of the CCE algorithm, are presented in Figure 6 and Figure 7.
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Figure 6. Snapshots at the end of NVT MC simulations on SW chains (Nav = 24). Left side: ¢ = 0.5 and o2

=2.0; Right side: € = 0.5 and 02 = 2.3. Spheres are color-coded according to the X-crystal similarity (eX <
gthres = (0.245) as identified by the value of the CCE norm. Blue, red, green, purple and cyan colors
correspond to HCP, FCC, FIV, HEX and BCC crystals, respectively. Crystal sites are shown with reduced
diameter in a 3:5 scale. Amorphous (or unidentified) sites are shown in yellow color and reduced (1:5)
diameter for visualization purposes. Image created with the VMD software. Each figure panel is also

available as stand-alone image in 3-D, interactive format in supplement material.

Sites are color-coded according to their similarity to an X reference crystal, as identified by the
value of the CCE norm. As mentioned in the method description the condition for a local environment
to be labeled as X-like is that the value of the corresponding CCE norm should be lower than the
threshold: X < ethres = 0.245. Throughout all images and snapshots to be presented in the continuation
the coloring scheme is the same: red, blue, green, purple and cyan colors correspond to HCP, FCC,
FIV, HEX and BCC crystals, respectively. All sites that show no similarity for none of the reference
crystals are labeled as “amorphous”, or more precisely as “unidentified”, and are represented in
yellow. In parallel, to render the depth of the snapshot visually accessible, crystal-like and amorphous
sites are shown with reduced dimensions in a 3:5 and 1:5 scale, respectively. In the specific examples
the established ordered morphologies, as identified by the CCE algorithm, are almost perfect HCP
and FCC crystals for the SW chain systems at dilute conditions (Figure 6) while HEX and BCC are
the dominant ones for the SW monomeric clusters in Figure 7. A detailed analysis on the phase
behavior of chains and monomers in the whole spectrum of the intensity and range parameters as
well as an explanation on why certain ordered morphologies are favored for specific simulation
conditions will be presented in a future work. A significant difference between the low-density chain
crystals, as obtained from the NVT simulations, and the high-density ones for monomers, as obtained
from the NPT simulations, is the presence in the former of an external surface of unidentified
character that surrounds the core of the cluster as seen in the snapshots of Figure 6. Atoms on the
surface of the cluster cannot be assigned to any reference crystal because they lack a complete set of
first neighbors, and hence have incomplete Voronoi polyhedra [40].


https://doi.org/10.20944/preprints202010.0294.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 October 2020 d0i:10.20944/preprints202010.0294.v1

16 of 32

Figure 7. Snapshots at the end of NPT MC simulations on SW monomers. Left side: ¢ =2.1 and 02 = 1.6;

Right side: ¢ =2.7 and 02 =1.3. Spheres are color-coded according to the X-crystal similarity (eX < gthres =
0.245) as identified by the value of the CCE norm. Blue, red, green, purple and cyan colors correspond
to HCP, FCC, FIV, HEX and BCC crystals, respectively. Crystal sites are shown with reduced diameter
in a 3:5 scale. Amorphous (or unidentified) sites are shown in yellow color and reduced (1:5) diameter
for visualization purposes. Image created with the VMD software. Each figure panel is also available as

stand-alone image in 3-D, interactive format in supplement material.

Focusing on the level of atoms or particles dozens of final configurations of MC trajectories were
scanned in an effort to discover local structures with an environment as close as possible to the
reference tested crystals. Such X-like structures should be characterized by very low values of the
corresponding X-CCE norm. Figure 8 hosts some of the “best” computer-generated local structures
with respect to the four reference crystals tested. The corresponding CCE values are all very low with
the minimum being registered for an FCC-like environment (¢F¢C = 0.0223), followed by HCP-like
(eMCP = 0.0340), HEX-like (eHX = 0.0466) and BCC-like (¢B°C = 0.0536), the latter being approximately
2.4 times higher than the minimum recorded for FCC. All these CCE norm values are very small,
close to zero, and significantly lower than the threshold value of 0.245.

Y 090 @ ® 6
08080 05080 ® @O o
000 | 0% | o |9 ©

Figure 8. Snapshots of local environments, as generated through present MC simulations, showing very

high similarity to a specific reference X-crystal, as quantified by the corresponding very low value of the
X-CCE norm. From left to right: HCP-like (e"<" = 0.0340); FCC-like (£f¢¢ = 0.0223); HEX-like (eHEX =
0.0466); BCC-like (&8¢ = 0.0536). Reference site and nearest neighbors are shown in red and blue,

respectively. Also shown are the corresponding Voronoi polyhedra as green lines. Sites are shown with
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reduced diameter in a 2:5 scale for visualization purposes. Image created with the VMD software. Each

figure panel is also available as stand-alone image in 3-D, interactive format in supplement material.

Visual inspection of the computer-generated local environment as seen in Figure 8, especially
when compared against the reference perfect structures of Figure 3, verifies the CCE results: the
similarity is striking not only at the level of nearest neighbors but also with respect to the shape of

the Voronoi cell. We should remind here that out of all neighbors that form the Voronoi polyhedron
only the nearest Ncoord(X) ones are taken into account for the calculation of the X-CCE norm.

090 | 090 | 900 | og0
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Figure 9. Computer-generated, local structures with progressively reduced HCP-similarity and thus

with increasingly high HCP-CCE norm as quantified by the CCE descriptor. From left to right: eHCP =
0.05,0.10, 0.20 and 0.30. The latter case is not characterized as HCP-like since ¢HCP > ¢thres=() 245, Reference
site and nearest neighbors are shown in red and blue, respectively. Also shown are the corresponding
Voronoi polyhedra as green lines. Sites are shown with reduced diameter in a 2:5 scale for visualization
purposes. Image created with the VMD software. Each figure panel is also available as stand-alone image

in 3-D, interactive format in supplement material.

How the CCE descriptor quantifies increasingly poor similarity to a specific reference structure
can be seen in Figure 9. The four snapshots correspond to different local structures whose HCP-CCE
norms are approximately " = 0.050 (left-most panel), 0.10, 0.20 and 0.30 (right-most panel). The
lowest HCP-CCE norm is linked to an almost perfect HCP ordered structure. As the norm increases
small structural defects appear, including minor radial and/or orientational deviations. This is most
evident in the rightmost snapshot with ¢4 = 0.30. This value is actually higher than the threshold
(0.245) used to assign HCP character. Accordingly, based on the HCP-CCE norms in Figure 9, all
structures are identified as HCP-like except the one on the right-most panel. Increasing (weakening)
the criterion for the detection to a value higher than 0.30 would also include this structure in the HCP
population. However, caution should be exercised as too large an increase in ¢ may result in sites
having dual or multiple similarity eliminating the ability of the CCE method to discriminate between
competing, structurally similar crystals.

It is tempting to attempt a comparison between the characteristics of the environment of the
perfect reference crystals against the one of some of the “best” computer-generated structures, as for
example the ones depicted in Figure 8. Parameters related to the topology of the enclosing Voronoi
polyhedron for each reference crystal, X, include: coordination number, Neoord(X), volume, Vvr(X),
surface area, Ave(X), number of faces, F(X), number of edges, E(X) and number of vertices, V(X).
Furthermore, local packing density can be calculated as:

1
Vvp(X)

pn(X) = (13)
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which for spherical objects, of radius r = 01/2, is connected to packing density through:

T T

pX) = gpn(X) = Vyp(X)

(14)
In parallel, for 3-D objects the standard isoperimetric quotient, Q(X), is defined as [53]:

_ Vigp(X)
QX)) = 36”A\3,P(x) (15)

For convex polyhedra faces, edges and vertices are connected through the Euler-Poincaré
equation: F(X) + V(X) = E(X) + 2. The space filling tessellations of the reference crystals studied here
correspond to trapezo-rhombic dodecahedron (HCP), rhombic dodecahedron (FCC), hexagonal
prism (HEX) and truncated octahedron (BCC) with the corresponding parameters presented in Table
5. It is interesting to check whether the absolute values but also the well-established trends for the
reference crystals: ¢(HCP) = ¢(FCC) > ¢(BCC) > ¢(HEX) and Q(BCC) > Q(HCP) = Q(FCC) > Q(HEX)
will be also valid for the computer-generated, defect-ridden counterparts. As discussed earlier the
enclosing Voronoi polyhedron of a computer-generated structure, even a highly ordered one, is more
complex than the one of the reference structures because the second-nearest neighbors are brought
to closer distances than the ones who adopt regular positions in crystal lattices. This can be seen for
example in Table 6 where the number of faces, edges and vertices is systematically higher in the
computer-generated structures with highly crystal similarity compared to the reference templates
(Table 5). If we focus our attention on the volume of the Voronoi cell and accordingly the packing
density, all computer-generated structures are less dense than the perfect crystals. In the best
comparison which corresponds to the FCC-like crystal, the difference in volume is approximately
3.4% with a similar but higher value (6.6%) being registered for the HCP-like; in the worst cases for
HEX- and BCC-like it increases to 19.9 and 19.7%, respectively. The relative percentage differences
for Vve(X), Ave(X) and Q(X) between the computer-generated structures of high crystal similarity and
the reference ones, are summarized in Table 7. A remarkable trend, which must be studied in more
detail through an extended sample of configurations, is that the generated HEX and BCC crystals are
significantly more spacious than the perfect analogs. In parallel, the standard isoperimetric quotient
seems to be in very good (3% for HEX) to an almost perfect (0.01% for FCC) agreement between the
generated structures and the analogous perfect templates. The computer-generated BCC structure is
still, with a slightly reduced margin compared to the perfect templates, the local structure with the
highest isoperimetric quotient value, even larger than the ones of the close packed HCP and FCC
crystals (Q(BCC) > Q(HCP) = Q(FCC) > Q(HEX)).

Table 5. Statistics of the Voronoi polyhedron of perfect, reference 3-D crystal X: coordination number
Neoord(X), number of faces F(X), vertices V(X) and edges E(X), volume Vve(X), surface area Ave(X), local
number density pn(X), packing density ¢(X) and standard isoperimetric quotient Q(X).

X Nooa(X)  FX) V) EX VWX  AvX  paX) X Q0
HCP 12 12 14 14 0.7071 4.243 1.414 0.7404 0.7405
FCC 12 12 14 24 0.7071 4.243 1.414 0.7404 0.7405
HEX 8 8 12 18 0.8660 5.196 1.155 0.6046 0.6045

BCC 8 14 24 36 0.7698 4.464 1.299 0.6800 0.7534
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Table 6. Same as in Table 5 but for computer-generated 3-D structures with high crystal similarity (or
equivalently low CCE norm), as visualized in Figure 8. Coordination number is deduced from the

number of closest neighbors so as to match the one of the reference crystal.

Xlike Neowa(X) FX VX EX VW@ Aw®X  pX X QX
HCP 12 13 22 33 0.7534 4.426 1.327 0.6950 0.7404
FCC 12 13 22 33 0.7311 4.339 1.368 0.7162 0.7400
HEX 8 15 26 39 1.038 5.806 0.9634 0.5044 0.6226
BCC 8 14 24 36 0.9214 5.045 1.085 0.5683 0.7478

Table 7. Relative percentage difference between the computer-generated local structures with very high
crystal similarity (as visualized in Figure 8) and the reference, perfect 3-D crystals with respect to
volume, surface area and standard isoperimetric quotient of the enclosing Voronoi polyhedron. Also

reported in the last column is the corresponding X-CCE norm for the computer-generated structure.

X % Vve(X) % Ave(X) % Q(X) X-CCE norm
HCP 655 4.31 0.0135 0.0340
FCC 3.39 2.26 0.0675 0.0223
HEX 199 10.5 2.99 0.0466
BCC 197 13.0 0.743 0.0536

The ability of the CCE descriptor to discriminate between similar and competing crystal structures
can be demonstrated by the parity plots where the Y-CCE norms are contrasted against the X-CCE
norms (X # Y), in all possible combinations of crystal pairs for all atoms present in the system. Such
parity plots can be seen in Figure 10 as obtained from the last configuration from NPT MC simulations
on 1200 monomers interacting through the SW potential (esw = 2.1 and 02 = 1.2). Dashed horizontal
and vertical lines denote the threshold (ethres = 0.245) below which a site is identified as Y-like and X-
like, respectively. The discrimination ability of the CCE algorithm is demonstrated by the empty
square whose borders are defined by the points (0, 0), (0, ethres), (ethres, 0) and (ethres, ethres), In practice,
absence of data points in this area implies that no site possesses dual ordered character by having

simultaneously low CCE norm with respect to the two different X and Y reference crystals.
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Figure 10. All possible combinations of parity plots X- vs. Y-CCE norm (X # Y) for the final configuration
of NPT MC simulations on a system of N = 1200 monomers interacting with the square well potential
(esw = 2.1 and 02 = 1.2). Top-left: X = HCP and Y = FCC/FIV/HEX/BCC; Top-right: X = FCC and Y =
FIV/HEX/BCC; Bottom-left: X = FIV and Y = HEX/BCC; Bottom-right: X = HEX and Y = BCC. Vertical
and horizontal dashed lines denote the CCE norm threshold below which a site is labeled as X- and Y-
like, respectively. Blue, red, green, purple, cyan and yellow colors correspond to HCP-, FCC-, FIV-, HEX-

, BCC-like and amorphous (or unidentified) sites, respectively.

3.3. CCE application to computer-generated, 2-D thin-film systems

In the present section we will demonstrate the application of the CCE descriptor on 2-D systems.
As explained earlier these systems could be inherent 2-D systems consisting for example of disks, or
extremely confined thin-films of 3-D objects (like spheres), with a film thickness of a single layer (dwan
— 01). Local packing density, p;(X), is defined here as the inverse of the surface area, Ave(X), of the
Voronoi polygon of crystal X:

1
Ayp(X)

pn(X) = (16)
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Thus, surface coverage, ¢*(X), is the ratio of the occupied area divided by the total area of the Voronoi

polygon of crystal X:

* _E * ™
O =thn=gts D)

A thin film of one-layer thickness, and thus any sub-volume of it, is characterized by a packing

density as defined by Eq. 14. Combining Eqgs. 14 and 17 for the extremely confined thin film (dwai —

o1) we get:
(X)) =2¢9"(X)  (18)

If Ave(X) and Pve(X) are the surface area and the perimeter of the Voronoi polygon for the 2-D
crystal X the standard isoperimetric ratio, §(X), is defined as [53]:

q(X) = an22® (19

PGp(X)
Table 8 summarizes the properties of the Voronoi polygons for the reference 2-D crystals studies

here: TRI (regular hexagon), SQU (square) and HON (equilateral triangle).

Table 8. Statistics of the Voronoi polygon of perfect, reference 2-D crystal X: coordination number Necoord(X),
number of vertices V(X) and edges E(X), surface area Ave(X), perimeter Pve(X), local number density pn(X),

packing density ¢(X) and standard isoperimetric ratio g(X).

b'e Nood(X)  VX) EX) Aw(X)  PwX) po(X)  ¢*X) g%
TRI 6 6 6 0.8660 3.464 1.155 0.907 0.907
SQU 4 4 4 1.000 4.000 1.000 0.785 0.785
HON 3 3 3 1.299 5.196 0.7698 0.604 0.604
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Figure 11. Snapshots of MC simulations on thin-films of linear, hard-sphere chains. Left panel: 48-chain Nay =100

at ¢ = 0.40 under confinement in all dimensions. Right panel: 100-chain Nay = 12 at ¢ = 0.40 with confinement in
the short dimension and periodic boundary conditions in the long ones. In both cases inter-wall distance in the small
dimension corresponds to a single layer. Spheres are color-coded according to the X-crystal similarity (X < g!res =

0.245) as identified by the value of the CCE norm. Blue, red, green and cyan colors correspond to TRI, SQU, PEN
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and HON symmetries, respectively. Amorphous (or unidentified) sites are shown in yellow color. Image created
with the VMD software. Each figure panel is also available as stand-alone image in 3-D, interactive format

in supplement material.

Figure 11 and Figure 12 present snapshots of MC simulations on thin-film systems of linear chains
whose sites interact with the HS and SW potential, respectively. In all cases atoms are colored
according to the X-crystal similarity as quantified by the 2-D norm: Blue, red, green and cyan colors
correspond to TRI, SQU, PEN and HON symmetries, respectively while amorphous (or unidentified
atoms) are shown in yellow. Given that in all cases film thickness is approximately equal to the
diameter of monomers packing density can be related to surface coverage according to Eq. 18. The
48-chain Nav = 100 system under full confinement (left panel in Figure 11) is characterized by low
density (¢ = 0.40) and equivalently low surface coverage (¢* = 0.60). As a consequence, only a very
small fraction of sites shows ordered structure. As density increases (right panel in Figure 11
corresponding to 100-chains of Nav =12 at ¢ = 0.48 or equivalently ¢* = 0.472) the population of sites

with crystal local structure increases appreciably, especially the one of TRI character.

L%

Figure 12. Snapshots of MC simulations on thin films of 100 chains (Nav = 12). Spheres interact with the SW
potential. Confinement is applied on the short dimension and periodic boundary conditions in the long ones. Left
panel: ¢ = 0.5 and o2 = 1.3. Right panel: ¢ = 0.5 and 02 = 1.6. Spheres are color-coded according to the X-crystal
similarity (X < ¢ = (0.245) as identified by the value of the CCE norm. Blue, red, green and cyan colors
correspond to TRI, SQU, PEN and HON symmetries, respectively. Amorphous (or unidentified) sites are shown in
yellow color. Image created with the VMD software. Each figure panel is also available as stand-alone image

in 3-D, interactive format in supplement material.

The situation is quite different as the SW potential is turned on and simulations are conducted under constant
volume; this is as demonstrated by the snapshots of Figure 12. The configuration of the left panel (¢ = 0.5 and
02 = 1.3) shows a clear tendency for close packing, as most sites adopt a triangular structure, which possesses
the highest density among all 2-D crystals. The snapshot of the right panel (¢ = 0.5 and 0> = 1.6) also presents
higher degree of ordering than the original athermal packing (right panel of Figure 11) and different mixture

of crystal sites. Here, the population of square-like sites is comparable to that of triangular ones. In both cases
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no honeycomb structures are detected, an expected trend given that the honeycomb crystal shows significantly
lower surface coverage than the square and triangular ones. Additionally, in the configuration of mixed
character (TRI and SQU) there is a small, but non-zero population of sites with non-crystal, pentagonal local
symmetry. In contrast, in the TRI-dominated system pentagonal sites are completely absent. A systematic
analysis of the phase behavior as a function of attraction intensity and range in thin films of SW chains as well

as an interpretation of the observed tendencies will be presented in a future work.

Figure 13. Computer-generated, local structures with progressively reduced TRI-similarity and thus
with increasingly high TRI-CCE norm. From left to right: ¢™!=0.05, 0.10, 0.20 and 0.30. The latter case is
not characterized as TRI-like since ™! > gthres= (0.245. Reference site and nearest neighbors are shown in
red and blue, respectively. Image created with the VMD software. Each figure panel is also available as

stand-alone image in 3-D, interactive format in supplement material.

Figure 13 hosts local structures belonging to the athermal Nav = 12 system (which can be seen in
Figure 11, right panel) with progressively reduced similarity to triangular crystal as quantified by the
TRI-CCE norm. From left to right the values are approximately 0.05, 0.10, 0.20 and 0.30. The last
structure with ™= (.30 is not recognized as TRI-like as the norm is higher than the threshold value
of ethres = 0.245. Visual inspection qualitatively confirms the diminishing similarity as established
quantitatively by the CCE descriptor. This is further demonstrated by the data on the statistics of the

Voronoi polygon as reported in
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Table 9 where they are further compared against the corresponding one of the perfect, reference
triangular crystal. It can be deduced that the computer-generated local structure with the closest TRI
similarity differs by approximately 5.8, 2.9 and 0.2% in surface area, perimeter and standard
isoperimetric ratio with respect to the reference crystal. For the least similar structure the

corresponding percentages (of the ones reported in
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Table 9) increase to 15.5,9.0 and 2.9%, for Ave(TRI), Pvp(TRI) and g(TRI), respectively. In both cases
and as expected the computer-generated polygons are larger than the reference ones and thus are

less dense.
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Table 9. Statistics of the Voronoi polygon of computer-generated local structures, visualized in Figure 13, with
progressively poor triangular singularity as quantified by the corresponding CCE norm, ¢™!: coordination
number Neoord(X), number of vertices V(X) and edges E(X), surface area Ave(X), perimeter Pve(X), local
number density pn(X), packing density ¢(X) and standard isoperimetric ratio g(X). Also shown for

comparison in the first row are the results that correspond to the perfect, reference 2-D triangular crystal.

£TRI Neord(TRD) ~ V(TRD)  E(TRI)  Ave(TRI)  Pve(TRI) p«'(TRID) ¢*(TRD)  g(TRI)

0.00 6 6 6 0.8660 3.464 1.155 0.907 0.907
0.05 6 6 6 0.9160 3.564 1.093 0.858 0.905
0.10 6 6 6 0.9420 3.620 1.062 0.834 0.903
0.20 6 6 6 1.006 3.766 0.9940 0.781 0.891
0.30 6 6 6 1.000 3.776 1.000 0.786 0.881

The discriminating ability of the CCE algorithm is demonstrated by the parity plots for all possible
reference pairs as shown in Figure 14. As in the case of 3-D analogs, for every site (atom or particle)
in the system we plot the Y-CCE norm versus the X-CCE one (Y # X) in all possible combinations. An
empty box near the origin, whose borders are marked by the threshold value (ethres = 0.245), means
that no site exists with dual crystal character. Out of all possible comparisons of crystal pairs (= Nat x
Ns2! =1200 x 6 = 7200) there is only one site which is detected with dual character (¢8I, eHON < gthres) g5
seen in the left panel of Figure 14, with the HON similarity (eHON = 0.24) being the weakest one and
very close to the detection threshold. In the very rare case of a site having two CCE norms lower than

the threshold, it adopts the one that has the lower value.
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Figure 14. All possible combinations of parity plots X- vs. Y-CCE norm (X # Y) from NVT simulations on
a (2-D) thin-film system of 100-chains of Nav =12 at ¢ = 0.48 as seen in the right panel of Figure 11. Left:
X =TRI and Y = SQU/PEN/HON; middle: X = SQU and Y = PEN/HON; Right: X = PEN and Y = HON;
Vertical and horizontal dashed lines denote the CCE norm threshold below which a site is labeled as X-
and Y-like, respectively. Blue, red, green, cyan and yellow colors correspond to TRI-, SQU-, PEN-, HON-

, and amorphous (or unidentified) sites, respectively.

4. Conclusions

We have presented a revised an extended version of the characteristic crystallographic element
(CCE) descriptor, used to characterize local structure in general atomic and particulate systems in 2
or 3 dimensions, in the bulk or under confinement. The CCE descriptor is able to quantify the
structural similarity of any given environment with respect to reference crystals in both radial and
orientational terms. Its definition is based on the characteristic set of geometric symmetry elements
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and corresponding actions which are uniquely related to a reference crystal. The CCE norm is
effectively able to quantify phase transition and to distinguish between different competing crystals
even if they are structurally similar and belong to the same point group.

We have demonstrated the efficiency of the CCE norm by applying it on atomic systems of
polymers or monomers interacting with the hard sphere and square well potentials. We have tested
structural similarity with respect to hexagonal close packed, face center cubic, fivefold, hexagonal
and body center cubic in 3-D and triangular, square, pentagonal and honeycomb in 2-D.

The CCE descriptor can be easily extended to more crystal templates. Moreover, in 3-D its
precision and speed, or better their balance, can be tuned by the fineness of the grid used to scan the
spherical domain for the detection of the optimal symmetry elements (axes).

Finally, the CCE descriptor can be also applied to 3-D systems showing heterogeneous
crystallization for example due to the presence of walls. This can be achieved by treating differently
the atom layers touching the walls (using 2-D crystal templates) and the bulk system (using 3-D
reference crystals).

Abbreviations

The following abbreviations are used in the manuscript:

BCC Body Center Cubic

CCE Characteristic Crystallographic Element (norm)
CNA  Common Neighbor Analysis

FCC Face Center Cubic

FIV Fivefold

HCP Hexagonal Close Packed

HEX Hexagonal

HON  Honeycomb

HS Hard Sphere

MC Monte Carlo

RCP Random Close Packing

PEN Pentagonal

RHCP Random Hexagonal Close Packed

SQU Square

SSP Short-Range Order Symmetry Parameter
SW Square Well

TRI Triangular

Supplementary Materials: The present manuscript is available also in interactive, 3-D form. All panels of
Figures1,2,3,4,6,7,89,11,12, 13,15 and 16 exist as individual interactive, 3-D files.
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Appendix A

Figure 15 shows snapshots of equilibrated athermal polymer systems, at dilute conditions (¢ =
0.05) used as initial structures for successive MC simulations on polymers and monomers interacting
with the SW attractive potential in bulk 3-D.

Figure 15. Snapshots of equilibrated packings of linear hard-sphere chains in the bulk at a packing density of 0.05,
used as initial configurations for successive simulations with the square well potential. (Left panel): 100 chains of
Nav = 12; (Right panel): 50 chains of Nav = 24. Spheres are colored according to the identity of the parent chain.
Coordinates of sphere centers are subjected to periodic boundary conditions in all dimensions. Each figure panel

is also available as stand-alone image in 3-D, interactive format in supplement material.

The analogous initial configurations for the simulations on 2-D, thin films are shown in Figure
16. On the left panel a 48-chain Nav = 100 system at ¢ = 0.05 is shown under confinement in all
dimensions. The MC protocol to produce such polymer systems under extreme confinement is
described in [48,54,55]. The right panel hosts a snapshot of a 100-chain Nav = 12 system at ¢ = 0.48.
Here, periodic boundary conditions are applied on the long dimensions of the cell while flat parallel,
impenetrable walls exist in the short dimension. In both systems of Figure 16 the thickness in the
short (x) dimension corresponds to one layer, i.e. (dwan — 01).


https://doi.org/10.20944/preprints202010.0294.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 October 2020 d0i:10.20944/preprints202010.0294.v1

29 of 32

Figure 16. Snapshots of equilibrated packings of linear, hard-sphere chains used as initial configurations for

successive simulations with the hard sphere or square well potential. (Left panel): 48 chains of Nav = 100 at ¢ =
0.05 under confinement in all dimensions; (Right panel): 100 chains of Nay = 12 at ¢ = 0.48 with periodic boundary
conditions in the long dimensions and confinement in the short one. Spheres are colored according to the parent

chain. Each figure panel is also available as stand-alone image in 3-D, interactive format in supplement

material.
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