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Abstract: This paper reviews state of the art Additive Manufactured (AM) IN718 alloy intended for 
high temperature applications. AM processes have been around for decades and have gained 
traction in the past five years due to the huge economic benefit it brings to manufacturers. It is 
crucial for the scientific community to look into AM IN718 applicability in order to see a step-change 
in the production. Microstructural studies reveal that the grain structure plays a significant role in 
determining the fatigue lifespan of the material. Controlling IN718 respective phases such as the ϒ’', 
δ and Laves phase is seen to be crucial. Literature reviews have shown that the mechanical 
properties of AM IN718 were very close to its wrought counterpart when treated appropriately. 
Higher homogenization temperature and longer ageing were recommended to dissolve the 
damaging phases. Various surface enhancement techniques were examined to find out their 
compatibility to AM IN718 alloy that is intended for high temperature application. Laser shock 
peening (LSP) technology stands out due to the ability to impart low cold work which helps in 
containing the beneficial compressive residual stress it brings in high temperature fatigue 
environment.  

Keywords: laser powder bed fusion; Inconel 718; high temperature; material characterisation; laser 
shock peening 

 

1. Introduction 

Additive Manufacturing (AM) is a promising technology for fabricating a wide range of 
structures and complex geometries from three dimensional (3D) model data. The process consists of 
depositing successive layers of material, one layer on top of another. AM was first developed by 
Chuck Hull in 1983, who established the process which was later known as stereolithography [1]. 
Designs are drawn using a computer-aided design (CAD) program which is then translated into 
model data. A 3D printer takes this data and slices it into several dimensional plans which instruct it 
where to deposit the layers of material. In 2015, the American Society of Testing and Materials 
(ASTM) issued a standard for AM technologies that consist of seven main processes [2], which 
established and defines the terms used in the field. 

Alloys used for high temperature application are highly sought after in the aerospace and 
nuclear industry due to their high strength and stability at extreme temperatures. Alloys that operate 
at high temperature are critical for these industries as the efficiency of fuel conversion is closely 
related to the operating temperature. Generally, these alloys are nickel, iron or cobalt based. Its 
strength could sometimes become a weakness, as machining these alloys can be very difficult and 
expensive due to its natural tendency for work hardening. The shift to AM technology has allowed 
manufacturers to produce complex geometries such as lattice structures [3, 4], where traditional 
manufacturing such as casting or forging are a lot more time-consuming, or incapable of achieving 
these geometries. Researchers have made great efforts to understand the process-structure-property-
performance relations to AM materials. Figure 1 illustrate a general material design chart with the 
intent to produce the most optimised mechanical properties suited for its intended application. 
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Figure 1. Material design chart that showcase the process-structure-properties-performance 
relationship for AM metal alloy, provided by [5] 

This review paper aims to provide an overview of the AM of Inconel 718 (IN718), focusing on 
Powder Bed Fusion (PBF), which is one of the seven AM technologies. To the author’s knowledge, a 
robust understanding of the fatigue response for AM IN718 in a high temperature environment 
remains elusive. The literature review covers the current research gap and challenges encountered in 
adopting AM IN718 for commercial use. Microstructural development and mechanical performances 
of AM IN718 are also discussed. Post-processing methods for AM IN718 are explored, as the scientific 
community sought out ways to push its usability for high temperature applications. 

2. Additive Manufacturing 

2.1 Benefits of the AM process 

Reviews on the AM process have been covered thoroughly by many authors [6-11] and this 
section will focus on the seven technologies that were established by the ASTM community, and the 
benefits of each individual technology. Table 1 articulates the seven processes.  

Table 1. Description of the AM technologies and benefits associated with it [6, 12-15]  

Technologies Description Benefits 

1. Powder Bed Fusion  

Using a laser or electron beam 
to fuse thin layers of fine 
powders together, which are 
spread and closely packed on 
a platform. Subsequent layers 
of powders are applied on top 
of the previous layers until the 
final part is built 

 Fine resolution  
 High quality 
 
 
 

2. Direct Energy Deposition 

A nozzle mounted on a multi 
axis arm, which deposits 
melted material onto the 
substrate  

 
 Suitable for reparation 

works  
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 Good mechanical 
properties 

 

3. Material Jetting 

Droplets of material are 
deposited from the nozzle 
onto the platform, where it 
solidifies and subsequent 
layers are built on it  

 Smooth surface finishing 
 Multi-material printing 

4. Binder Jetting 

 
Utilize a binder that was 
deposited using an inkjet-
print head to join materials in 
a powder bed 
 

 
 Parts can be made with a 

range of different colours 

5. Material Extrusion 

Continuous filament of a 
polymer is heated and 
extruded onto the platform or 
on top of previous layers 
 

 Low cost 
 High speed 

6. VAT Photo-
polymerization 

A pre-deposited 
photopolymer in a vat is 
selectively cured by light 
 

 Fine resolution 
 High quality 

7. Sheet Lamination 
Layer-by-layer cutting and 
lamination of sheets or 
ribbons of metal 

 Low cost 
 High speed  

2.2 Industrial Value 

In the past 10 years, many companies have embraced AM technologies and are beginning to 
enjoy the real business benefits. In a report by Statista, the global 3D printer market size reached 
US$7.3 billion in 2017 and the aerospace and defence sectors account for 17.8% of the market 
distribution in 2016 [16]. The global AM market is expected to see double digit growth into 2022 with 
market analysis projecting a growth of up to 35% per annum [17]. Recent developments such as 
cheaper metal powder [18] and the influx of new vendors [19] have significantly reduced the cost of 
the printers and AM has worked its way into a number of markets. The growing consensus of 
adopting AM into its production floor is attributed to several advantages over traditional 
manufacturing, as shown in Table 2. 

Table 2. Advantages of AM over traditional manufacturing adapted from [20] 

Areas of application Advantages 
1. Rapid Prototyping  Reduce time to market by accelerating 

prototyping 
 Reduce the cost involved in product 

development 
 Making companies more efficient and 

competitive at innovation 
 

2. Production of Spare Parts  Reduce repair times 
 Reduce labor cost 
 Avoid costly warehousing 
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3. Small Volume Manufacturing  Small batches can be produced cost-
efficiently 

 Eliminate the investment in tooling 
 

4. Customized Unique Items  Eliminate mass customization at low cost 
 Quick production of exact and customized 

replacement parts on site 
 Eliminate penalty for redesign 
 

5. Complex Work Pieces  Produce complex work pieces at low cost 
 

6. Machine Tool Manufacturing  Reduce labor cost 
 Avoid costly warehousing 
 Enables mass customization at low cost 
 

7. Rapid Manufacturing  Directly manufacturing finished 
components 

 Relatively inexpensive production of small 
number of parts 

 
8. Component Manufacturing  Enable customization at low cost 

 Improve quality 
 Shorten supply chain 
 Reduce the cost involved in development 
 Help eliminate excess parts 
 

9. On-site and On-demand 
Manufacturing of Replacement Parts 

 Eliminate storage and transportation cost 
 Reduce downtime 
 Shorten supply chain 
 Allow product lifecycle leverage 
 

10. Rapid Repair  Reduction in repair time 
 Opportunity to modify repaired 

components to the latest design 
 
A wide variety of materials can be utilized, but metals are generally popular due to their 

extensive use in industrial and consumer appliances. Error! Reference source not found. illustrates 
the activity map of selected aerospace companies, with many players focusing their research and 
development work on AM technology. General Electric (GE) leads the industry in terms of the both 
the volume and machine capacity, and have printed more than 100,000 parts by 2020. Rolls Royce, 
MTU Aero Engines, Pratt & Whitney and GKN Aerospace have established their own competencies 
centre to upskill their AM capabilities [17]. GE Aviation has been particularly successful in 
implementing AM technology into its product. In 2015, GE announced that the next LEAP engine 
will have nearly twenty 3D-printed fuel nozzles [21], simplifying parts by combining multiple 
components. Traditionally, the aerospace industry used advanced and costly materials like titanium 
and nickel alloys, which are difficult to manufacture and creates a large amount of waste. For 
example, Wilson et al [22] has shown that through the use of AM technology, his team was able to 
achieve a 45% carbon footprint improvement and a 36% savings in total energy over replacing it with 
an entirely new blade. In 2019, Rolls Royce produced its first AM low-pressure turbine for the Trent 
XWB-84 which is expected to result in a component weight reduction of up to 40% as well as generate 
significant cost savings for the company [23]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 October 2020                   doi:10.20944/preprints202010.0292.v1

https://doi.org/10.20944/preprints202010.0292.v1


 5 of 21 

 

In a separate report made by Deloitte, it highlighted that AM technology has shown to bring the 
scrap rate to around 10-20% [24] while fabricating parts with intricate geometries such as internal 
cavities and lattice structures. Moreover, AM has the potential to lower overall cost as it is able to 
manufacture spare parts on demand, reducing maintenance time and the need for inventory 
management [25]. Boeing and Airbus typically sourced its 4 million spare parts around the globe, 
and airlines usually maintain an inventory of spares to avoid their planes from becoming grounded. 
AM technology is an enabler for these companies to embark on a supply chain transformation, 
making on-demand manufacturing possible. Combined with the outbreak of COVID19, companies 
are looking towards a “just in case” framework rather than “just in time” [26], specifically benefiting 
from the advanced production capability of AM processes. 

 

Figure 1. AM industry activity map of selected aerospace company taken from [17]  

2.3 Types of Metal AM Process 

Out of the seven main AM processes, powder bed fusion (PBF) and direct energy deposition 
(DED) are generally used to produce high quality metal parts. Lewandowski et al. [7] categorized 
these two mainstream processes into its respective energy source for fusion and the companies that 
have a specialization in them, as shown in Figure 2. 

The DED process has a high degree of control and freedom as it can simultaneously feed 
multiple types of powders through its nozzle, as shown in Figure 3a. By adjusting the feed rate, it is 
feasible to achieve desirable microstructural features and chemical composition which is favourable 
for building functionally graded materials [27] or structural metal components [13]. Apart from 
manufacturing near net shape components, DED is suitable for repairing high value parts with little 
wastage [28-30]. This capability enables manufacturers to remanufacture turbine blades with cracks 
and voids which is economically viable and helps in design enhancements at the time of restoration 
[22]. Consequently, remanufacturing using accurate AM processes will enable industries to save 
energy and material, and contribute towards sustainable design and manufacturing. Despite its 
benefits, DED faces several challenges with its quality and efficiency. Resolutions are generally very 
low and parts have a rough surface finish that may need post-processing such as by machining to 
obtain tight tolerances [10]. 

PBF has a unique position because of its potential to manufacture metal components in a range 
of alloys, at high resolution and accuracy, which has broadened the application to various industries. 
The process consists of depositing thin layers of fine powder on a platform which is then fused 
together with a laser or electron beam, as shown in Figure 3b. Many metallic materials such as 
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stainless and tool steels, aluminium alloys, titanium and its alloys, and nickel-based alloys can be 
manufactured by this process. 

The main differences between DED and PBF is the way that that powder is fed. In PBF, metal 
powders are uniformly spread by a rake or roller, while in DED, powders are blown out from the 
nozzle. The high precision of PBF allows for the optimisation of component design and 
manufacturing cost. For example, GE aviation have been using metal PBF machines to manufacture 
its fuel nozzles and next-generation materials, including heat-resistant ceramic matrix composites 
(CMCs) and carbon fibre blades. The fuel nozzles were five times more durable than the previous 
model and reduced the number of required parts from twenty-five to just five [21]. 

 

Figure 2. Various AM processes adapted from [7] 
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Figure 3. Schematic diagram of (a) DED [31] and (b) PBF adapted from [32] 

Another successful case study came from Arconic, where the company managed to install its 3D 
printed titanium brackets on the airframe of an Airbus A350 XWB commercial plane, which helps to 
lower the wastage of raw materials by 80% as compared to manufacturing it conventionally [33]. 
Some of the common materials which have been processed by PBF are listed in Error! Reference 
source not found.. 

Table 3. Common alloys processed by PBF 

Alloy Examples Reference 

Titanium 

Ti-6Al-4V, Ti-6.5Al-1Mo-1V-
2Zr, Ti-6.5Al-3.5Mo-1.5Zr-
0.3Si, Ti-5Al-4Mo-2Zr-2Sn-

4Cr, Ti-3Al-10V-2Fe 

[34-46] 

Intermetallics NiTi [47-50] 
Steel 316L, 17-4PH, AISI 420 [51-56] 

Nickel IN718, IN625, C263, Hastelloy 
X, K418 

[57-93] 

Aluminium Al-Si10-Mg, Al-Si12-Mg, 6061 [41, 94, 95] 
 
IN718 is the most commonly used nickel-based alloy in the aerospace industry due to its superior 

mechanical properties at elevated temperatures and has been widely used in the turbine section of 
the aeroengine [96-98]. It has the ability to withstand loading at an operating temperature close to its 
melting point of 1336°C [99]. It has a high phase stability of face-centered-cubic (FCC) nickel matrix 
and the capability to be strengthened by other alloys such as chromium and/or aluminium [100]. The 
microstructure of IN718 is referred to by ϒ (gamma), a continuous matrix phase where cobalt and 
chromium prefers to reside; ϒ’ (gamma prime), an intermetallic phase based on Ni3(Al,Ti) with a L12 
crystal structure; ϒ’' (gamma double prime), a metastable phase that is the primary strengthening 
precipitate with a body-centered tetragonal (BCT) ordered compound with a D022 crystal structure; δ 
(delta), an equilibrium phase with an orthorhombic D0a structure; Laves phase with an embrittling 
TCP phase; carbides and borides that prefer to reside on the grain boundaries [12, 101, 102]. However, 
the usage of PBF IN718 in the aeroengine has been an obstacle owing to the presence of undesirable 
phases [103] and its unconventional microstructure [73, 103, 104]. Efforts have been made to limit 
these defects through the use of heat treatment [61, 103] and hot isostatic pressing (HIP-ing) [67], but 
the results have been mixed and no significant improvements have been made on PBF IN718. 
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3. Microstructure of AM IN718 

3.1 Grain Structure 

In this review, grain structure constitutes both grain size and grain texture of the material. Unlike 
its wrought counterpart, AM IN718 display a mixture of columnar and equiaxed grains when no 
additional treatment is applied. This is due to its uneven cooling rate as the material is being built up 
layer by layer. Factors such as heat flux and thermal gradients greatly affect the growth of the grains, 
which are not discussed in this paper. Interested readers could look at the references given here [86, 
105-107]. Ahmad et al. [103] showed that AM IN718 has columnar grain growing parallel to the 
building direction. A magnified image using optical microscopy of the microstructure of AM IN718 
without any additional treatment is shown in Figure 4. 

 
Figure 4. An optical image showing the columnar grains of AM IN718, taken from [103]  

Gribbin et al. [108] took one step further and utilized electron backscatter diffraction (EBSD) to 
investigate the crystallographic structure of the material. As-built AM IN718 exhibits elongated grain 
structure with a moderate <100> fibre texture formed along the build direction, as shown in Figure 5. 
Fatigue strength of the wrought alloy outperforms the AM alloy at room temperature, suggesting the 
grain texture is likely the main competing microstructural feature affecting the fatigue performances 
at room temperature. The microstructural study findings were comparable to other studies as well 
[63, 73, 79, 109], although fatigue life is known to be generally dominated by surface characteristic 
such as surface roughness [42, 110-112] and porosity [72, 113], and thus the conclusion made by 
Gribbin et al. might be incomplete and further investigation has to be made. The fatigue response of 
the as-built AM material had a similar response to the wrought material at elevated temperature of 
500 °C. Both materials had a fatigue limit of approximately 600 MPa [108] despite AM IN718’s 
inherent weakness of high content of δ precipitates, which is known to deteriorate the fatigue 
behaviour at high temperature. This suggests that the difference in microstructural features is not 
pronounced in high temperature environments as compared to the room temperature condition.  

Another interesting finding on wrought IN718 in elevated temperature has [114] shown that the 
coarse-grain alloy has a fatigue strength significantly lower than fine-grain alloy when it is beyond 
105 cycles. It is likely that in order to maximize AM IN718 capability in high temperature applications, 
controlling the grain size of the alloy will be vital, and any grain size refinement technique for AM 
metal alloys will be welcome. 
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Figure 5. EBSD map and the pole figures showing the crystallographic texture of as-built AM IN718, 
taken from [108] 

3.2 Effects of δ phases 

IN718 is a precipitation-strengthened nickel-based superalloy with ϒ’' as the main phase 
contributing to its excellent high temperature strength [115]. However, the metastable ϒ’' phase easily 
transforms to a stable δ phase under certain thermal conditions, decreasing the volume fraction of ϒ’, 
which indirectly affects the mechanical properties of the alloy [116]. It is generally undesirable as it 
is known to decrease the fracture toughness and ductility of the material [117, 118]. δ precipitates 
usually formed during the heat treatment process or during service, mainly resides at the grain 
boundaries [119]. However, there are cases where δ precipitates have shown to display beneficial 
effects such as grain stabilization [120] and increasing stress rupture resistance [121]. An et al. [122] 
investigated the role of the δ phase for fatigue crack propagation behaviour in wrought IN718 and 
showed that the growth rate increases with increasing δ phase volume fractions. There were both 
long needle-like and granular shaped δ precipitates present in the alloy which have very different 
effects on the fatigue crack growth. When ϒ’' transforms into long needle-like δ precipitates, 
precipitates free zone formed around the δ phase, inhibiting micro cracks that are detrimental to the 
fatigue performance of the alloy. While the granular shaped δ precipitates, with low length-diameter 
ratio, act as a pin between the grain boundaries, increasing the strength of the alloy.  

AM IN718 usually has a slight variation on the volume fraction of its respective phases. In 
Gribbin’s study, the δ phase content in wrought IN718 was 1.6%± 0.5% while the as-built AM IN718 
contained 3.8%± 0.4% [108], which is rather unusual for the IN718 alloy. The increase of the δ phase 
content could be due to the heat treatment used to solution treat the alloy, leaving the precipitates 
undissolved. Yang et al. [123] compared the microstructure and mechanical performances of PBF-
fabricated IN 718 alloy in various heat treatment conditions. The results show that the morphology 
and distributions of the δ phase are key factors determining their high temperature performance. Too 
much δ phase along the grain boundaries could cause dislocation to pile up [79], causing local stress 
concentrations and premature failure. Whereas the lack of the δ phase will reduce the strength of the 
alloy at elevated temperature as it will have limited influence of the pinning effect on grain 
boundaries.  

Formation of intragranular δ precipitates was also observed in AM IN718, which is a common 
observation for IN718 alloy when the parameters of the heat treatment are not optimized [116]. 
Presence of high concentrations of niobium in the feedstock [108], combined with the inconsistent 
heat flux caused by heating and melting of the powder, is the reason why intragranular δ precipitates 
are formed. Maximizing the volume fraction of intergranular δ precipitates gives the alloy better 
ductility while a high amount of intragranular δ precipitates hardens the material [116]. The ratio 
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between intragranular and intergranular precipitates could be a critical parameter in optimizing the 
mechanical properties at elevated temperature of AM IN718 based on the past studies. 

3.3 Effects of Laves phases 

Niobium is one of the elements present in IN718 and it is highly prone to segregation and tends 
to form some undesirable phases such as the δ and the Laves phases, which is known for degrading 
tensile ductility, fatigue and creep rupture properties [124-126]. High concentration of niobium has 
been reported by other researchers which catalyse the formation of Laves phase, depleting the 
strengthening ϒ’' phase. The Laves phase provides crack initiation and propagation sites during the 
melting of the metal powder [125] and is a general observation when IN718 alloy undergoes a process 
in a high temperature environment [127] such as heat treatment [61, 128, 129] or during the powder 
deposition of the AM process [66, 109, 130].  

The presence of Laves phase generally deteriorates the ductility, ultimate tensile strength [131] 
and fatigue life of IN718 alloy [132]. Sui et al. [71] reported that AM IN718 alloy outperforms its 
wrought counterpart at low stress amplitude due to the role that the Laves phase played during the 
crack propagation stage. Whereas at high stress amplitude, almost all the Laves phase splintered into 
small fragments that caused microscopic holes or cracks to form. The S-N diagram developed by Sui 
et al. is shown in Figure 7. The existence of a micron-scaled Laves phase led to local stress 
concentrations more easily than the wrought alloy, causing it to break up at high stress amplitude. A 
schematic diagram on the fragmentation of the Laves phase is shown in Figure 8. 

 
Figure 7. High cycle properties of wrought (in purple) and AM (in green) IN718 alloy, taken from [71] 

 
Figure 8. Schematic diagram showing the breaking up of Laves phase at high amplitude [71] 

To the best of the author’s knowledge, there have been no studies made on the effect of the Laves 
phase on the properties affecting the fatigue life of AM IN718 at high temperature. It is generally 
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regarded as a “parasitic” phase that consumes the available niobium content. Studies have shown 
that by either increasing the homogenization temperature or time [115, 133] could lower the volume 
fraction of the Laves phase. Laves and carbide are generally dissolved resulting in releasing a 
considerable amount of niobium back to the ϒ’ matrix [129]. With that knowledge in mind, it is 
advisable to formulate new heat treatment standards cater for AM IN718 alloy that is entirely 
different from the AMS standards that the industry currently use. 

4. Mechanical Properties of PBF IN718 alloy 

 Table 4 present the previous work on the mechanical testing for PBF IN718 alloy. Most of the 
test data are rather similar with slight differences due to either the geometry of the test piece or the 
direction of the test piece when it’s being tested. Generally, a post-processing step such as heat 
treatment or HIP-ing gives a better tensile strength but with a slight dip in its ductility. There were 
some instances where the tensile properties were superior to the wrought ones, giving the 
manufacturer extra confidence in employing AM IN718 on its production line. Researchers such as 
Strößner et al. [104] and Gallmeyer et al. [134] have attempted to optimize the heat treatment process 
by increasing its homogenization or ageing temperature and thereby controlling the growth of the ϒ’' 
phase, and minimizing the impact of either the δ or Laves phases, resulting in an increase in the 
strength and hardness of the material. 

Data about the fatigue strength of PBF IN718 alloy was limited as it usually costs a significant 
amount of resources to be developed. Fatigue test are typically conducted on servo hydraulic test 
machines which are capable of applying large amplitude cycles over a long period of time [135]. It is 
heavily used in high-value industries such as the aerospace and biomedical sectors where safety 
standards are much stringent than in other sectors. For AM IN718 alloy to be used in a safety-critical 
application, it is vital to understand the process-structure-property relationship, and the availability 
of fatigue data gives extra confidence for manufacturers to utilize this technology. At the same time, 
several problems such as weak grain texture and detrimental residual stress [35, 108, 136] have to be 
dealt with in order to widen the adoption of AM IN718 alloy. This drives a need to introduce novel 
post-processing methods to improve the quality of AM products, which will be discussed in the next 
section. 

Table 4 Summary of mechanical properties of PBF IN718 alloy 

Condition UTS/MPa YS/MPa El/% Stress 
ratio 

Loading 
frequency
/ Hz 

Cycles 
to 
failure 

Reference 

As-built 1110 ± 11 711 ± 14 24.5 ± 1.1 - - - [77] 
 1167 ± 10 858 ± 12 21.5 ± 1.3 - - - [77] 
 845 580 21.5 ± 1.3 - - - [77] 
 1010 ± 10 737 ± 4 20 - - - [77] 
 997.8 800 20.6 ± 2.1 - - - [77] 
 1335 760 21.3 - - - [134] 
 1142.5 ± 5.5 898 ± 9 22.55 ± 3.35    [66] 

 
As-built, 

heat treated 
1451 1174 13.5 - - - [62] 

 1370 ± 25 - 22.2 ± 2 - - - [70] 
 1221 1007 16.0 - - - [75] 
 - - - 0 20 2x106 

(run 
out) 

[137] 

 1085 ± 11 816 ± 24 19.1 ± 0.7 - - - [104] 
 1010 ± 10 737 ± 4 20.6 ± 2.1 - - - [104] 
 1417 ± 4 1222 ± 26 15.9 ± 1.0 - - - [104] 
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 1387 ± 12 1186 ± 23 17.4 ± 0.4 - - - [104] 
 1325 620 28.6    SA980 [134] 
 1530 1135 10.6    SHT-1 [134] 
 1560 1240 11.6    SHT-2 [134] 
 1500 1120 14.5    DA620 [134] 
 1580 1300 9.6    DA720 [134] 
 1640 1245 16.6    SA1020 + 

A720 [134] 
 1319 ± 39 1131.5 ± 29.5 16 ± 6    [66] 

 
As-built, 
HIP-ed, 

heat treated 

1200 890 28 - - - [102] 

 1384 ± 8 1123 ± 13 21.5 ± 3.5 - - - [138] 
 

Wrought 1241 1034 10 - - - AMS 5662 
[139]  

 1610 1160 13.5    [134] 
As-cast 802 758 5 - - - AMS 5383 

[139] 

5. Suitability of Surface Enhancement Process 

Surface treatments, such as shot-peening [140], deep-rolling [141] and laser shock peening (LSP) 
[142] are commonly used to increase the usability of AM materials. For high temperature 
applications, LSP has additional advantages over other surface treatments due to its ability to impart 
deep compressive residual stresses [143], lower cold work on the surface [144] and the ability for 
grain refinements [145, 146]. Inherently, the LSP process introduces high strain rates up to 106 s-1 
which generate beneficial dislocations near the surface layer [147-149].   

Table 5 Comparison of shot peening and LSP 

 Strain rate (s-1) Cold work (%) Depth (mm) 
Typical 

roughness Ra 
(µm) 

Shot peen (X20 
Steel) 103 – 104 15 – 50 0.2 4.52 

LSP (X20 Steel) 106 – 107 5 – 7 1.2 0.98  
Shot peen (Ti-
6Al-4V) 

- 75 Surface - 

LSP (Ti-6Al-4V) - 1 – 2 Surface - 
Shot peen 
(IN718) 

- 30 Surface - 

LSP (IN718) - 3 – 6 Surface - 
 
Table 5 compares the effects of shot peening and LSP on strain rate, cold work, depth of influence 

and the typical roughness of wrought X20 steel. LSP brings about a significant lower cold work as 
compared to shot peening. Lower amount of cold work was also observed in Ti-6Al-4V titanium alloy 
[150] and IN718 nickel coupons where the cold work was approximately 2% [144]. The difference in 
cold work between the X20 Steel and IN718 alloy is mainly due to the material’s deformation 
capability. Although it is beyond the scope of this work to discuss shot peening, it is useful to bring 
it up as a comparison to LSP as it is a widely adapted technique in the industry. Shot peening involves 
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multiple steel or ceramic shots projected at a high velocity through a nozzle, striking the surface with 
force sufficient to create plastic deformation. Due to the continuous shots, most of the energy is 
expended in inducing plastic deformation, resulting in a highly cold worked surface layer [150]. On 
the other hand, LSP produces remarkably low cold work on the surface at room temperature [151], 
as shown in Figure 9. The cold work produced by shot peening comes close to 0% after a depth of 10 
× 10-3 inch, dropping from the initial 30%. This begs the question why LSP is able to drive similar or 
higher compressive residual stresses and yet produce a lower amount of cold work on the surface. A 
high degree of cold work has been found to relax rapidly at high temperature [150-152] which is 
detrimental for high temperature application in the nuclear and aerospace industry. LSP might be in 
a more advantageous position that shot peening if it’s able to withstand thermal stress relaxation in 
these industries. More investigation has to be done to find out the process-structure-property-
performance relationship, utilising advanced material characterisation method such as EBSD or 
Transmission Electron Microscopy (TEM). 

 

Figure 9. Taken from [150], residual stress distribution and cold work developed by in IN718 coupons 
using various surface enhancement process 

There are other interesting research where LSP is being used as a post-processing step for AM 
metal components such as aluminium [153], stainless steel [154] and titanium alloy [142]. Kalentics et 
al. [154, 155] have proposed using LSP to tailor the residual stresses of stainless steel samples by 
moving the baseplate back and forth from a printing machine to a LSP station. He has dubbed it as 
3D LSP, an ex-situ LSP and AM process which has shown to increase both magnitude and depth of 
compressive residual stress. The depth of compressive residual stress could reach up to 1 mm for an 
AM 316L stainless steel component subjected to the 3D LSP principle, as shown in Figure 11. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 October 2020                   doi:10.20944/preprints202010.0292.v1

https://doi.org/10.20944/preprints202010.0292.v1


 14 of 21 

 

 

Figure 11. Taken from [154], residual stress curve measured for 316L Stainless Steel for as-built (AB), 
LSP after AM (2D LSP) and ex-situ LSP on AM (3D LSP) 

6. Conclusion 

The current priority of aeroengine manufacturers is to investigate the applicability of AM 
components in their manufacturing process as it offers significant processing flexibility and potential 
cost reduction. IN718 is one of those metal alloys that is suitable for the AM process route as it allows 
manufacturers to process it in an easy and straightforward way that ensures that the material 
properties are still well preserved. With layer-wise building of components, the process produces up 
to about 5% waste, reducing the raw material wastage significantly as compared to manufacturing it 
conventionally for aeroengine components. 

Inherently, as-built AM products gives a mixture of columnar and equiaxed grains which 
directly impacts the mechanical properties of the material at room temperature. At high temperature 
usage, its effect is not as prominent, and grain size will be the crucial factor in determining its fatigue 
life. Further research should be performed to identify the effects of the various phases present in the 
alloy that affects the usability of the material. It should be possible to control the growth of ϒ’', δ and 
Laves to maximize the properties of AM IN718 alloy which is suited for its intended application. 

Numerous heat treatment procedures have been attempted by the scientific community to match 
its tensile strength with the wrought alloy. Higher homogenization temperature and longer ageing 
time is usually employed to reduce the presence of harmful phases such as the δ and Laves phases. 
Such knowledge is important for developing beneficial microstructures and material properties for 
its intended application. 

Analysis obtained from the literature suggest that the mechanical properties of PBF IN718 alloy 
were very similar to its wrought counterpart. However, there were insufficient experimental data to 
showcase the fatigue lifespan of AM IN718 alloy due to the complexity and high cost of the 
experiments. 

Surface enhancement techniques were explored in this study as it could assist AM IN718 alloy 
to perform better in high temperature applications. LSP has the potential to be a suitable technique 
as it could induced lower amount of cold work which is beneficial in a high temperature 
environment.   
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