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Abstract 19 

We systematically reviewed studies using wastewater for AMR surveillance in human 20 

populations, to determine: (i) the strength of the evidence for a wastewater-human AMR 21 

association, and (ii) methodological approaches which optimised identifying such an 22 

association, and which could be recommended as standard. We used Lin’s concordance 23 

correlation coefficient (CCC) to quantify agreement between AMR prevalence in wastewater 24 

and human compartments, and logistic regression to identify study features (e.g. sampling 25 

methods) associated with high-agreement (defined as wastewater-human AMR prevalences 26 

within ±10%). 27 

Of 8,867 records and 232 full-text methods reviewed, 29 studies were included. AMR 28 

prevalence data was extractable from 20 studies conducting phenotypic-only (n=11), 29 

genotypic-only (n=1) or combined (n=8) AMR detection. Overall wastewater-human AMR 30 

concordance was reasonably high for both phenotypic (CCC=0.81 [95% CI 0.74-0.87]) and 31 

genotypic comparisons (CCC=0.88 (95% CI 0.85-0.91)) despite diverse species-32 

phenotypes/genotypes and study design. Logistic regression was limited by inconsistent 33 

reporting of study features, and limited sample size; no significant relationships between 34 

study features and high wastewater-human AMR agreement were identified. Based on 35 

descriptive synthesis, composite/flow-proportional sampling of wastewater influent, 36 

longitudinal sampling >12 months, and time/location-matched comparisons generally had 37 

higher-agreement.  38 

Further research and clear and consistent reporting of study methods is required to confirm 39 

optimal practice. 40 
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Introduction 41 

Antimicrobial resistance (AMR) is a significant threat to global health (O’Neill, 2016) and poses 42 

major challenges in treating infectious diseases. AMR is a multi-faceted problem compounded 43 

by diverse drivers facilitating emergence and spread. AMR surveillance is therefore critical to 44 

understanding trends, monitoring interventions and developing empiric treatment 45 

guidelines, as prioritised in the World Health Organisation’s global AMR action plan (WHO, 46 

2019). Large networks dedicated to sharing continental/global AMR data have been 47 

established to meet this need, including the European Antimicrobial Resistance Surveillance 48 

Network (EARS-Net) and the Global Antimicrobial Resistance Surveillance System (GLASS). 49 

However, current surveillance methods are limited by the reliance on individual-level 50 

sampling, which is often affected by selection bias towards healthcare-associated settings 51 

(WHO, 2018). For example, both EARS-Net and GLASS focus on AMR in clinical specimens from 52 

hospitalised patients; this however does not reliably capture AMR prevalence in commensal 53 

organisms, thought to silently constitute most of the true AMR burden (Fahrenfeld and 54 

Bisceglia, 2016; Hay et al., 2018; Hendriksen et al., 2019b). Additionally, reliance on routine 55 

clinical microbiology results often restricts data collection to a limited subset of culturable 56 

species, and focuses predominantly on susceptibility phenotypes with limited genotyping. 57 

This lack of genotyping hampers the surveillance of high-risk AMR-associated clones and the 58 

horizontal transfer of AMR determinants (Tacconelli et al., 2018). 59 

 60 

Wastewater-based AMR surveillance has the potential to avoid biases in current surveillance 61 

methods by using wastewater to simultaneously sample both healthcare- and community-62 

associated populations (Newton et al., 2015). The approach has already been successful in 63 
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illicit drug monitoring (González-Mariño, Baz-Lomba et al. 2020) and pathogen (particularly 64 

enterovirus) surveillance (Asghar et al., 2014; Fernández et al., 2012), with most recent strides 65 

in the surveillance of SARS-CoV-2 (Ahmed et al., 2020), but its application to AMR surveillance 66 

has only relatively recently gained significant traction (Fahrenfeld and Bisceglia, 2016). Recent 67 

wastewater AMR studies have investigated seasonal/geographic AMR distributions (Su et al., 68 

2017), quantified global abundances of AMR genes (Hendriksen et al., 2019b) and identified 69 

associations between wastewater and clinical AMR surveillance data (Karkman et al., 2020; 70 

Pärnänen et al., 2019). However, heterogeneous study designs and methods likely contribute 71 

systematically to differences in outcomes/interpretations. The relative impact of study 72 

features such as grab sampling (i.e. taking single samples at a single timepoint) potentially 73 

collecting homogenous solids/unrepresentative samples (Reinthaler et al., 2013), interaction 74 

between snapshot/longitudinal sampling design and spatiotemporal variabilities, or sampling 75 

in the presence of unrepresentative, contaminating AMR-associated point sources are not 76 

well understood (Table 1). Difficulties in standardising AMR testing across traditional 77 

surveillance networks (Tacconelli et al., 2018) could be, for example, circumvented by using 78 

metagenomic sequencing to universally probe wastewater resistomes (Aarestrup and 79 

Woolhouse., 2020; Wright, 2007).  80 

 81 

Despite increasing research in this area, there has been no attempt to review the available 82 

data, synthesise the evidence, and assess any remaining knowledge gaps. We therefore 83 

systematically reviewed studies using wastewater for AMR surveillance in human 84 

populations, seeking to identify practices that could optimise the association between 85 

wastewater-human AMR for surveillance purposes. We specifically focussed on study design 86 
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to identify the relative potential impact of specific features on study outcomes, and to 87 

highlight any limitations and recommendations for future research. 88 

 89 

Results 90 

Literature screen 91 

Of 8,867 de-duplicated studies identified using our search strategy, full-text methods for 92 

232 relevant studies were reviewed, and based on pre-specified inclusion criteria (see 93 

Methods), 29 studies were included in the review (Fig.1 and Fig.S1). Inter-rater reliability 94 

was assessed on a subset of 701 studies and gave a Cohen kappa score of 0.76, indicating 95 

consistent screening across reviewers (Banerjee et al., 1999; Landis and Koch, 1977), and 96 

supporting screening of remaining study records by a single reviewer. Screening conflicts 97 

were observed for only 27/701 (4%) studies and were resolved by discussion.  98 

 99 

Risk of bias 100 

Three of twenty-nine studies were judged at high-risk of bias, 15 with an unclear-risk and 11 101 

at low-risk (Supplementary datasets 1 and 2). Details and rationale behind this 102 

categorisation are in Supplementary dataset 1. 103 

 104 

Summary of general characteristics 105 

Studies explicitly using wastewater for human population-level AMR surveillance made up 106 

12/29 included studies. The remaining 17 studies included relevant comparisons between 107 
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wastewater and human AMR, but were not directly set up as wastewater-based AMR 108 

surveillance studies (e.g. studies focussed on one health and transmission). Amongst the 109 

twenty-nine included studies, 72 unique countries were sampled, although most (48/72) were 110 

represented as part of a single global study (Hendriksen et al., 2019b) (Fig.2). World Bank 111 

regions covered by the studies were as follows: East Asia and Pacific (n=3 studies), Europe 112 

and Central Asia (n=16), Latin America and the Caribbean (n=4), Middle East and North Africa 113 

(n=8), North America (n=5), South Asia (n=2), Sub-Saharan Africa (n=4). World Bank income 114 

classifications showed a sampling skew towards high-income countries (high income [n=21 115 

studies]; middle income [n=10] and low income [n=3]) (Fig.S2). Three studies covered multiple 116 

regions and income classifications. Publication dates ranged from 2007-2020, with most 117 

published in the last three years (n=20). Sampling years ranged from 2004-2019, with the 118 

most common being 2011-2016 (n=17), and only three studies (Haghi et al., 2019; Pot et al., 119 

2020; Urase et al., 2020) sampling in the last three years (for full study descriptions, see 120 

Supplementary datasets 2 and 3). 121 

 122 

AMR evaluations in included studies 123 

Evaluations of AMR were undertaken using genotypic-only methods (n=6), phenotypic-only 124 

methods (n=8), or a mixed approach combining both (n=15). Genotypic-only studies 125 

employed metagenomics (n=4) and qPCR (n=2). Phenotypic-only studies employed disk-126 

diffusion (n=3), microbroth dilution (n=3), or both (n=2). Mixed approach studies combined 127 

disk-diffusion/microbroth dilution with qPCR (n=1), PCR (n=6) or single isolate whole genome 128 

sequencing (WGS) (n=8). For data synthesis and analysis across studies, relevant phenotypic 129 

data was extracted from 19 studies and genotypic data from nine studies (20 studies in total). 130 
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For nine studies there were no relevant data that could be extracted for inclusion in a 131 

combined summary; these were either where sample counts were not reported or only raw 132 

sequencing data was available which was beyond the scope of our analysis. 133 

 134 

Phenotypic wastewater-human AMR comparisons 135 

Phenotypic data from 19 studies covered twelve WHO Critically Important Antimicrobials 136 

(CIAs) for which overall resistance prevalence in wastewater and human isolates was 137 

reasonably high (CCC=0.81 [95% CI 0.74-0.87]) (Fig.3A). The median number of comparisons 138 

(i.e. AMR prevalence for a specific species-drug across both wastewater and human 139 

compartments) per study was 4 (IQR: 2-7). For any comparison, the median number of 140 

isolates analysed in humans was 130 (IQR: 50-470), and in wastewater 98 (IQR: 58-356). AMR 141 

prevalences were in high agreement (defined as wastewater AMR prevalence within ±10% of 142 

human AMR prevalence) for 59/99 (60%) comparisons (Supplementary dataset 4). Hutinel et 143 

al., 2019 contributed the most comparisons in high agreement (13/16 comparisons within-144 

study) while remaining studies contributed 1/1-6/7 each. Contribution of comparisons not in 145 

high agreement was similar across studies (1-4 each).  146 

 147 

The most common species and antibiotic class investigated was E. coli and aminoglycosides 148 

respectively. When considering discordance across the top two represented species, 29/59 149 

(49%) comparisons of AMR prevalence in wastewater and human populations for E. coli  150 

showed <5% discordance and 37/59 (63%) of comparisons ≤10% discordance, whereas 6/17 151 

(35%) of comparisons of AMR prevalence across compartments in Enterococcus spp. showed 152 
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<5% discordance and 8/17 (47%) ≤10% discordance (Fig.3A top right panel). Regarding 153 

differences between antibiotic classes, comparisons investigating cephalosporin resistance 154 

showed ≤10% discordance for 14/20 (70%) of comparisons, while for beta-lactam resistance 155 

this was only true for 3/10 (30%) (Fig.3A bottom right panel). 156 

 157 

By individual antibiotics of interest, AMR prevalence estimates (i.e. point estimate ±95% 158 

confidence intervals) in human and wastewater isolates overlapped for: (i) aminoglycosides 159 

(21/26 comparisons; Fig.S3); (ii) amoxicillin/ampicillin (6/10 comparisons; Fig.S4); (iii) beta-160 

lactam/beta-lactamase inhibitor combinations (6/11 comparisons; Fig.S5); (iv) 161 

cephalosporins (13/20 comparisons; Fig.S6); (v) ertapenem (1/1 comparison; Fig.S7); (vi) 162 

fluoroquinolones/quinolones (6/16 comparisons; Fig.S8); (vii) vancomycin (2/3 comparisons; 163 

Fig.S9); and (viii) erythromycin (4/5 comparisons; Fig.S10). Overlap was also seen specifically 164 

for extended-spectrum beta-lactamase (ESBL)-producing isolates (2/3 comparisons) and 165 

methicillin-resistant Staphylococcus aureus (MRSA) (1/1 comparison; both Fig.S11). Non-166 

overlapping estimates were mostly associated with five studies (Zarfel et al., 2010; Huijbers 167 

et al., 2020; Reinthaler et al., 2013; Saifi et al., 2009; Zaheer et al., 2020). 168 

 169 

Genotypic wastewater-human AMR comparisons  170 

For extracted genotypic data (single isolate WGS and PCR), prevalence of AMR genes in 171 

wastewater isolates was highly correlated with prevalence in human isolates (CCC=0.88 (95% 172 

CI 0.85-0.91)) (Fig.3B), with high agreement (wastewater AMR prevalence within ±10% of 173 

human AMR prevalence) in 169/228 (74%) comparisons. The median number of comparisons 174 
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(i.e. AMR prevalence for a specific species-AMR gene combination across both wastewater 175 

and human compartments) per study was 12 (IQR: 8-44). For any comparison, the median 176 

number of isolates analysed in humans was 94 (IQR: 25-437), and in wastewater 91 (IQR: 30-177 

388). Most high agreement comparisons were observed in Raven et al., 2019 (71/169), 178 

followed by Adator et al., 2020b (33/169) and Zaheer et al., 2020 (19/169). Studies 179 

contributing the most comparisons not in high agreement were Pot et al., 2020 (17/59) and 180 

Adator et al., 2020b (12/59), while remaining studies contributed 1-8 each. 181 

 182 

The most common species and AMR gene family investigated was E. coli and CTX-M 183 

respectively. When considering discordance across species, 95/145 (66%) comparisons of 184 

AMR prevalence in wastewater and human populations for E. coli showed <5% discordance 185 

and 120/145 (83%) of comparisons ≤10% discordance, while comparisons in Enterococcus 186 

spp. showed 17/44 (39%) <5% discordance and 33/44 (74%) ≤10% discordance. Enterobacter 187 

cloacae and Campylobacter spp. comparisons shared more even distributions of discordance 188 

levels (Fig.3B top right panel). For AMR gene family, comparisons of most gene families across 189 

compartments were in high agreement (i.e. ≤10% discordance) such as for CTX-M 20/28 190 

(71%), dfr 18/20 (90%) and aad 14/16 (88%) (Fig.3B bottom right panel).  191 

 192 

For a subset of the eight most common genes conferring resistance to WHO CIA antibiotics 193 

represented across studies, 95% CI around prevalence estimates in both compartments 194 

overlapped as follows: (i) aac (12/15 comparisons; Fig.S12 [displayed for individual allelic 195 

variants]); (ii) arr (1/2 comparisons; Fig.S13); (iii) CTX-M 22/26 comparisons; Fig.S14); (iv) erm 196 
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(4/6 comparisons; Fig.S15); (v) fos (2/2 comparisons; Fig.S16); (vi) oxa (8/8 comparisons; 197 

Fig.S17); (vii) van (3/3 comparisons; Fig.S18) and (viii) qnr (3/4 comparisons; Fig.S19).  198 

 199 

Study features potentially associated with higher wastewater-human AMR agreement.  200 

If more than 70% of wastewater-human AMR prevalence comparisons conducted were in 201 

high agreement, studies were classed as high agreement overall; this was the case for 6/19 202 

studies (32%) with phenotypic data and 4/9 (44%) studies with genotypic data. Eight studies 203 

had both phenotypic and genotypic data available but only 1/8 (13%) showed overall high 204 

agreement for both approaches (Adator et al., 2020b); remaining 7/8 either showed high 205 

agreement for only one approach or no high agreement at all. Total comparisons across 206 

approaches were used to classify studies for logistic regression. The strongest association was 207 

with the type of human sample analysed (p=0.23, Table S20); the limited number of eligible 208 

studies, and the substantial heterogeneity of combinations of approaches deployed across 209 

studies, meant power to detect independent associations was low. 210 

 211 

We therefore synthesised study features descriptively, also assigning studies to moderate 212 

(30-70%) and low agreement categories (<30%); keeping phenotypic- and genotypic-213 

approaches separate. Sampling of influent, either alone or in conjunction with effluent, 214 

appeared most consistently associated with moderate-/high-agreement in estimates of AMR 215 

prevalence between wastewater and human compartments (Fig.4-Table S22). Most studies 216 

with extractable data conducted longitudinal sampling (24/28; 1 conducted both); this 217 

approach occurred in all three agreement categories (Fig.4A). The three studies undertaking 218 
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snapshot (i.e. single-timepoint) sampling all had high-agreement (n=2) and moderate-219 

agreement (n=1). For longitudinal studies, the timeframe of sampling was potentially 220 

relevant: Of the seven low-agreement longitudinal studies, 6/7 sampled for ≤12 months and 221 

only 1/7 for >12 months. Conversely, 14/17 medium/high-agreement longitudinal studies 222 

sampled for >12 months, and only 3/17 for <6 months. (Fig.4B). Moderate-/high-agreement 223 

studies deployed several wastewater sampling methods, with composite, grab and flow-224 

proportional sampling showing no clear relationship with agreement (Fig.4C). Of note, 225 

sampling point or method was not reported by six studies.  Most studies performed 226 

comparisons on wastewater at least in part derived from the human population sampled (i.e. 227 

direct comparisons, 19/28), while five conducted indirect comparisons, one conducted both 228 

and four were unclear/unreported. Most moderate-/high-agreement studies conducted 229 

direct comparisons (Fig.4D). Other study features showed even more variation across 230 

agreement categories but a smaller number of WwTWs sampled was potentially more 231 

associated to moderate-/high-agreement studies (Fig.S21 – Table S22). 232 

 233 

Studies without extractable data 234 

The nine studies without extractable data that could be synthesised are summarised below 235 

in terms of their overall ability to detect wastewater-human AMR associations based on 236 

reported conclusions. Full descriptive summaries including study details and specific findings 237 

are in supplementary dataset 5.  238 

 239 

Targeted qPCR-based studies 240 
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Two studies performed direct AMR gene detection using qPCR of either 229 (Pärnänen et al., 241 

2019) or eight AMR genes (Colomer-Lluch et al., 2014); both reported a relationship between 242 

wastewater AMR and national AMR data.  243 

 244 

Metagenomic-based studies 245 

Four studies employed metagenomics to identify potential wastewater-human AMR 246 

associations. Two of these studies appeared to demonstrate an association while the other 247 

two were inconclusive.  248 

 249 

Mixed-approach and phenotypic-only studies 250 

Two studies used mixed approaches combining phenotypic AST with qPCR (2-targets) (Meir-251 

Gruber et al., 2016) and single isolate WGS (Gouliouris et al., 2019); one study used a 252 

phenotypic approach only (YoungKeun et al., 2015). All three studies appeared to show a 253 

wastewater-human AMR association.  254 

 255 

Discussion 256 

From our review and synthesis of the available data, we found characterisation of AMR in 257 

wastewater shows promise in reflecting AMR in human populations, irrespective of diverse 258 

target species, target resistances and study locations, although associations may be stronger 259 

for some species and AMR mechanisms than others. The strength of this relationship varied 260 

across studies and was likely influenced by study design, setting, spatiotemporal sampling 261 
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strategies, and testing approach (i.e. sample preparation, DNA extraction, target 262 

species/resistances and genotypic/phenotypic); the heterogeneity of methodological 263 

approaches and lack of clear reporting of key study features made any quantitative 264 

synthesis very difficult. 265 

 266 

Our estimates of concordance (Fig.3A, 3B) supporting a wastewater-human AMR correlation 267 

are in line with estimates in individual studies (Huijbers et al., 2020; Hutinel et al., 2019; 268 

Karkman et al., 2020). In particular, Huijbers et al., 2020 reported coefficients of 269 

determination as 0.62-0.72 for individual antibiotics and 0.85 when data was combined for 270 

four antibiotic classes – similar to our findings of 0.81 and 0.88 for class-unrestricted 271 

phenotypic and genotypic data respectively. Although data was too limited to robustly 272 

estimate Lin’s CCC for individual species and AMR, variability in the level of discordance of 273 

wastewater-human comparisons (Fig.3A, 3B – right panels) and overlap in 95% CI around 274 

point estimates (Fig.S3-19) is likely attributed in part to specific species and AMR that work 275 

best for wastewater-based AMR surveillance, which may vary with setting or over time, and 276 

those where the approach consistently works less well for. This phenomenon was also 277 

reported in several studies without extractable prevalence data where specific AMR 278 

classes/genes exhibited notably higher/lower wastewater-human agreement. The 279 

performance increase (non-significant) of genotypic comparisons seen in both Lin’s CCC and 280 

in the reduced proportion of strongly discordant comparisons (Fig.3B right panels) may 281 

reflect the relatively species- and mechanism-agnostic nature of genotypic AMR detection 282 

methods (mostly WGS in extracted data) over phenotypic methods which may be more 283 

susceptible to variations from differing growth media/conditions and interpretation of 284 
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resistance breakpoints. Problems with accurately characterising AMR prevalence when only 285 

small numbers of isolates are analysed (median of 94-130 for human and 91-98 for 286 

wastewater compartments across pheno-/genotypic comparisons here) is also a concern 287 

highlighted by previous researchers, particularly when few resistant isolates are available 288 

(Huijbers et al., 2020).  289 

 290 

Although not a focus in our review, genotypic profiling potentially affords some additional 291 

advantages over phenotypic analyses, and is relevant to confirming that genetic 292 

mechanisms underpinning phenotypes are also similar. Genomic approaches, such as 293 

sequencing of isolates or whole sample metagenomics, enable a more agnostic approach to 294 

be adopted than for qPCR, in that analyses do not need to be restricted to a subset of 295 

predefined genes/gene variants. Genomic data and profiles can also be more readily shared 296 

with the wider community to allow for cross-study comparisons and data synthesis; as 297 

demonstrated by Karkman et al. Genomics approaches also allow for the evaluation of 298 

genetic relatedness and quantitation of either isolates or microbial populations across 299 

compartments (e.g. through phylogenetics, taxonomic/strain-level profiling and strain-300 

based comparisons using metagenomes). Genomic approaches may be higher-resolution 301 

and more flexible, but at a higher resource cost; sensitivity for the detection of AMR genes 302 

is also dependent on sequencing depth, and accurately associating specific AMR gene 303 

markers with strains or species in short-read based metagenomes remains difficult (Gweon 304 

et al., 2019).     305 

 306 
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Our review highlights the need for clear guidance on performing these studies in a more 307 

standardised way, with a view to consolidating best-practice approaches in a workflow 308 

whilst enabling some flexibility to account for differences in any given setting. WwTW 309 

influent is likely the most population-representative wastewater sample for AMR 310 

surveillance using either phenotypic or genotypic approaches. This is not unexpected, as 311 

previous studies have described transformation of microbial and AMR gene composition 312 

during treatment (Tong et al., 2019; Zhang et al., 2020). Transformed samples may remain 313 

useful for wastewater-based AMR surveillance, potentially dependent on treatment 314 

process; however differing levels of treatment have been shown to select for different 315 

species/AMR determinants (Tong et al., 2019). Additionally, a temporospatial overlap of 316 

wastewater sampled and the target surveillance population is likely helpful; a feature of the 317 

majority of moderate-/high-agreement studies as well as sampling fewer WwTWs which may 318 

also relate to the closeness of the populations compared. 319 

 320 

Composite sampling also seems sensible as wastewater composition changes significantly 321 

over short timescales (Guo et al., 2019) and individual grab samples may be “flooded” by 322 

homogenous solid material (Reinthaler et al., 2013). However, grab sampling is convenient 323 

and avoids significant autosampler-associated workload and capital costs, and was the most 324 

common sampling method used in the studies analysed. Further research is needed into 325 

characterising how effectively single timepoint grab samples versus composite/proportional 326 

samples reflect temporal AMR changes. 327 

 328 
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Longitudinal sampling with timeframes over 12 months was most common in both 329 

phenotypic and genotypic high agreement studies, consistent with data from two studies 330 

which could not be directly synthesised (Hendriksen et al., 2019a; Pignato et al., 2010). In 331 

these studies, both used two-weekly sampling intervals over 12- and 3-month timeframes 332 

respectively. The former observed an association between ampicillin-resistant wastewater 333 

and contemporaneous clinical isolates, whereas the latter found no relationship between 334 

contemporaneous public health surveillance and wastewater metagenomic read 335 

abundances.  336 

 337 

Future studies should clearly report sewer inputs, including any unique AMR-associated 338 

inputs (e.g. hospitals, agricultural sources) that may obscure the detection of a wastewater-339 

human AMR association (Fahrenfeld and Bisceglia, 2016). The importance of specific AMR-340 

associated inputs is likely linked to whether the AMR mechanisms under evaluation are 341 

associated with that specific source, or already widely disseminated in the community. For 342 

example, one study (Raven et al., 2019) sampled WwTWs with and without hospital input, 343 

and found the most clinically-prevalent E. coli ESBL gene was ubiquitous in all WwTWs, 344 

indicating prior widespread dissemination. Another study (Jakobsen et al., 2008) focussing 345 

on E. coli gentamicin resistance in hospital effluent, receiving WwTW influent and domestic-346 

only wastewater, found significantly lower prevalence in domestic-only wastewater 347 

compared to hospital effluent and WwTW influent which shared similar prevalence, 348 

indicating that the presence of any hospital-associated wastewater in influent would 349 

confound any community-based estimates. Additional metadata such as sample storage 350 
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conditions or freeze/thaw cycles are also pertinent to interpretation as investigated by 351 

Poulsen et al., who similarly suggested detailed reporting of these features.   352 

 353 

Our study has several limitations. We were not resourced to conduct duplicate screening by 354 

two reviewers; however, the risk of single reviewer bias was mitigated by validating the 355 

screening strategy using three reviewers on a subset of records. We excluded non-English 356 

publications, potentially missing some relevant studies. Studies were highly diverse in 357 

reported features, design and outcomes, making a comprehensive synthesis difficult. In 358 

particular, many features were poorly characterised and could not be explored in our 359 

analyses. For our study feature analysis we focused a priori on features that optimised the 360 

identification of an association between wastewater and human AMR prevalence, however 361 

it may be that in some circumstances there is genuinely no such association. In many 362 

settings globally, established wastewater infrastructures are not available, and an analysis 363 

of, for example, WwTW influent may not be feasible. 364 

 365 

Conclusion 366 

In conclusion our review suggests that overall, wastewater-based surveillance of population-367 

level AMR appears relatively robust, despite high diversity in study design, methods and 368 

metadata. However, based on limited available data, we would recommend that where 369 

feasible, composite sampling of influent with longitudinal timeframe >12 months, and 370 

contemporaneous sampling of wastewater and human samples that are directly associated 371 

(i.e. the human population sampled contributes to the wastewater sampled) are used to 372 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2021                   doi:10.20944/preprints202010.0267.v2

https://doi.org/10.20944/preprints202010.0267.v2


generate more robust data to better evaluate the strengths and limitations of this approach 373 

for surveillance purposes. Clear reporting of study methods and features are essential, and 374 

this will facilitate the development of optimal practice guidelines for this emerging 375 

surveillance tool. 376 

 377 

Materials and Methods 378 

For this systematic review, we adopted the “Population Intervention Comparator Outcome” 379 

(PICO) framework using the following domains: Wastewater, antimicrobial resistance, 380 

bacteria and public health surveillance/methods. A PRISMA checklist is included in 381 

(Supplementary dataset 6), and the complete PROSPERO protocol is available at: 382 

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019134946. 383 

 384 

Literature search 385 

The search string was developed through iterative preliminary searches in consultation with 386 

a librarian experienced with systematic reviews. Full search strings adapted for each database 387 

are presented in (Supplementary dataset 7). Searches were conducted on 01/02/2019 in: 388 

MEDLINE, EMBASE, Global Health, CAB Abstracts, Scopus and Web of Science Core Collection. 389 

Searches were updated on 09/01/2021 using identical search strings. Results were limited to 390 

the English language and de-duplicated.  391 

 392 

Eligibility criteria 393 
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Study titles/abstracts were screened with a series of questions (see Fig.S1) to determine if 394 

the study was: (i) primary research, (ii) collected human-associated wastewater, (iii) reported 395 

AMR prevalence, and (iv) performed a comparison between the wastewater dataset and 396 

another human-associated dataset. Studies explicitly performing wastewater-based 397 

surveillance of human AMR were included using parallel criteria. If it was unclear whether a 398 

study met criteria based on title and abstract alone, the study was passed onto the next stage. 399 

For studies that passed the initial screen, full-text methods were reviewed and studies 400 

included if they: (i) analysed wastewater samples/data from a wastewater treatment facility, 401 

and (ii) represented a human population through their non-wastewater dataset; or (iii) 402 

conducted a self-defined wastewater-based AMR surveillance study as the study aim. 403 

 404 

Study selection and data extraction 405 

Three reviewers (KKC, LB, NSi) independently screened a random subset of 8% of total 406 

retrieved study records to estimate Cohen’s Kappa score (Cohen, 1960) as a measure of inter-407 

reviewer reliability beyond chance. As this score supported sufficiently consistent screening 408 

across reviewers, the remaining records were screened by a single reviewer (KKC). 409 

 410 

For included records, data were extracted by two reviewers (KKC, LB) using a pre-tested 411 

data extraction form piloted on five random included records (Supplementary dataset 8), 412 

including (non-exhaustive): study design (wastewater sampling strategy/site/methods, AMR 413 

detection methods, human sample type, sample sizes) and outcomes (AMR prevalence,  414 

wastewater-human comparison results). Raw resistance prevalence data (total and resistant 415 
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isolate counts) were extracted if available. Phenotypic data extraction was limited to 416 

antibiotics on the WHO critically important antimicrobials (CIAs) list (AGISAR, 2018) to 417 

maintain clinical relevance. Genotypic data was extracted in full; individual gene analysis 418 

was however only undertaken for a subset of AMR genes that conferred resistance to CIAs 419 

and were characterised in multiple studies. Any statistical methods or modelling approaches 420 

were also recorded.  421 

 422 

Risk of bias assessment 423 

Risk of bias was assessed independently by two reviewers (KKC, LB) using a qualitative 424 

approach based on the Cochrane risk of bias tool (Higgins et al., 2011) addressing five bias 425 

domains (Supplementary dataset 1); the modified tool focused on systematic differences at 426 

the study level as outcomes reported were highly diverse. Studies at “high-risk” of bias were 427 

those with inconsistencies in sampling, AMR detection methods, measurement and 428 

reporting of outcomes; “low-risk” studies broadly maintained consistency across 429 

comparators. If information present was insufficient to assess risk of bias the classification 430 

“unclear” was assigned. Discrepancies were resolved by discussion until consensus was met, 431 

and an overall qualitative measure (high, low and unclear) was assigned to each study; 432 

primarily based on the majority of domain judgements (details in Supplementary dataset 1). 433 

 434 

Data synthesis and analysis 435 

For extracted resistance prevalence data, we used Lin’s concordance correlation coefficient 436 

(CCC – R package DescTools) with 95% confidence intervals (CIs) to quantify the agreement 437 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2021                   doi:10.20944/preprints202010.0267.v2

https://doi.org/10.20944/preprints202010.0267.v2


between the proportion of resistant wastewater isolates and the proportion of resistant 438 

human isolates, with the latter representing the reference standard. As perfect concordance 439 

is unrealistic, we arbitrarily defined high agreement to be a ±10% difference in resistance 440 

prevalence between wastewater and human compartments. Since Lin’s CCC does not reflect 441 

error in resistance proportion estimates, we also plotted and compared resistance 442 

prevalence and Clopper-Pearson 95% CIs by study and antibiotic or AMR gene.  443 

 444 

As we aimed to identify study approaches that could maximise the association  between 445 

wastewater-human AMR for surveillance purposes, we investigated study features 446 

associated with “high agreement”, defined as >70% of the comparisons of species-447 

phenotype or species-genotype AMR prevalence estimates in wastewater and human 448 

compartments within-study being within ±10% of each other. As study feature reporting 449 

was highly inconsistent, we only considered features that were broadly reported across 450 

studies. We then used logistic regression to identify if any study features were associated 451 

with this high agreement classification in STATA/IC v.16.1 (StataCorp, College Station, USA).  452 

 453 

In addition, given the heterogeneity of study features, their inconsistent reporting across 454 

studies, and the small number of studies limiting power to detect associations, we also 455 

descriptively synthesised features potentially associated with wastewater-human AMR 456 

agreement, using a modified version of the harvest plot, specifically designed to help 457 

assimilate findings where a quantitative synthesis is not feasible (Ogilvie et al., 2008). For 458 

this, in addition to the high agreement category specified above, we also assigned studies to 459 
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moderate (30-70%) and low agreement categories (<30%); keeping phenotypic- and 460 

genotypic-approaches separate.461 
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Tables and figures 462 

Table 1: Potential sources of variation in wastewater-based AMR surveillance studies  463 

Aspects for 

consideration 

Examples Key variabilities References 

Wastewater 
sampling point 

• WwTW influent/during 
treatment/effluent 

• Hospital effluent  

• Domestic 
sewers/manholes  

• Informal sewer 
systems (LMICs)  

• Treatment processes can transform 
microbial and AMR composition  

• Focussed sampling may only represent 
specific sub-populations* 

• Informal sewer systems (often with low 
flow) may be susceptible to homogeneity   

(Fahrenfeld and 
Bisceglia, 2016; 
Jakobsen et al., 
2008; Larson et 
al., 2020; Tong et 
al., 2019; Zhang 
et al., 2020) 

Wastewater 
sampling 
method 

• Grab (single sample) 

• Composites 

• Proportional sampling 
(flow/time/volume) 

• Single grab samples can be flooded by 
homogenous solids  

• Wastewater composition can vary 
significantly over short time periods 

• Composite and proportional samples will 
capture average composition but may be 
unable to discriminate peak values during 
sampling period* 

(Guo et al., 2019; 
Michael-kordatou 
et al., 2020;  
Reinthaler et al., 
2013) 

WwTW 
sewershed 
inputs 

• Hospitals 

• Other healthcare 
facilities (e.g. 
carehomes) 

• Agriculture 

• Industry 

• Effluent from AMR-associated sources may 
obscure detection of true population-level 
trends (e.g. elevated levels of unique AMR, 
co-selection of plasmids, non-human 
associated AMR)* 

(Fahrenfeld and 
Bisceglia, 2016; 
Jakobsen et al., 
2008; Larson et 
al., 2020) 

WwTW 
properties and 
sampling 
conditions 

• Size of WwTW 
sewershed  

• Treatment methods  

• Infrastructure/design 

• Weather (seasons, 
rainfall, temperature) 

• Flow rate 

• Long conveyance times from population to 
sampling point may impact composition 
due to transformation in unique 
environment of the sewer system 
(anaerobic, temperature, biofilms) 

• When sampling treated wastewater, 
differing levels of treatment can selectively 
transform AMR and microbial composition 

• Presence of pre-treatment infrastructure 
(e.g. pumping stations, balancing tanks) 
may also play a role in transforming 
wastewater 

• Heavy rainfall may dilute wastewater in 
combined sewer systems via rainwater 
runoff and by infiltration of groundwater 
(dislodged biofilms, infiltration of 
freshwater microorganisms) 

• Combined sewer overflows will impact 
composition of post-treatment samples 
collected during events 

• Flow rate is associated to hydraulic 
retention time and the level of WwTW 
treatment - impacting treated samples 

(Fahrenfeld and 
Bisceglia; 
Pehrsson et al., 
2016; Shanks et 
al., 2013; Tong et 
al., 2019) 
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Aspects for 

consideration 

Examples Key variabilities References 

Wastewater 
processing 
methods 

• Filtration 

• Storage conditions 

• Addition of sodium 
thiosulfate (chlorine 
neutraliser) 

• Freeze-thaw cycles 

• DNA extraction 
methods 

• Different wastewater processing methods 
may selectively affect recovery yields of 
specific species* 

• Multiple freeze-thaw cycles shown to select 
for Firmicutes, Actinobacteria, and 
eukaryotic microorganisms 

• Use of different metagenomic DNA 
extraction kits and procedures has been 
shown to modulate inferred microbial 
composition* 

(Ahmed et al., 
2020; Knudsen et 
al., 2016; 
Michael-kordatou 
et al., 2020; 
Poulsen et al., 
2021) 

AMR detection 
method 

• Phenotypic culture-
based (selective 
media, disk-diffusion, 
microbroth dilution) 

• Genotypic culture-
based (WGS, PCR, 
qPCR) 

• Direct-from-sample 
genotypic (qPCR, 
metagenomics) 
 

• Culture-based methods may be subject to 
variations from phenotyping method and 
breakpoint selection 

• Methods based on culturing isolates may 
only capture a fraction of the diversity 
present even with detailed sampling 

• Targeted genomic approaches are 
restricted to a subset of predefined 
genes/gene variants 

• Bioinformatic deconvolution can be subject 
to variation based on 
tools/databases/references utilised – 
especially for short-reads and plasmids 

(Davies, 2019; 
Davies et al., 
2020; Lal Gupta 
et al., 2020;  
Shaw et al., 2021) 

*Also recently studied as sources of variation in SARS-CoV-2 wastewater-based epidemiology and 464 

likely relevant for AMR surveillance 465 
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 467 

 468 

 469 

 470 

 471 

 472 
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Figure 2: Geographic distribution of wastewater sampling and test approach of included studies 473 

Centroids of countries sampled by included studies are plotted with colours and shapes according to 474 

citation and test approach respectively. Non-Hendriksen (GSSP-global sewage surveillance project) 475 

studies are plotted with jitter around the centroid for the map focussing on Europe. AST=antimicrobial 476 

susceptibility testing 477 

Figure 2: Geographic distribution of wastewater sampling and test approach of included studies  

Centroids of countries sampled by included studies are plotted with colours and shapes according to 

citation and test approach respectively. Non-Hendriksen (GSSP-global sewage surveillance project) 

studies are plotted with jitter around the centroid for the map focussing on Europe.   
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Figure 3: AMR in wastewater isolates and human isolates for phenotypic (A) and genotypic (B) 478 

comparisons.  479 

Left: Concordance plot of AMR prevalence in wastewater and human isolates stratified by AMR 480 

detection approach (i.e. phenotypic versus genotypic approaches). Each point represents a single 481 

wastewater-human comparison conducted and is coloured by bacterial species tested and human 482 

sample type used. Lin’s concordance coefficient (CCC) is labelled with 95% confidence intervals. 483 

Unbroken line of y=x is plotted as perfect concordance between wastewater and human resistance. 484 

Dashed lines of y=x+0.1 and y=x-0.1 represent high agreement, i.e. ±10% from perfect concordance 485 

respectively. Right: Grouping of comparisons from concordance plot by level of discordance into 486 

categories for species and antibiotic class or AMR gene family.  487 
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Figure 4: Study design features split by study-level agreement and wastewater sampling point. 488 

Modified harvest plot of most widely reported study features (A, B, C, D) in relation to wastewater 489 

sampling point (horizontal facet) and overall study-level agreement (vertical facet). Study features are 490 

coloured and bar height relates to number of studies with the feature. 491 

 492 

 493 

 494 

Figure 4: Study design features split by study-level agreement and wastewater sampling point. 1 

Modified harvest plot of most widely reported study features (A, B, C, D) in relation to wastewater 2 

sampling point (vertical facet) and overall study agreement (horizontal facet). Study features are 3 

coloured and bar height relates to number of studies with the feature.  4 
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