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Abstract: 14 

Rapid assessment of maize yields in smallholder farming system is important to understand its spatial 15 

and temporal variability and for timely agronomic decision-support. Imageries acquired with unmanned 16 

air vehicles (UAV) offer opportunity to assess agronomic variables at field scale, however, it is not clear if 17 

this can be translated into reliable yield assessment on smallholder farms where field conditions, maize 18 

genotypes, and management practices vary within short distances. This study was conducted to assess 19 

the predictability of maize grain yield using UAV-derived vegetation indices (VI), with(out) biophysical 20 

variables, in smallholder farms. High-resolution images were acquired with UAV-borne multispectral 21 

sensor at 4 and 8 weeks after sowing (WAS) on 31 farmers’ managed fields (FMFs) and 12 nearby 22 

Nutrient Omission Trials (NOT), all distributed across 5 locations within the core maize region of Nigeria. 23 

The NOTs included non-fertilized and fertilized plots (with and without micronutrients), sown with open 24 

pollinated or hybrid maize genotypes. Acquired multispectral images were post-processed into several 25 

three (s) vegetation indices (VIs), normalized difference vegetation index (NDVI), normalized difference 26 

red-edge (NDRE), green-normalized difference vegetation index (GNDVI). Biophysical variables, plant 27 

height (Ht) and percent canopy cover (CC), were measured with the georeferenced plot locations 28 

recorded. In the NOTs, the nutrient status, not genotype, influenced the grain yield variability and 29 

outcome. The maximum grain yield observed in NOTs was 9.3 tha-1, compared to 5.4 tha-1 in FMF. 30 

Without accounting for between- and within-field variations, there was no relationship between UAV-31 

derived VIs and grain yield at 4WAS (r<0.02, P>0.1), but significant correlations were observed at 8WAS 32 

(r≤0.3; p<0.001). Ht was positively correlated with grain yield at 4WAS (r=0.5, R2=0.25, p<0.001), and 33 

more strongly at 8WAS (r=0.7, R2=0.55, p<0.001), while relationship between CC and yield was only 34 

significant at 8WAS. By accounting for within- and between-field variations in NOTs and FMF 35 

(separately) through linear mixed effects modeling, predictability of grain yield from UAV-derived VIs 36 

was generally (R2≤0.24), however, the inclusion of ground-measured biophysical variable (mainly Ht) 37 

improved the explained yield variability (R2 ≥0.62, RMSEP≤0.35) in NOTs but not in FMF. We conclude 38 

that yield prediction with UAV-acquired imageries (before harvest) is more reliable under controlled 39 

experimental conditions (NOTs), compared to actual farmer managed fields where various confounding 40 

agronomic factors can amplify noise-signal ratio.  41 
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Introduction 44 

Assessment of crop yield at scale is needed to quantify and address productivity gaps (Burke and Lobell, 45 

2017; Titonnell et al., 2005), yet associated costs are limiting for robust sampling at scale. Hence, the 46 

development of appropriate technologies and methods that can provide leverage for quick and non-47 

destructive data collection remains a priority. The emergence and evolution of remote-sensing 48 

technologies for the acquisition and processing of remotely-sensed proxy data is potentially valuable for 49 

the assessment of yield or other agronomic variables at various scales. However, this is limited by 50 

associated costs and availability of quality images for in-season and out-of-season applications. 51 

Smallholder farming systems of sub-Saharan Africa (SSA) are often characterized by fragmented 52 

farmlands and differentiated management practices (Herbert, 2005; Giller et al., 2011; Onuk et al., 2015; 53 

Vanlauwe, et al., 2015). Most landscapes are complex mosaics with diffuse field boundaries and trees. 54 

Therefore, imagery of the landscape needs to have sufficient spatial and temporal resolution to mask 55 

out artefacts of vegetation or undesired features. Spatially-explicit data acquired over farming 56 

landscapes can improve the understanding of the variability and dynamics of agronomic processes and 57 

variables, especially in smallholder cropping systems where changes may be more frequent at smaller 58 

scales. Quite often, these changes are influenced by management preferences of the farmers whose 59 

decisions are mostly driven by various external factors, including accessibility and affordability of inputs 60 

(Nagy and Edun, 2002; Olarinde et al., 2007).  At the minimum, smallholder farming landscapes are 61 

defined by different varieties sown at different with different soil nutrient application or status. 62 

Consequently, smallholder farming landscapes are often characterized as mosaic(s) of individual fields 63 

which have contrasting vegetation structures or types within a very small area (often, within tens of 64 

meters). It is uncertain if and how such complexities can be harnessed to optimize yields, by rapidly 65 

assessing in-season variability and diagnose within-field constraints such as nutrient limitations.  66 

The recent advances in satellite-based remote-sensing of global land-cover coincides with the 67 

emergence of Unmanned aerial/air vehicles (UAVs) for crop monitoring and yield assessment, therefore 68 

adoption of UAV is expected to spread across large-scale mono-cropped and smallholder multi-cropped 69 

farming systems (Efron, 2015; Hall, 2016; Yang, 2017). UAVs were initially developed for military use but 70 

have become recognized as a tool to acquire high-resolution images that can be [post]-processed and 71 

analyzed to understand spatially varying agronomic factors at field scale. Within the past five years, 72 

several researchers have reported on the applicability of UAV for monitoring agronomic variables, (e.g., 73 

Benincasa et al., 2017, Yang et al., 2017; Zhang et al., 2014) in different cropping systems and across 74 

diverse geographies (Hall, 2016; Song, 2016; Nebiker et al., 2016, Salami et al., 2014;). Many of these 75 

variables are considered as potential proxies for yield estimation (Hall, 2016; Song, 2016; Nebiker et al., 76 

2016), especially at the plot and field level (typically up to 1000ha). There are several existing methods 77 

for estimating crop yields with remote-sensing. A popular approach is to relate measured location-78 

specific yield to vegetation indices derived from RGB, multi-spectral, or hyper spectral camera sensors. 79 

Vegetation indices respond often provide strong expression of the ground cover and chlorophyll content 80 

of green material (Tucker, 1979; Huete et al., 2002). Many vegetation indices (VIs) have been developed, 81 

with the most common being the normalized difference vegetation index – NDVI (Hall, 2016; 82 

Haghighattalab et al., 2015; Maresma et al., 2016; Vega et al., 2015; Yang, et al., 2017). Based on varied 83 

relationships between different reflectance spectral bands, other relevant VIs have been applied in 84 

diverse agricultural production systems. These include the normalized difference red-edge (NDRE), 85 

green normalized difference vegetation index (GNDVI), green canopy vegetation index (GCVI), red 86 
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vegetation index (RVI), and red-edge canopy index (RECI) and many others (Gitelson et al., 2011; Nguy-87 

Robertson et al., 2012). Since these VIs represent spectral (and to a lesser extent, structural) 88 

characteristics of the vegetation, they are potential proxies for rapid assessment of yield and yield 89 

variability. Further, when these VIs are derived from spatially-explicit remotely-sensed imageries, they 90 

can provide very useful understanding of yield variability, at varying spatial scales. The diagnosis of 91 

nutrient constraints and crop yield differences between fields/plots with the use of individual VIs have 92 

been promising e.g. (Benincasa et al., 2017; Wahab et al., 2018), and researchers have proposed that 93 

combination of VIs can provide additive sensitivity effect and improve the detectability of nuanced 94 

vegetational characteristics to improve the assessment of variations in agronomic parameters, including 95 

yield (e.g. Gitelson et al., 2011; Nguy-Robertson  et al., 2012). This is because single VIs can be 96 

constrained by vegetation structure and composition which may be undetectable at specific 97 

wavelengths of the electromagnetic spectrum. For instance, greenness of plants grown under adequate 98 

nutrient conditions has been reported to compromise the accuracy of the remotely-sensed NDVI by 99 

multispectral sensor due to saturation within the green spectral band (Isla et al., 2011; Gu et al., 2013; 100 

Maresma et al. 2016). This type of limitation can be avoided by using other VIs which relies on spectral 101 

information from other reflectance bands within the electromagnetic spectrum. 102 

While agronomic applications of UAVs are fast evolving (Yang et al., 2017), there are limitations. For 103 

instance, Watanabe et al. (2017) indicated that sorghum plant height was overestimated by UAV, and 104 

that high fertilization affected the relationship between UAV and ground-based measurements.  Schut 105 

et al. (2018) reported that vegetation indices did not capture all management and biophysical factors 106 

that can aid the accurate assessment of yield within fields. Yet, new generation UAV-borne sensors may 107 

offer improved assessment accuracies for crop monitoring especially in combination with [few] ground 108 

level data. According to Sibley et al., (2013) and Schut et al. (2018), repeated in-season measurements 109 

and good field-level accuracy are important criteria to derive useful information from remotely-sensed 110 

imageries for rapid yield (and other agronomic) assessments. Given the complexity of smallholder 111 

farming systems (Titonnell et al., 2005; Vanlauwe et al., 2015), it is important to assess the field 112 

applicability of UAV, beyond experimental plot conditions, and within actual complex farming 113 

landscapes where they can be deployed for rapid farm-level decision support. Schut et al. (2018) 114 

indicated yield variability explained by selected VIs within specific crop farms reduced greatly across an 115 

array of fields compared to within fields where there is a higher homogeneity and noted that accurate 116 

ground reference data may improve the assessment of in-season yield variability. These ground data can 117 

include biophysical variables, such as plant height (Ht) and Canopy Cover (CC), which have been 118 

reported as valuable for non-destructive yield(-variability) assessment in smallholder farmers’ field. 119 

These biophysical variables represent morphological characteristics and are useful for understanding 120 

allometric characteristics of plants (Tittonell et al., 2005). There is a major knowledge gap regarding the 121 

potential to improve in-season assessment of maize yield(-variability) in farmers field through 122 

combination of ground-measured biophysical variables with UAV-derived VIs. Yet, there is a critical need 123 

to evolve reliable and rapid approaches for timely decision support within smallholder farming systems. 124 

Therefore, we conducted this study, within the maize-producing savanna region of Nigeria, to assess in-125 

season predictability of grain yield in multilocational smallholder maize farmers’ fields using UAV-126 

derived VI with and without ancillary observations of biophysical variables. 127 

 128 

 129 
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Material and methods 130 

2.1 Study Area  131 

This study was carried out at multiple locations within the core maize production region of Nigeria, 132 
namely Bunkure, Doguwa, Funtua, Ikara, and Soba (Figure 1). The locations are within the Sudan and 133 
Northern Guinea savanna agroecologies of the Country, which is the major cropping regions for grains 134 
and legumes such as maize (Zea mays), cowpea (Vigna unguiculata), peanut (Arachis hypogaea), and 135 
soybeans (Glycine max). The target areas for UAV-based data collection were selected based on: (i) the 136 
location of nutrient omission trials (NOT) which were established under a different research activity to 137 
identify and understand nutrient constraints that are limiting maize yield among smallholder maize 138 
farmers (Shehu et al., 2018); (ii) the willingness of proximal farmers to grant access for ground-truthing 139 
and yield assessment in their farms, and (iii) the advisory guidance of National Space Research and 140 
Development Agency (NASRDA) in Nigeria, which is critical for compliance with regulatory requirements 141 
on UAV use in the Country.  142 

 143 

 144 
 145 

  146 

Figure 1: Map showing the multi-location of the farmers’ field and nutrient 

omission trials (NOT) that were covered by unmanned air vehicle (UAV) flight 

missions and included in this study. 
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2.2 Smallholder Farmers’ Fields and Nutrient Omission Trials (NOT)  147 

2.2.1 Nutrient Omission Trial Field (NOT) establishment: At the onset of the planting season for the 148 

region, mid to late June 2016,  NOTs (n=100) were established to assess the impact of varying soil 149 

nutrient limitations on maize yield within the maize-based system of Nigeria under the Taking Maize 150 

Agronomy to Scale in Africa (TAMASA) project (www.tamasa.cimmyt.org; Shehu et al.,  2018).  A subset 151 

of the NOTs (n=12) were covered within the target locations for UAV flight. Each experimental unit 152 

comprised of 12 contiguous plots (5.2m x 4m) planted with maize in two blocks of six plots, with one 153 

block sown with open-pollinated genotype (OPV) and the other sown with hybrid genotype (HV). Within 154 

each of the genotype block, nutrient omission fertilizer treatments were applied at recommended 155 

optimal dosage, based on previous soil tests in the region. The nutrient treatments comprised a 156 

combination of major nutrients required for maize production, including nitrogen (N), phosphorus (P), 157 

potassium (K) and micronutrients (+). Hence, each genotype block received six fertilizer treatments (i.e. 158 

Control, PK, NP, NK, NPK, and NPK+) applied on six plots, across twelve (12) multi-locational NOTs. 159 

Therefore, a total of 144 plots were covered during flight missions at 4WAS and 8 WAS, across all the 160 

target locations. All nutrients were applied at the establishment stage of NOT, except N which was 161 

applied in 3 splits (at establishment, 3 WAS, and 6 WAS). Other details on rates and management of 162 

NOTs are presented by Shehu et al. (2018). 163 

2.2.2 Farmers’ fields: Since farmers made their farm-level decisions independent of our research 164 

interests, we screened prospective volunteer farmers to select only farmlands that were sown with 165 

maize within about 3 days of NOT establishment. The selected farmers’ fields (n=32) differed in size and 166 

management, a typical configuration within smallholder maize-based systems. The specific varietal 167 

choice of the farmers is generally unknown, however, within the maize-based area, farmers sow both 168 

the open-pollinated (OPV) and hybrid (HV) genotypes. 169 

2.3 UAV-based Imagery Acquisition and post-processing 170 

We used an eBee UAV (SenseFly Inc., Switzerland, www.sensefly.com/drone/ebee.html) mounted with 171 

multispectral 4C sensor (Airinov, France, www.airinov.fr) to acquire fine resolution images at each target 172 

location. The e-Bee is a light-weight fixed-wing UAV, which can cover up to 600ha in a single flight at 173 

1000m altitude, equipped with an onboard global positioning system (GPS), solar irradiance sensor, and 174 

a ground calibration target.  The multi-spec 4C camera has four passive sensors that record reflectance 175 

in four spectral bands - red (R), green (G), red-edge (RE), and near infra-red (NIR) at 1.2 megapixels per 176 

sensor. It has a global shutter, instant field of view (IFOV) of 0.9mrad, and low luminosity (>3000lux). 177 

The UAV was flown to acquire fine-resolution images that cover the area of interest (including NOT and 178 

farmers’ fields) at 4 and 8 WAS, coinciding with the onset of vegetative (V7) and tasseling (VT) growth 179 

stages, respectively (Ritchie et al., 1993), and within the mid-season growth period where best 180 

indication of post-harvest grain yield is obtainable (Geipel et al. 2014).  181 

2.3.4 Post-processing 182 

After the completion of each flight mission, the imageries were exported from the UAV along with the 183 

flight log files for post-processing with Pix4D software (Pix4D v.3.1., Switzerland, www.pix4d.com). The 184 

software provided platform for end-to-end post-processing of acquired imageries and offers the needed 185 

flexibility to configure processing parameters based on desired output quality and target end-use of the 186 

products. Overall, for each successful flight mission, ~ 400 images were geotagged and processed 187 
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through several stages to generate final outputs in geotiff formats, including reflectance bands 188 

corresponding to the four spectral reflectance domains of the multi-spec sensor, digital surface model, 189 

digital orthomosaics, and VIs. The VI imageries were computed from corresponding spectral bands, 190 

based on Equations i-iii. The consideration of VIs to be computed was limited to those that have been 191 

reported as promising for agronomic application at the canopy level and in relation to vegetation status 192 

in croplands, especially maize, with focus on selecting VIs are based on red, red-edge, and green bands 193 

(Cammarano et al., 2014; Gitelson et al., 2005; Hatfield and Prueger, 2010; Vina et al., 2011; Xue and Su, 194 

2017)  195 

 196 

𝑁𝐷𝑉𝐼 =  
𝜌𝑛𝑖𝑟− 𝜌𝑟𝑒𝑑 

𝜌𝑛𝑖𝑟+ 𝜌𝑟𝑒𝑑
       (i) 197 

 198 

𝑁𝐷𝑅𝐸 =  
𝜌𝑛𝑖𝑟− 𝜌𝑟𝑒𝑑.𝑒𝑑𝑔𝑒 

𝜌𝑛𝑖𝑟+ 𝜌𝑟𝑒𝑑.𝑒𝑑𝑔𝑒
      (ii) 199 

 200 

𝐺𝑁𝐷𝑉𝐼 =  
𝜌𝑛𝑖𝑟− 𝜌𝑔𝑟𝑒𝑒𝑛 

𝜌𝑛𝑖𝑟+ 𝜌𝑔𝑟𝑒𝑒𝑛
       (iii) 201 

 202 

Where, 𝜌𝑛𝑖𝑟, 𝜌𝑟𝑒𝑑, 𝜌𝑟𝑒𝑑. 𝑒𝑑𝑔𝑒, 𝑎𝑛𝑑 𝜌𝑔𝑟𝑒𝑒𝑛  are the spectral reflectance of the near infrared band, red 203 

band, red edge band, and green band, respectively. 204 

 205 

 2.4 Ground-truth data collection 206 

We conducted in-situ measurement of NDVI with Greenseeker Handheld Crop Sensor HCS 100 (Trimble 207 

Ltd., Sunnyvale, CA; https://agriculture.trimble.com/precision-ag/products/greenseeker). The 208 

Greenseeker was held above the canopy (0.6 m) while walking for 30 - 60 seconds through each NOT 209 

plot, or marked quadrats (4m2, n = 5) within each farm. The device proximally scans leaf greenness 210 

(within a swath of ~0.25 m) through its infrared sensors and displays an NDVI value averaged over 211 

duration of the scan.  We did not acquire ground-truth measurement for other VIs due to cost (money 212 

and labor) and because our goal was not to recalibrate the sensor, but rather to test the application of 213 

UAV-borne multispectral sensor, for assessing yield variability based on the indices derived. 214 

We adopted the crop-cut method to quantify grain yield, as recommended by the FAO and generally 215 

regarded as the most objective method for yield estimation (Carletto et al., 2015; Wahab et al. 2018). 216 

Harvest was conducted within 9m2 quadrats in each NOT treatment plot, based on standard NOT 217 

protocols, as presented by Nziguheba et al. (2009). In farmer’ fields, maize cobs were harvested and 218 

grain yield was quantified in five (2m x2m) quadrats positioned along a diagonal transect within the 219 

field. In both farmers’ fields and NOTs, the harvested cobs were shelled, and grain was oven dried to 220 

determine moisture content. The weight of grain yield per sampling quadrat were converted to yields in 221 

metric tons per hectare (t/ha) at 12% moisture content. The geographic coordinates were recorded as 222 

degrees latitude and longitude at the center of each plot/quadrat in NOT and farmers’ field using a 223 
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Garmin eTrex 20 GPS device (https://buy.garmin.com/en-US/US/p/87771#overview). Using Height ruler, 224 

we measured height of 3 randomly selected maize stands within each quadrat, and the recorded values 225 

were later averaged per quadrat at 4WAS and 8WAS. Similarly, at both growth stages, we used 226 

smartphone-based Canopeo app (http://canopeoapp.com/) to measure percent canopy cover in each 227 

quadrat, based on standard protocols (Patrignani and Ochsner, 2015). 228 

 229 

2.5 Data Analyses  230 

Data cleaning and multi-step spatial analyses of the data collected through ground measurements and 231 

UAV-derived datasets were conducted using ArcGIS 10.3.1 (ESRI, Redlands, California, 232 

http://www.esri.com/arcgis/about-arcgis) and open-source packages (including RGDAL, LMER, and 233 

GGPLOT) in R analytical platform v.3.4.1.  234 

2.5.1 Georeferenced locations and Data Extraction 235 

The recorded geographic coordinates (X,Y) were processed and exported into point shapefiles in 236 

WGS1984 datum in ArcMap. Using the UAV-derived imagery as a reference, some misaligned 237 

coordinates were noted and corrected by editing the point shapefiles in ArcGIS. These misalignments 238 

are likely due to the precision level of the recreational GPS unit (~4m), hence, the editing process was 239 

critical to ensure that each point shapefile location rests within designated field, and references the 240 

appropriate NOT plot or farmers’ field. Using the geoprocessing “Create Regular Polygon” add-on tool in 241 

ArcGIS, 4-sided polygons (2m2 for farmers’ field and 3m2 for NOTs) were generated for each ground-242 

truthing points, using the point datasets as the centroid. These polygons represent the sampling support 243 

unit for the ground-truthing process and were subsequently used in R (Raster package, Hijmans et al., 244 

2016), to compute zonal average statistics of UAV-derived VI cell values, for each location at the 245 

matching support scale of the yield measurements.   246 

2.5.2 Statistical Analyses of Data 247 

Due to the slight skewness of the yield data, we applied log-linear transformation to normalize the 248 

dataset. The output from the spatial zonal statistics which was computed from the UAV-derived 249 

imageries, was processed as table and imported into R-Studio to assess correlation of VIs with measured 250 

grain yield across the study locations, and separately within NOTs and FMFs. In the first level of the 251 

analyses, we used linear multivariate regression approach (Equa. iv) to assess the variability of yield that 252 

is explained by ground-measured variables in NOTs. 253 

𝑦𝑖𝑒𝑙𝑑𝑖 =  𝛽0 + 𝛽1 𝑋1 + 𝛽2 𝑋2 + 𝛽𝑖 𝑋𝑖 +  𝜀𝑖𝑗       iv. 254 

Where, 𝛽0 is the intercept, 𝛽1,2,𝑖 are slopes of observed variables 𝑋1, 𝑋2, 𝑋𝑖, respectively. 255 

 In the second level, we independently and randomly split the NOT and FMF data into 70% calibration 256 

data (93 datapoints for NOT and 72 data points for FMF) and 30% validation data (37 datapoints for NOT 257 

and 27 data points for FMF). Some data records were excluded from further analyses in NOTs and FMFs 258 

due to irresolvable missing datapoints or incomplete records. The random split of each dataset was 259 

implemented at the Farm (i.e. field) level for independence of locations in the model calibration and 260 

validation stages. Notwithstanding the assumption that both NOT and FMF data accrue to the same 261 

population (i.e. smallholder farmers), separate models were fitted for NOTs vs. FMFs. The calibration 262 
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datasets were used to fit linear mixed effect models (Equa. v) for yield prediction, using UAV-derived VIs 263 

at 4WAS and 8WAS as input variables, with and without the significant biophysical variables (as 264 

determined from first step). The validation datasets were used to assess the accuracy of the prediction. 265 

Similar to Burke and Lobell (2017), model fit was also applied to time series combination of 4WAS and 266 

8WAS data, to assess potential applicability for improved prediction outcome (Equa. vi). The linear 267 

mixed effect modeling framework included a random parameter that accounts for potential 268 

indeterminable effect of differing management practices among farmers. Statistical parameters that 269 

were evaluated to make inference include descriptive statistics (mean, range, coefficient of variation), 270 

correlation coefficient (r, Equa. vii), coefficient of determination (R2, Equa. Viii), root means square error 271 

of prediction (RMSEP; Equa. ix) and significance, P (tested at 95% confidence level). The best 272 

relationship between measured yield and UAV-derived VIs is indicated by r closer to 1, R2 closer to 1, 273 

RMSEP closer to 0, and acceptable significance level (p<=0.05).  274 

𝑦𝑖𝑒𝑙𝑑𝑖 =  𝛽0 + 𝛽1 𝑉𝐼1 … … . . +𝛽𝑖 𝑋𝑖 + (1|𝐹𝑎𝑟𝑚) + 𝜀𝑖𝑗      v. 275 

 276 

𝑦𝑖𝑒𝑙𝑑𝑖 =  𝛽0 + ∑ 𝛽1𝑡 𝑉𝐼1𝑡
𝑡=8
𝑡=4 … … . . + ∑ 𝛽𝑖𝑡  𝑋𝑖𝑡

𝑡=8
𝑡=4 + (1|𝐹𝑎𝑟𝑚) + 𝜀𝑖𝑗    vi. 277 

 278 

𝑟 =  
𝑛(∑ (𝑌𝑜𝑏𝑠

𝑗
𝑖 ∗𝑌𝑝𝑟𝑒𝑑)) −(∑ (𝑌𝑜𝑏𝑠)

𝑗
𝑖 ∗∑ (𝑌𝑝𝑟𝑒𝑑)

𝑗
𝑖 )

√(𝑛 ∑((𝑌𝑜𝑏𝑠)^2 −(∑ (𝑌𝑜𝑏𝑠))^2
𝑗
𝑖

)∗(𝑛 ∑((𝑌𝑝𝑟𝑒𝑑)^2 −(∑ (𝑌𝑝𝑟𝑒𝑑))^2)
𝑗
𝑖

   vii. 279 

 280 

𝑅2 =  1 −  
∑ (𝑌𝑜𝑏𝑠

𝑗
𝑖 − 𝑌̂𝑝𝑟𝑒𝑑)^2

∑ (𝑌𝑜𝑏𝑠
𝑗
𝑖 − 𝑌𝑜𝑏𝑠)^2

       viii. 281 

 282 

𝑅𝑀𝑆𝐸𝑃 =  √
∑((𝑌𝑜𝑏𝑠− 𝑌̂𝑝𝑟𝑒𝑑)^2)

𝑛
       ix. 283 

Where, 𝛽0 is the intercept, 𝛽1 is slope of UAV-derived Vegetation Index,  𝑉𝐼1, 𝛽𝑖 is the slope of measured 284 

biophysical variable 𝑋𝑖  (when included in the model), and t is the growth stage at which the imageries 285 

were acquired (in weeks after sowing, WAS). The additional term, 1|Farm, denotes assignment of Farm 286 

as random variable where several factors can influence yield outcome. RMSEP is it root mean square 287 

error of prediction;  𝑌𝑜𝑏𝑠 is the observed grain yield;  𝑌̂𝑝𝑟𝑒𝑑  is the predicted grain yield;  𝑌𝑜𝑏𝑠 is the mean 288 

of observed grain yield;  n is the number of datapoints. 289 

 290 

  291 
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3.0 Results  292 

3.1 Estimated grain yield and ground-truth biophysical variables (gNDVI, Ht, and CC) 293 

The overall average estimated maize grain yield was 3.12 t/ha, with lower average yield estimated in 294 

FMF (2.75 t/ha), than the average yield across the NOT plots (3.6 t/ha; Table 1). The maximum grain 295 

yield (9.3t/ha)  was attained by optimizing nutrient and genotype combination in NOT, exceeding the 296 

maximum estimated yield in farmers’ fields (5.4t/ha; Fig. 2). Based on averages per treatment in NOT 297 

plots, green seeker-measured gNDVI increased from 4WAS to 8WAS, and similar results were noted for 298 

Ht and CC (Fig 3). 299 

 300 

 301 

 302 

  303 
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Figure 2: Observed distribution of maize grain yield as estimated in smallholder farms across multi-

locational Nutrient Omission Trials (NOT) and Farmer Managed Fields (FMF). 

FMF 
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Figure 3: Ground measured normalized difference vegetation index (NDVI), plant height (Ht), and 

percent canopy cover (CC) of maize in smallholder farms imposed with different nutrient treatment 

conditions under multi-locational and widely distributed Nutrient Omission Trial (NOT).  

*CTR = Control, N= Nitrogen, P = Phosphorus, K = Potassium, and + denotes addition of 

micronutrients.  

*The horizontal line on each boxplots shows mean value and the whiskers indicate the 95% 

confidence interval. 
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The initial analyses of univariate relationship between grain yield and ground-measured variables 306 

indicated a poor correlation (R2<0.02; r<0.14 ; Figure 4). However, by including the known explanatory 307 

variables (treatment, location, and genotype) into linear multivariate model, the explained variation in 308 

yield greatly improved (R2= 0.45 for all data, R2=0.67 for NOT, and R2=0.14 for FMF). Also, the 309 

mutlivariate analysis of the NOT data showed that treatment and location, but not genotype, 310 

significantly explained the observed yield variability (R2= 0.50; P<0.001). The average estimated yields 311 

for HV (3.41 t/ha) was comparable to OPV (3.68 t/ha), considering all locations and treatments. 312 

  313 

 314 
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Figure 4: Univariate relationship between maize grain yield and measured 

normalized difference vegetation index (gNDVI), plant height, and canopy cover 

percentage measured on Nutrient Omission Trials (NOTs) within smallholder 

maize farms in Nigeria. Regression lines are included for only significant 

relationships, assessed by the coefficient of determination, R-sq (at α=0.05). 
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 315 

Table 1: Summary of multivariate assessment of yield variability in nutrient omission trial (NOT) plots 316 

established at multiple locations within smallholder maize-based system of Nigeria. 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

3.2 UAV-derived VIs and their correlation with Yield 334 

The UAV-derived VIs showed varying characteristics of the vegetation and provided contrasting visual 335 

indication of nutrient-induced differences in vegetational characteristics, especially in the NOTs (e.g. Fig 336 

5 and 6). The phenological changes between 4WAS and 8WAS growth stages were observable in all the 337 

UAV-derived VI images (e.g. Table 2). The NDRE exhibited highest variation across farms, with highest 338 

coefficient of variation (CV) of 1.13 in NOT plots at 4WAS, compared to GNDVI which consistently had 339 

lowest CV at each growth stage, in both NOT and FMFs. Considering overall data from NOT and FMF, the 340 

correlation matrix indicates that none of the VIs had a significant relationship with yield at 4WAS 341 

(r<0.02, P>0.1), however, weak correlation emerged at 8WAS for NDVI and GNDVI (r≤0.3; P<0.001). In 342 

the NOTs, the VIs and grain yield were weakly correlated at 4WAS (r=0.23 and 0.33 for GNDVI and NDVI, 343 

respectively, p<0.001), but this improved at later growth stage, 8WAS (r=0.40 and 0.47 for GNDVI and 344 

NDVI, respectively, p<0.001). Contrastingly, in FMF, no meaningful relationship could be established 345 

between VIs and grain yield at 4WAS, while the significant relationships at 8WAS were weak (r≤0.2, 346 

p<0.001).347 

Growth 
Stage 

Source of 
Variation 

DF 

   

 P-Value Adj. R2  

4
W

A
S 

Genotype 1  0.69 

0.59*** 
Treatment 5  <0.001 
Location 4  <0.001 
gNDVI 1  0.21 

 Ht 1  <0.001  
 CC 1  0.63  
      

8
W

A
S 

Genotype 1  0.67  
Treatment 5  <0.001 0.64*** 
Location 4  <0.001  
gNDVI 1  <0.001  

 Ht 1  <0.001  
 CC 1  0.04  
      
 Genotype 1  0.66  

4
+8

 
W

A
S 

Treatment 5  <0.001 0.67*** 
Location 4  <0.001 

 
gNDVI 1  <0.001 
Ht 1  <0.001 
CC 1  0.08 
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Table 2: Descriptive statistics of measured biophysical variables and UAV-derived vegetation indices within multilocation smallholder maize-348 

farms at two growth stages. 349 

 4WAS  8WAS  
Variable min max mean CI (95%) SD CV 

 
min max mean CI (95%) SD CV 

N
O

T 
+

 F
M

F 

UNDVI 0.00 0.82 0.42 0.02 0.18 0.43 
 

0.29 0.89 0.77 0.01 0.10 0.13 

NDRE 0.00 0.77 0.29 0.03 0.28 0.98 
 

-0.18 0.82 0.30 0.04 0.31 1.04 

GNDVI 0.24 0.71 0.48 0.01 0.10 0.21 
 

0.39 0.86 0.67 0.01 0.08 0.12 

gNDVI 0.15 0.82 0.42 0.02 0.14 0.34 
 

0.19 0.85 0.68 0.01 0.08 0.12 

Ht (cm) 20.00 105.33 56.91 2.16 17.67 0.31 
 

84.70 314.30 182.12 5.29 43.20 0.24 

CC (%)  0.53 93.59 31.26 2.26 17.32 0.55 
 

7.44 91.67 57.83 1.65 13.51 0.23 

Yld (t/ha) 0.30 9.31 3.18 0.20 1.64 0.52 
 

0.30 9.31 3.18 0.20 1.64 0.52 
              

UNDVI 0.00 0.76 0.36 0.03 0.17 0.47 
 

0.43 0.89 0.76 0.02 0.10 0.13 

NDRE 0.00 0.75 0.22 0.04 0.25 1.13 
 

-0.17 0.82 0.24 0.05 0.27 1.12  
GNDVI 0.24 0.70 0.45 0.02 0.10 0.21 

 
0.39 0.78 0.68 0.01 0.08 0.12 

   
   

   
   

   
   

   
   

   
   

   
   

N
O

T gNDVI 0.15 0.82 0.38 0.02 0.12 0.33 
 

0.19 0.85 0.68 0.02 0.09 0.13 

Ht(cm)  24.00 105.33 55.48 3.12 17.98 0.32 
 

92.00 272.67 184.42 6.96 40.10 0.22 

CC (%) 0.53 93.59 33.50 3.36 19.37 0.58 
 

22.92 81.43 57.15 2.16 12.43 0.22 

Yld (t/ha) 0.50 9.31 3.60 0.32 1.83 0.51 
 

0.50 9.31 3.60 0.32 1.83 0.51 
              

UNDVI 0.15 0.82 0.49 0.03 0.17 0.35 
 

0.29 0.89 0.78 0.02 0.10 0.13 

NDRE 0.03 0.77 0.36 0.05 0.30 0.84 
 

-0.18 0.80 0.36 0.06 0.34 0.95 

GNDVI 0.36 0.71 0.52 0.02 0.09 0.18 
 

0.40 0.86 0.67 0.01 0.09 0.13 

FM
F Ht (cm) 20.00 96.70 58.36 3.02 17.31 0.30 

 
84.70 314.30 179.80 8.04 46.16 0.26 

gNDVI 0.15 0.72 0.47 0.03 0.15 0.32 
 

0.45 0.81 0.68 0.01 0.07 0.10 

CC (%) 3.62 63.38 28.32 2.74 13.74 0.49 
 

7.44 91.67 58.53 2.53 14.53 0.25 

Yld (t/ha) 0.30 5.40 2.75 0.23 1.30 0.47 
 

0.30 5.40 2.75 0.23 1.30 0.47 

CI: Confidence interval ; SD: standard deviation; CV: coefficient of variation;  min: minimum value; max: maximum value350 
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 351 

  352 

Figure 5: Vegetation indices (VIs) derived from UAV-sensed multispectral imageries, covering maize 

plots within nutrient omission trials (NOTs) and farmers’ fields at Bunkure, Kano. The grey imagery 

shows red-edge reflectance band acquired at 8 weeks after sowing (WAS) while the colored 

imageries show the VIs at 4 and 8WAS. 
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 353 

  354 

Figure 6: Nutrient-induced variation of UAV-derived vegetation indices (VIs) within multilocational 

nutrient omission trials (NOTs) in smallholder maize farming systems at 8 weeks after sowing. 

*NDVI denotes Normalized difference VI, NDRE is Normalized difference red-edge, and GNDVI is 

green normalized difference VI. 
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 355 

3.3. Predictability of grain yield variability with(out) biophysical variables 356 

Considering relationship between observed grain yield and each VIs separately, highest explained yield 357 

variability at 4WAS and 8WAS growth stages (49% and 54%, respectively) were recorded in NOTs, 358 

compared to FMFs where highest yield variability explained was 42% at 4WAS (in the calibration 359 

dataset). However, up to 73% of the observed yield variability was explained when the measured Ht 360 

variable was separately included in the model, without including the VIs. At the validation stage, the 361 

metrics (Tables 3a & b) showed low yield predictability with UAV-derived VIs alone, in both NOTs and 362 

FMF. The maximum prediction of yield variability (r=0.56; R2=0.29) was achieved by fitting the mixed 363 

model with GNDVI values from NOTs at 8WAS (Table 3a).  There was no meaningful improvement in 364 

yield variability that was explained by the VIs after merging datasets from both phenological stages (i.e. 365 

4WAS + 8WAS) and analyzing them as time-series data.  366 

Comparing the null model with and without the inclusion of each UAV-derived VI as explanatory 367 

variable, the accuracy of yield prediction improved, with R2 increasing from 0.03 (null model) to the 368 

highest value of 0.29, based on GNDVI in NOTs. Following the pairwise inclusion of Ht in each prediction 369 

model of the UAV-derived VIs, the predictability of grain yield at 4WAS and 8WAS increased significantly 370 

in NOTs (Table 3a) but not in FMFs (Table 3b).  In NOT, improved predictability of grain yield was seen in  371 

NDRE+Ht, with R2 increasing from non-significant low value (0.03) to a very significant high value (0.63, 372 

p<<0.001) . Similarly, other VIs showed improved grain yield prediction to attain, with R2 value peaking 373 

at 0.64.  The overall yield prediction error, RMSEP mainly decreased after the inclusion of the height 374 

parameter (except when 4WAS & 8WAS NDRE data were combined), with maximum change (~79%) 375 

associated with NDVI (Table 3a). 376 

In contrast to NOTs, the predictability of grain yield with VIs in FMF did not improve meaningfully (at 377 

4WAS) or declined (~20% at 8WAS) after the inclusion of Ht variable in each model fit (Table 3b). 378 

Similarly, the RMSEP values were stable, hovering around 0.03 – 0.07, at both growth stages assessed.  379 

  380 
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Figure 7a: Relationship between observed and predicted maize grain yield based on fitted linear mixed effect model using UAV-derived 

Vegetation Indices (VIs) data that was acquired from multilocation smallholder maize farms in Nigeria. NOT=Nutrient Omission Trials; 

FMF=Farmer managed fields; WAS=Weeks after sowing; a = Intercept; b=slope estimate; *Calibration metrics are shown on the charts and 

additional validation metrics are presented in Tables 3a&b. 
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 383 

  384 

Figure 7b: Relationship between observed and predicted maize grain yield based on fitted linear mixed effect model using and UAV-derived 

Vegetation Indices (VIs) combined with plant height (Ht) data, from multilocation smallholder maize farms in Nigeria. NOT=Nutrient 

Omission Trials; FMF=Farmer managed fields; WAS=Weeks after sowing;  a = Intercept; b=slope estimate; *Calibration (Cal) metrics are 

shown on the charts and additional Validation (Val) metrics are presented in Tables 3a&b. 
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Table 3a:  Model performance metrics for maize grain yield prediction using UAV-derived vegetation indices (VI), with(out) inclusion of 385 

measured biophysical variable, height (Ht) in multilocational Nutrient Omission Trials (NOTs) within farmers’ fields. 386 

 No-VI  NDVI  NDRE GNDVI  
- Htǂ + Ht  - Ht + Ht  - Ht + Ht - Ht + Ht 

4
W

A
S 

a - 1.73  2.41 1.75  2.81 1.74 2.35 1.73 
b - 0.43  0.18 0.41  0.09 0.43 0.19 0.42 
r - 0.65  0.43 0.63  0.23 0.65 0.43 0.64 
R2 - 0.41  0.16 0.38  0.03ns 0.40 0.16 0.39 
RMSEP - 0.21  0.38 0.23  0.29 0.21 0.40 0.23  

          

8
W

A
S 

a - 0.77  1.82 0.77  2.82 0.75 1.80 0.76 
b - 0.69  0.29 0.68  0.09 0.69 0.33 0.68 
r - 0.80  0.49 0.79  0.24 0.80 0.56 0.80 
R2 - 0.62  0.22 0.62  0.03ns 0.63 0.29 0.62 
RMSEP - 0.30  0.59 0.33  0.29 0.30 0.49 0.32  

          

4
+8

W
A

S 

a - 0.80  1.84 0.67  2.8 0.75 1.80 0.69 
b - 0.69  0.29 0.70  0.09 0.68 0.33 0.71 
r - 0.80  0.50 0.81  0.23 0.79 0.55 0.81 
R2 - 0.63  0.23 0.64  0.03ns 0.61 0.29 0.65 
RMSEP - 0.30  0.57 0.35  0.29 0.32 0.49 0.30 

 387 

ns denotes non-significance at α = 0.05; WAS denotes Weeks After Sowing; a is the model intercept, b is the slope, r is the correlation coefficient,  388 

R2 is the adjusted coefficient of determination, and RMSEP is the root mean square error of prediction.   ǂ Metrics of Null yield model without 389 

any explanatory variable:  a= 2.80; b = 0.09; r = 0.24; R2 = 0.03ns; RMSEP = 0.30 390 

  391 
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Table 3b:  Model performance metrics for maize grain yield prediction using UAV-derived vegetation indices (VI), with(out) inclusion of 392 

measured biophysical variable, height (Ht) in multilocational smallholder farmers’ fields. 393 

 No-VI  NDVI  NDRE GNDVI  
- Htǂ + Ht  - Ht + Ht  - Ht + Ht - Ht + Ht 

4
W

A
S 

a - 1.74  1.73 1.73  1.75 1.75 1.71 1.71 
b - 0.25  0.26 0.25  0.26 0.26 0.25 0.26 
r - 0.53  0.53 0.54  0.52 0.53 0.54 0.53 
R2 - 0.26  0.26 0.26  0.24 0.25 0.26 0.25 
RMSEP - 0.05  0.05 0.05  0.07 0.06 0.04 0.04  

          

8
W

A
S 

a - 1.75  1.75 1.79  1.75 1.75 1.73 1.74 
b - 0.25  0.25 0.23  0.26 0.26 0.26 0.25 
r - 0.53  0.53 0.49  0.52 0.51 0.54 0.51 
R2 - 0.25  0.25 0.21  0.24 0.23 0.26 0.24 
RMSEP - 0.04  0.06 0.05  0.07 0.07 0.06 0.04  

          

4
+8

W
A

S 

a - 1.74  1.75 1.77  1.72 1.74 1.70 1.71 
b - 0.25  0.26 0.24  0.27 0.26 0.27 0.26 
r - 0.53  0.52 0.49  0.53 0.53 0.54 0.50 
R2 - 0.25  0.24 0.21  0.25 0.25 0.26 0.23 
RMSEP - 0.04  0.07 0.06  0.07 0.06 0.05 0.03 

 394 

ns denotes non-significance at α = 0.05; WAS denotes Weeks After Sowing; a is the model intercept, b is the slope, r is the correlation coefficient,  395 

R2 is the adjusted coefficient of determination, and RMSEP is the root mean square error of prediction.   ǂ Metrics of Null model without any 396 

explanatory variable:  a= 1.74; b = 0.25; r = 0.53; R2 = 0.26; RMSEP = 0.05  397 
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 398 

4.0 Discussion 399 

4.1 Grain yield relationship with measured biophysical variables  400 

In this study, the set-up of NOTs next to farmers field provided important context for the understanding 401 

of grain yield gap and predictability in smallholder farming systems. For instance, the attainment of very 402 

yield (up to 9.3t/ha) in NOT plots where nutrient limitations are fully addressed, in contrast to control 403 

plots where grain yield was as low as 0.49 t/ha, supports the notion that proper soil nutrient 404 

management can reduce the existing yield gap within the smallholder farming systems (Giller et al., 405 

2011). Availability of nutrients for plants uptake at various growth stages affects overall plant 406 

development, including tallness, greenness, and canopy formation, which are represented by the 407 

measured biophysical variables (height, gNDVI, percent canopy, respectively). The significant 408 

relationships assessed between observed yield and measured variables (mainly gNDVI and Ht) aligns 409 

with previous findings that support selection of relevant proxies for rapid in-season assessment of yield 410 

variability (Tittonell et al. 2005, Tagarakis and Ketterings, 2017). However, the assessed relationships 411 

were weakly expressed (R2≤0.17 and r≤0.42), in contrast to reported findings where strong relationships 412 

were established between maize grain yield and proximally-sensed biophysical variables in Maize farms, 413 

with R2-value typically greater than 0.5 (e.g. Tagarakis and Ketterings, 2017). It should be noted that 414 

assessed relationships between yield and proxy variables can be influenced by artefacts of location-415 

dependent soil nutrient conditions and environmental factors, such as short-term drought conditions. 416 

Such artefacts can negatively impact the final yield outcome by compromising plant vigor during the 417 

reproductive/grain-filling stages (before- and after-8WAS). In the study area, soil nutrient limitations and 418 

poor soil management practices are common (Olarinde et al., 2007; Shehu et al., 2018), and we 419 

observed that most farmers applied nutrients at early growth stage (mostly by surface dressing or 420 

broadcasting) without considering the high potential for rapid nutrient losses due to the sandy textural 421 

characteristics of the soil. This prevalent practice may pose implications on the crop performance and 422 

predictability of the grain yield based on snapshot spectral information acquired at 2 growth stages. 423 

However, further discussions on potential effects of nutrient management practices on yield, based on 424 

farmers’ resource endowment and preferences, are beyond the scope of this paper. 425 

 426 

4.1 Nutrients, not genotype, may influence UAV-derived VIs – Insights from NOT 427 

Based on results derived from the multi-locational NOTs, we noted that the light reflectance signals 428 

recorded by the UAV-borne multispectral sensor is more sensitive to nutrient variations than genotype 429 

variations in smallholder farmer fields. This provides relevant insight about the potential effect of 430 

inherent genotype diversity in smallholder farming systems on wider applicability of UAV across many 431 

(and independently managed) farmers fields.  Similar to other crops, maize genotypes are often released 432 

with intent to improve resilience or tolerance to stress (such as drought and weed) and consequently 433 

improve quality and quantity of yield outcomes. In some instances, such improvement may include 434 

modification of traits related to leaf morphology and canopy characteristics, to achieve desired response 435 

to target stress condition. Despite the expected difference in phenotypic traits of different genotypes 436 

(Makanza et al., 2018), the implementation of this study during the wet season, with full control of 437 

weed in the experimental plots, may have addressed the major stresses that are likely to compromise 438 
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the growth of the OPV genotype in this study. Therefore, it is noteworthy that the variations of soil 439 

nutrients exerted dominant effect on the overall yield outcomes for both OPV and Hybrid genotypes, 440 

without noticeable contrast. This is further supported by our observed data on percent canopy coverage 441 

(not reported) which showed that canopy coverage was similar within the OPV and Hybrid genotype 442 

plots, at both growth stages evaluated. Since N and P are the most prevalent soil nutrient deficiencies 443 

within the savannah maize-based system of Nigeria (Carsky et al., 1998; Hartmann et al., 2014), the 444 

application of appropriate fertilizer likely supported similar leaf formation and ground coverage of maize 445 

plant across the plots, without disparity between genotypes. 446 

 447 

4.3 In-season grain yield variability prediction with UAV-derived VI: A nuanced outcome 448 

The comparison of grain yield predictability in NOTs versus FMFs unravels often-neglected limitation to 449 

the applicability/transferability of agronomic predictive tools from experimental “controlled” conditions 450 

to usually “complex” farming systems. Despite the set-up of multilocational NOTs in smallholder farmers 451 

field, next to fields that are managed by farmers, we observed a strongly contrasting difference in the 452 

potential to predict grain yield based on UAV-derived VIs under both conditions. The differentiated 453 

contribution of Ht as an ancillary predictor variable for grain yield, showing high influence in NOTs and 454 

negligible/negative influence in FMFs, erodes the expectation that such a variable is universally potent 455 

to improve the application of VIs for yield prediction. Rather, an interplay of factors can confound the 456 

usefulness of high-resolution UAV-derived VIs, including (amplified) noise that may be generated at the 457 

canopy level, especially in smallholder farming systems where canopy formation and structure are 458 

usually indeterminate across farms (Giepel et al., 2014; Tittonnel et al. 2005).  459 

The grain yield variability explained by the UAV-derived VIs in FMFs (maximum of 42% in calibration and 460 

26% in validation ) is lower than reported accuracy from other studies which are based on ground-level 461 

proximate-sensing of crop fields, plots, or at point locations (Maresma et al., 2016; Tagarakis and 462 

Ketterings, 2017; Tagarakis et al., 2017; Benincasa et al., 2017), and suggests that the application of UAV 463 

for in-season yield assessment is limited by issues related to predictability of yield from single (or sparse) 464 

time-stamp imageries. Recently, similar findings from complex farming systems in sub-Saharan Africa 465 

have been reported (e.g. Wahab et al. 2018), where the explained maize yield variability hovered 466 

around 40%. Notwithstanding the low predictability of grain yield in farmers’ fields, high resolution UAV-467 

imageries are useful to generate agronomically relevant information about crop health and nutrient 468 

status. For instance, the UAV-derived VIs distinctly showed major differences between NOTs plots, and 469 

to certain extent in the farmers fields (Fig. 5), and this may be useful as a comparative basis for 470 

assessment of relative differences in nutrient and overall crop health status in non-uniformly managed 471 

smallholder farming systems. 472 

Generally, VIs derived during or close to the reproductive stages have been reported to be more suitable 473 

for yield assessment (Schut et al. 2018). For instance, around 8WAS, the maize plants are closer to 474 

anthesis and plant health at this stage is more likely to determine grain yield outcomes (Ritchie et al., 475 

1993). However, unanticipated environmental stress after the anthesis can negatively impact the grain-476 

filling process, with consequent implication for the final grain yield. The potential to achieve better 477 

predictability of grain yield by combining time series imagery-derived VIs (e.g. at 4WAS + 8WAS) 478 

deserves further consideration. Our comparison of prediction results from combined time-series data to 479 

results from single timestamp (especially at 8WAS) showed negligible or no improvement in the 480 
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explained yield variability across farmers’ fields. Although this contrasts slightly with the suggestion that 481 

time-series UAV imageries may improve yield hindcasting in cropping systems (Schut et al. 2018), it 482 

aligns with idea that vegetation sensing should be implemented close to the most critical reproductive 483 

stage of the target crop (Teal et al., 2006, Maresma et al., 2016, Sakamoto et al., 2014). By implication, 484 

the additional costs associated with the acquisition of multiple/time-series imageries (time and 485 

resources for flights and analytics) may not be justifiable, given the results of the yield prediction from 486 

the time-series data. Rather, targeting the most promising growth stage(s) can potentially be a more 487 

suitable and reliable approach.  488 

Although the combination of sparsely measured biophysical variable (mainly Ht) with UAV-derived VIs  489 

did not result in any clear gain in the predictability of grain yield in actual farmer-managed fields, Ht 490 

stands as a relevant predictor variable, especially in the NOTs. This was shown by the significance of 491 

relationship between yield and point-measured canopy Ht (R2≥0.62) in NOT, compared to the null model 492 

(R ≥0.25). This suggests that UAV-derived canopy height data may be very relevant for spatially-explicit 493 

prediction of grain yield if the mounted sensor is properly calibrated (with ground control references) to 494 

provide reliable elevational/surface height (z) data. In agreement with Burke and Lobell (2017), the 495 

opportunity to broaden the use of remotely-sensed imageries (including UAV-derived) at a larger scale 496 

for rapid yield assessment, especially across complex smallholder farmers’ field, may be harnessed with 497 

ground data for improved calibration of sensors and models.  This is evident under researcher-managed 498 

field conditions but results from farmer-managed field conditions seemingly requires further indepth 499 

enquiry. We were unable to fully elucidate the other factors that may account yield variability across the 500 

Farmer managed fields compared to NOTs due to lack of complete information from farmers. Although 501 

the farmers volunteered their farms for data collection and provided basic information on approximate 502 

sowing date, they were unavailable and unwilling to document actual tending operations (such as 503 

weeding, type and quantity of fertilizer, organic manure application, genotype etc). Future study on 504 

complex farming systems should include careful assessment of these potential factors.  505 

 506 

5.0 Conclusion 507 

Successful acquisition of quality high-resolution imageries and processing of the agronomically-relevant 508 

vegetation indices is an important step towards understanding within- and between-farm spatio-509 

temporal variability of yield and related indicators at field-scale. This study provides further insight into 510 

potential use of UAV-derived vegetational indices to assess yield variability for rapid agronomic 511 

monitoring and robust decision-support in smallholder farming systems. The weak predictability of 512 

maize grain yield variability based on selected indices (NDVI, NDRE, and GNDVI) indicates a lingering gap 513 

in UAV application for rapid yield assessment under complex smallholder farming systems, beyond the 514 

experimental conditions and large-scale field conditions. By setting up multilocational nutrient omission 515 

trials close to several farmers’ fields, our findings showed that nutrient, not genotype, significantly 516 

explained the observed yield variability. Based on the results obtained from the combination of UAV-517 

derived VIs with the ground-measured and promising biophysical variable (i.e.height), we reckon that 518 

the VIs do not provide sufficient basis to reliably predict grain yield. However, a likely advantage 519 

associated with the UAV relates to the potential to generate continuous high-resolution canopy height 520 

data which may be useful for spatially-explicit relative yield prediction, contingent on accurate 521 

calibration.  While the demand for in-season prediction of crop yield in smallholder farming systems 522 
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remains topical, especially between- and within-fields, further explorations of UAV application should 523 

consider and account for potential confounding factors in farmers’ fields (such as nutrient application 524 

regimes, soil characteristics, and planting density) which can vary between farms and influence canopy 525 

formation, light interception, and spectral reflectance at various stages of growth.  526 
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