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14  Abstract:
15 Rapid assessment of maize yields in smallholder farming system is important to understand its spatial
16 and temporal variability and for timely agronomic decision-support. Imageries acquired with unmanned
17  air vehicles (UAV) offer opportunity to assess agronomic variables at field scale, however, it is not clear if
18  this can be translated into reliable yield assessment on smallholder farms where field conditions, maize
19  genotypes, and management practices vary within short distances. This study was conducted to assess
20  the predictability of maize grain yield using UAV-derived vegetation indices (VI), with(out) biophysical
21  variables, in smallholder farms. High-resolution images were acquired with UAV-borne multispectral
22 sensor at 4 and 8 weeks after sowing (WAS) on 31 farmers’ managed fields (FMFs) and 12 nearby
23 Nutrient Omission Trials (NOT), all distributed across 5 locations within the core maize region of Nigeria.
24 The NOTs included non-fertilized and fertilized plots (with and without micronutrients), sown with open
25 pollinated or hybrid maize genotypes. Acquired multispectral images were post-processed into several
26  three (s) vegetation indices (VIs), normalized difference vegetation index (NDVI), normalized difference
27  red-edge (NDRE), green-normalized difference vegetation index (GNDVI). Biophysical variables, plant
28  height (Ht) and percent canopy cover (CC), were measured with the georeferenced plot locations
29  recorded. In the NOTs, the nutrient status, not genotype, influenced the grain yield variability and
30 outcome. The maximum grain yield observed in NOTs was 9.3 tha?, compared to 5.4 tha in FMF.
31  Without accounting for between- and within-field variations, there was no relationship between UAV-
32 derived Vis and grain yield at 4WAS (r<0.02, P>0.1), but significant correlations were observed at 8WAS
33 (r<0.3; p<0.001). Ht was positively correlated with grain yield at 4WAS (r=0.5, R?>=0.25, p<0.001), and
34  more strongly at SWAS (r=0.7, R?=0.55, p<0.001), while relationship between CC and yield was only
35 significant at 8WAS. By accounting for within- and between-field variations in NOTs and FMF
36  (separately) through linear mixed effects modeling, predictability of grain yield from UAV-derived VIs
37  was generally (R?<0.24), however, the inclusion of ground-measured biophysical variable (mainly Ht)
38 improved the explained yield variability (R? 20.62, RMSEP<0.35) in NOTs but not in FMF. We conclude
39  that yield prediction with UAV-acquired imageries (before harvest) is more reliable under controlled
40  experimental conditions (NOTs), compared to actual farmer managed fields where various confounding
41 agronomic factors can amplify noise-signal ratio.
42
43 Keywords: UAV; multi-spectral imageries; multi-locational, Maize yield; smallholder; vegetation indices
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44 Introduction

45 Assessment of crop yield at scale is needed to quantify and address productivity gaps (Burke and Lobell,
46 2017; Titonnell et al., 2005), yet associated costs are limiting for robust sampling at scale. Hence, the
47 development of appropriate technologies and methods that can provide leverage for quick and non-

48  destructive data collection remains a priority. The emergence and evolution of remote-sensing

49  technologies for the acquisition and processing of remotely-sensed proxy data is potentially valuable for
50 the assessment of yield or other agronomic variables at various scales. However, this is limited by

51  associated costs and availability of quality images for in-season and out-of-season applications.

52 Smallholder farming systems of sub-Saharan Africa (SSA) are often characterized by fragmented

53 farmlands and differentiated management practices (Herbert, 2005; Giller et al., 2011; Onuk et al., 2015;
54  Vanlauwe, et al., 2015). Most landscapes are complex mosaics with diffuse field boundaries and trees.
55  Therefore, imagery of the landscape needs to have sufficient spatial and temporal resolution to mask
56  out artefacts of vegetation or undesired features. Spatially-explicit data acquired over farming

57 landscapes can improve the understanding of the variability and dynamics of agronomic processes and
58 variables, especially in smallholder cropping systems where changes may be more frequent at smaller
59  scales. Quite often, these changes are influenced by management preferences of the farmers whose

60 decisions are mostly driven by various external factors, including accessibility and affordability of inputs
61 (Nagy and Edun, 2002; Olarinde et al., 2007). At the minimum, smallholder farming landscapes are

62  defined by different varieties sown at different with different soil nutrient application or status.

63  Consequently, smallholder farming landscapes are often characterized as mosaic(s) of individual fields
64  which have contrasting vegetation structures or types within a very small area (often, within tens of

65  meters). It is uncertain if and how such complexities can be harnessed to optimize yields, by rapidly

66  assessing in-season variability and diagnose within-field constraints such as nutrient limitations.

67  The recent advances in satellite-based remote-sensing of global land-cover coincides with the

68  emergence of Unmanned aerial/air vehicles (UAVs) for crop monitoring and yield assessment, therefore
69  adoption of UAV is expected to spread across large-scale mono-cropped and smallholder multi-cropped
70  farming systems (Efron, 2015; Hall, 2016; Yang, 2017). UAVs were initially developed for military use but
71 have become recognized as a tool to acquire high-resolution images that can be [post]-processed and
72 analyzed to understand spatially varying agronomic factors at field scale. Within the past five years,

73  several researchers have reported on the applicability of UAV for monitoring agronomic variables, (e.g.,
74 Benincasa et al., 2017, Yang et al., 2017; Zhang et al., 2014) in different cropping systems and across

75 diverse geographies (Hall, 2016; Song, 2016; Nebiker et al., 2016, Salami et al., 2014;). Many of these

76 variables are considered as potential proxies for yield estimation (Hall, 2016; Song, 2016; Nebiker et al.,
77  2016), especially at the plot and field level (typically up to 1000ha). There are several existing methods
78  for estimating crop yields with remote-sensing. A popular approach is to relate measured location-

79 specific yield to vegetation indices derived from RGB, multi-spectral, or hyper spectral camera sensors.
80  Vegetation indices respond often provide strong expression of the ground cover and chlorophyll content
81 of green material (Tucker, 1979; Huete et al., 2002). Many vegetation indices (VIs) have been developed,
82 with the most common being the normalized difference vegetation index — NDVI (Hall, 2016;

83 Haghighattalab et al., 2015; Maresma et al., 2016; Vega et al., 2015; Yang, et al., 2017). Based on varied
84 relationships between different reflectance spectral bands, other relevant Vis have been applied in

85 diverse agricultural production systems. These include the normalized difference red-edge (NDRE),

86  green normalized difference vegetation index (GNDVI), green canopy vegetation index (GCVI), red
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87  vegetation index (RVI), and red-edge canopy index (RECI) and many others (Gitelson et al., 2011; Nguy-

88 Robertson et al., 2012). Since these VIs represent spectral (and to a lesser extent, structural)

89  characteristics of the vegetation, they are potential proxies for rapid assessment of yield and yield

90  variability. Further, when these Vs are derived from spatially-explicit remotely-sensed imageries, they

91 can provide very useful understanding of yield variability, at varying spatial scales. The diagnosis of

92 nutrient constraints and crop yield differences between fields/plots with the use of individual Vis have

93 been promising e.g. (Benincasa et al., 2017; Wahab et al., 2018), and researchers have proposed that

94  combination of VIs can provide additive sensitivity effect and improve the detectability of nuanced

95  vegetational characteristics to improve the assessment of variations in agronomic parameters, including

96 vield (e.g. Gitelson et al., 2011; Nguy-Robertson et al., 2012). This is because single Vs can be

97  constrained by vegetation structure and composition which may be undetectable at specific

98  wavelengths of the electromagnetic spectrum. For instance, greenness of plants grown under adequate

99 nutrient conditions has been reported to compromise the accuracy of the remotely-sensed NDVI by
100 multispectral sensor due to saturation within the green spectral band (Isla et al., 2011; Gu et al., 2013;
101 Maresma et al. 2016). This type of limitation can be avoided by using other VIs which relies on spectral
102 information from other reflectance bands within the electromagnetic spectrum.

103 While agronomic applications of UAVs are fast evolving (Yang et al., 2017), there are limitations. For
104  instance, Watanabe et al. (2017) indicated that sorghum plant height was overestimated by UAV, and
105  that high fertilization affected the relationship between UAV and ground-based measurements. Schut
106 et al (2018) reported that vegetation indices did not capture all management and biophysical factors
107  that can aid the accurate assessment of yield within fields. Yet, new generation UAV-borne sensors may
108  offerimproved assessment accuracies for crop monitoring especially in combination with [few] ground
109 level data. According to Sibley et al., (2013) and Schut et al. (2018), repeated in-season measurements
110  and good field-level accuracy are important criteria to derive useful information from remotely-sensed
111 imageries for rapid yield (and other agronomic) assessments. Given the complexity of smallholder

112  farming systems (Titonnell et al., 2005; Vanlauwe et al., 2015), it is important to assess the field

113  applicability of UAV, beyond experimental plot conditions, and within actual complex farming

114  landscapes where they can be deployed for rapid farm-level decision support. Schut et al. (2018)

115 indicated yield variability explained by selected VIs within specific crop farms reduced greatly across an
116  array of fields compared to within fields where there is a higher homogeneity and noted that accurate
117  ground reference data may improve the assessment of in-season yield variability. These ground data can
118  include biophysical variables, such as plant height (Ht) and Canopy Cover (CC), which have been

119  reported as valuable for non-destructive yield(-variability) assessment in smallholder farmers’ field.

120  These biophysical variables represent morphological characteristics and are useful for understanding
121 allometric characteristics of plants (Tittonell et al., 2005). There is a major knowledge gap regarding the
122 potential to improve in-season assessment of maize yield(-variability) in farmers field through

123 combination of ground-measured biophysical variables with UAV-derived Vls. Yet, there is a critical need
124  to evolve reliable and rapid approaches for timely decision support within smallholder farming systems.
125  Therefore, we conducted this study, within the maize-producing savanna region of Nigeria, to assess in-
126 season predictability of grain yield in multilocational smallholder maize farmers’ fields using UAV-

127  derived VI with and without ancillary observations of biophysical variables.

128
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130 Material and methods
131 2.1 Study Area

132 This study was carried out at multiple locations within the core maize production region of Nigeria,
133 namely Bunkure, Doguwa, Funtua, lkara, and Soba (Figure 1). The locations are within the Sudan and
134 Northern Guinea savanna agroecologies of the Country, which is the major cropping regions for grains
135 and legumes such as maize (Zea mays), cowpea (Vigna unguiculata), peanut (Arachis hypogaea), and
136 soybeans (Glycine max). The target areas for UAV-based data collection were selected based on: (i) the
137 location of nutrient omission trials (NOT) which were established under a different research activity to
138  identify and understand nutrient constraints that are limiting maize yield among smallholder maize
139  farmers (Shehu et al., 2018); (ii) the willingness of proximal farmers to grant access for ground-truthing
140  and vyield assessment in their farms, and (iii) the advisory guidance of National Space Research and
141 Development Agency (NASRDA) in Nigeria, which is critical for compliance with regulatory requirements
142  on UAV use in the Country.
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Figure 1: Map showing the multi-location of the farmers’ field and nutrient
omission trials (NOT) that were covered by unmanned air vehicle (UAV) flight
missions and included in this study.
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147 2.2 Smallholder Farmers’ Fields and Nutrient Omission Trials (NOT)

148  2.2.1 Nutrient Omission Trial Field (NOT) establishment: At the onset of the planting season for the
149  region, mid to late June 2016, NOTs (n=100) were established to assess the impact of varying soil

150 nutrient limitations on maize yield within the maize-based system of Nigeria under the Taking Maize
151  Agronomy to Scale in Africa (TAMASA) project (www.tamasa.cimmyt.org; Shehu et al., 2018). A subset
152  of the NOTs (n=12) were covered within the target locations for UAV flight. Each experimental unit

153 comprised of 12 contiguous plots (5.2m x 4m) planted with maize in two blocks of six plots, with one
154  block sown with open-pollinated genotype (OPV) and the other sown with hybrid genotype (HV). Within
155  each of the genotype block, nutrient omission fertilizer treatments were applied at recommended

156 optimal dosage, based on previous soil tests in the region. The nutrient treatments comprised a

157  combination of major nutrients required for maize production, including nitrogen (N), phosphorus (P),
158 potassium (K) and micronutrients (+). Hence, each genotype block received six fertilizer treatments (i.e.
159 Control, PK, NP, NK, NPK, and NPK+) applied on six plots, across twelve (12) multi-locational NOTs.

160  Therefore, a total of 144 plots were covered during flight missions at 4WAS and 8 WAS, across all the
161 target locations. All nutrients were applied at the establishment stage of NOT, except N which was

162  applied in 3 splits (at establishment, 3 WAS, and 6 WAS). Other details on rates and management of
163  NOTs are presented by Shehu et al. (2018).

164  2.2.2 Farmers’ fields: Since farmers made their farm-level decisions independent of our research

165 interests, we screened prospective volunteer farmers to select only farmlands that were sown with

166  maize within about 3 days of NOT establishment. The selected farmers’ fields (n=32) differed in size and
167 management, a typical configuration within smallholder maize-based systems. The specific varietal

168 choice of the farmers is generally unknown, however, within the maize-based area, farmers sow both
169  the open-pollinated (OPV) and hybrid (HV) genotypes.

170 2.3 UAV-based Imagery Acquisition and post-processing

171 We used an eBee UAV (SenseFly Inc., Switzerland, www.sensefly.com/drone/ebee.html) mounted with
172 multispectral 4C sensor (Airinov, France, www.airinov.fr) to acquire fine resolution images at each target
173 location. The e-Bee is a light-weight fixed-wing UAV, which can cover up to 600ha in a single flight at
174  1000m altitude, equipped with an onboard global positioning system (GPS), solar irradiance sensor, and
175 a ground calibration target. The multi-spec 4C camera has four passive sensors that record reflectance
176  infour spectral bands - red (R), green (G), red-edge (RE), and near infra-red (NIR) at 1.2 megapixels per
177 sensor. It has a global shutter, instant field of view (IFOV) of 0.9mrad, and low luminosity (>3000lux).
178  The UAV was flown to acquire fine-resolution images that cover the area of interest (including NOT and
179  farmers’ fields) at 4 and 8 WAS, coinciding with the onset of vegetative (V7) and tasseling (VT) growth
180 stages, respectively (Ritchie et al., 1993), and within the mid-season growth period where best

181 indication of post-harvest grain yield is obtainable (Geipel et al. 2014).

182 2.3.4 Post-processing

183  After the completion of each flight mission, the imageries were exported from the UAV along with the
184  flight log files for post-processing with Pix4D software (Pix4D v.3.1., Switzerland, www.pix4d.com). The
185  software provided platform for end-to-end post-processing of acquired imageries and offers the needed
186 flexibility to configure processing parameters based on desired output quality and target end-use of the
187 products. Overall, for each successful flight mission, ~ 400 images were geotagged and processed
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188  through several stages to generate final outputs in geotiff formats, including reflectance bands

189 corresponding to the four spectral reflectance domains of the multi-spec sensor, digital surface model,
190  digital orthomosaics, and Vls. The VI imageries were computed from corresponding spectral bands,

191 based on Equations i-iii. The consideration of VIs to be computed was limited to those that have been
192 reported as promising for agronomic application at the canopy level and in relation to vegetation status
193 in croplands, especially maize, with focus on selecting VIs are based on red, red-edge, and green bands
194 (Cammarano et al., 2014; Gitelson et al., 2005; Hatfield and Prueger, 2010; Vina et al., 2011; Xue and Su,

195  2017)

196

197 NDVI = Lnr—ered (i)
pnir+ pred

198

199 NDRE = pnir— pred.edge (ii)
pnir+ pred.edge

200

201  GNDV] = 2Rir—pgreen (iii)

pnir+ pgreen
202

203  Where, pnir, pred, pred.edge, and pgreen are the spectral reflectance of the near infrared band, red
204  band, red edge band, and green band, respectively.

205
206 2.4 Ground-truth data collection

207  We conducted in-situ measurement of NDVI with Greenseeker Handheld Crop Sensor HCS 100 (Trimble
208 Ltd., Sunnyvale, CA; https://agriculture.trimble.com/precision-ag/products/greenseeker). The

209  Greenseeker was held above the canopy (0.6 m) while walking for 30 - 60 seconds through each NOT
210 plot, or marked quadrats (4m?, n = 5) within each farm. The device proximally scans leaf greenness

211 (within a swath of ~0.25 m) through its infrared sensors and displays an NDVI value averaged over

212 duration of the scan. We did not acquire ground-truth measurement for other Vis due to cost (money
213 and labor) and because our goal was not to recalibrate the sensor, but rather to test the application of
214  UAV-borne multispectral sensor, for assessing yield variability based on the indices derived.

215 We adopted the crop-cut method to quantify grain yield, as recommended by the FAO and generally
216  regarded as the most objective method for yield estimation (Carletto et al., 2015; Wahab et al. 2018).
217 Harvest was conducted within 9m? quadrats in each NOT treatment plot, based on standard NOT

218  protocols, as presented by Nziguheba et al. (2009). In farmer’ fields, maize cobs were harvested and
219  grainyield was quantified in five (2m x2m) quadrats positioned along a diagonal transect within the
220 field. In both farmers’ fields and NOTs, the harvested cobs were shelled, and grain was oven dried to
221  determine moisture content. The weight of grain yield per sampling quadrat were converted to yields in
222 metric tons per hectare (t/ha) at 12% moisture content. The geographic coordinates were recorded as
223 degrees latitude and longitude at the center of each plot/quadrat in NOT and farmers’ field using a
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224  Garmin eTrex 20 GPS device (https://buy.garmin.com/en-US/US/p/87771#overview). Using Height ruler,
225 we measured height of 3 randomly selected maize stands within each quadrat, and the recorded values
226  were later averaged per quadrat at 4WAS and 8 WAS. Similarly, at both growth stages, we used

227  smartphone-based Canopeo app (http://canopeoapp.com/) to measure percent canopy cover in each
228 qguadrat, based on standard protocols (Patrignani and Ochsner, 2015).

229
230 2.5 Data Analyses

231 Data cleaning and multi-step spatial analyses of the data collected through ground measurements and
232 UAV-derived datasets were conducted using ArcGIS 10.3.1 (ESRI, Redlands, California,

233  http://www.esri.com/arcgis/about-arcgis) and open-source packages (including RGDAL, LMER, and
234  GGPLOT) in R analytical platform v.3.4.1.

235 2.5.1 Georeferenced locations and Data Extraction

236  The recorded geographic coordinates (X,Y) were processed and exported into point shapefiles in

237 WGS1984 datum in ArcMap. Using the UAV-derived imagery as a reference, some misaligned

238  coordinates were noted and corrected by editing the point shapefiles in ArcGlS. These misalighments
239 are likely due to the precision level of the recreational GPS unit (~*4m), hence, the editing process was
240 critical to ensure that each point shapefile location rests within designated field, and references the

241  appropriate NOT plot or farmers’ field. Using the geoprocessing “Create Regular Polygon” add-on tool in
242 ArcGlIS, 4-sided polygons (2m? for farmers’ field and 3m?for NOTs) were generated for each ground-
243  truthing points, using the point datasets as the centroid. These polygons represent the sampling support
244  unit for the ground-truthing process and were subsequently used in R (Raster package, Hijmans et al.,
245 2016), to compute zonal average statistics of UAV-derived VI cell values, for each location at the

246  matching support scale of the yield measurements.

247  2.5.2 Statistical Analyses of Data

248 Due to the slight skewness of the yield data, we applied log-linear transformation to normalize the

249  dataset. The output from the spatial zonal statistics which was computed from the UAV-derived

250 imageries, was processed as table and imported into R-Studio to assess correlation of VIs with measured
251  grainyield across the study locations, and separately within NOTs and FMFs. In the first level of the

252 analyses, we used linear multivariate regression approach (Equa. iv) to assess the variability of yield that
253 is explained by ground-measured variables in NOTs.

254 yleldl = ﬁo + Bl X1 + 32 X2 + ﬁl Xl + gij iv.
255  Where, B is the intercept, 5, , ; are slopes of observed variables X1, X;, X;, respectively.

256 In the second level, we independently and randomly split the NOT and FMF data into 70% calibration
257  data (93 datapoints for NOT and 72 data points for FMF) and 30% validation data (37 datapoints for NOT
258  and 27 data points for FMF). Some data records were excluded from further analyses in NOTs and FMFs
259  due toirresolvable missing datapoints or incomplete records. The random split of each dataset was

260 implemented at the Farm (i.e. field) level for independence of locations in the model calibration and
261  validation stages. Notwithstanding the assumption that both NOT and FMF data accrue to the same

262 population (i.e. smallholder farmers), separate models were fitted for NOTs vs. FMFs. The calibration


https://buy.garmin.com/en-US/US/p/87771#overview
http://canopeoapp.com/
https://doi.org/10.20944/preprints202010.0264.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 October 2020 d0i:10.20944/preprints202010.0264.v1

263  datasets were used to fit linear mixed effect models (Equa. v) for yield prediction, using UAV-derived Vls
264  at 4WAS and 8WAS as input variables, with and without the significant biophysical variables (as

265  determined from first step). The validation datasets were used to assess the accuracy of the prediction.
266  Similar to Burke and Lobell (2017), model fit was also applied to time series combination of 4WAS and
267 8WAS data, to assess potential applicability for improved prediction outcome (Equa. vi). The linear

268  mixed effect modeling framework included a random parameter that accounts for potential

269 indeterminable effect of differing management practices among farmers. Statistical parameters that
270  were evaluated to make inference include descriptive statistics (mean, range, coefficient of variation),
271 correlation coefficient (r, Equa. vii), coefficient of determination (R%, Equa. Viii), root means square error
272  of prediction (RMSEP; Equa. ix) and significance, P (tested at 95% confidence level). The best

273 relationship between measured yield and UAV-derived Vls is indicated by r closer to 1, R? closer to 1,
274  RMSEP closer to 0, and acceptable significance level (p<=0.05).

275 yield; = Bo+ Py Viy oo +B; X; + (1|Farm) + ;5 V.
276

277 yield; = Bo + X3 Pre Vlng o oo + LEZ8 Bit Xie + (1 Farm) + g5 vi.
278

279 r = n(Z{(Yob.s*Ypred)) _(Z{(Yobs)*z:{(ypred).) vii.

JOE@ap°2 ~(EL V0 2 (M Z W prea)2 ~EL ¥ prea )
280
281 R?= 1 Mors~Torea)2 viil
Zi(yobs_ Yobs)"2
282
283 RMSEP = \/Z“Y"”S‘nymdm i

284  Where, f3, is the intercept, ; is slope of UAV-derived Vegetation Index, V1, B; is the slope of measured
285 biophysical variable X; (when included in the model), and t is the growth stage at which the imageries
286  were acquired (in weeks after sowing, WAS). The additional term, 1|Farm, denotes assignment of Farm
287  as random variable where several factors can influence yield outcome. RMSEP is it root mean square
288  error of prediction; Y, is the observed grain yield; ?pred is the predicted grain yield; Y, is the mean
289 of observed grain yield; nis the number of datapoints.

290
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292 3.0 Results
293 3.1 Estimated grain yield and ground-truth biophysical variables (gNDVI, Ht, and CC)

294  The overall average estimated maize grain yield was 3.12 t/ha, with lower average yield estimated in
295 FMF (2.75 t/ha), than the average yield across the NOT plots (3.6 t/ha; Table 1). The maximum grain
296  yield (9.3t/ha) was attained by optimizing nutrient and genotype combination in NOT, exceeding the
297  maximum estimated yield in farmers’ fields (5.4t/ha; Fig. 2). Based on averages per treatment in NOT
298  plots, green seeker-measured gNDVI increased from 4WAS to 8WAS, and similar results were noted for
299 Ht and CC (Fig 3).
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Figure 2: Observed distribution of maize grain yield as estimated in smallholder farms across multi-
locational Nutrient Omission Trials (NOT) and Farmer Managed Fields (FMF).
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Figure 3: Ground measured normalized difference vegetation index (NDVI), plant height (Ht), and
percent canopy cover (CC) of maize in smallholder farms imposed with different nutrient treatment
conditions under multi-locational and widely distributed Nutrient Omission Trial (NOT).

*CTR = Control, N= Nitrogen, P = Phosphorus, K = Potassium, and + denotes addition of
micronutrients.

*The horizontal line on each boxplots shows mean value and the whiskers indicate the 95%

confidence interval.
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306 The initial analyses of univariate relationship between grain yield and ground-measured variables

307 indicated a poor correlation (R?<0.02; r<0.14 ; Figure 4). However, by including the known explanatory
308 variables (treatment, location, and genotype) into linear multivariate model, the explained variation in
309 vyield greatly improved (R*= 0.45 for all data, R?=0.67 for NOT, and R?=0.14 for FMF). Also, the

310 mutlivariate analysis of the NOT data showed that treatment and location, but not genotype,

311  significantly explained the observed yield variability (R*= 0.50; P<0.001). The average estimated yields
312  for HV (3.41 t/ha) was comparable to OPV (3.68 t/ha), considering all locations and treatments.

313
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Figure 4: Univariate relationship between maize grain yield and measured
normalized difference vegetation index (gNDVI), plant height, and canopy cover
percentage measured on Nutrient Omission Trials (NOTs) within smallholder
maize farms in Nigeria. Regression lines are included for only significant
relationships, assessed by the coefficient of determination, R-sq (at a=0.05).
314

11


https://doi.org/10.20944/preprints202010.0264.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 October 2020 d0i:10.20944/preprints202010.0264.v1

315

316  Table 1: Summary of multivariate assessment of yield variability in nutrient omission trial (NOT) plots
317  established at multiple locations within smallholder maize-based system of Nigeria.

318
Growth Source of
age ariation P-Value  Adj.R?
320 Genotype 1 0.69
)
< Treatment 5 <0.001 .k k
321 § Location 4 <0.001 0.59
322 gNDVI 1 0.21
Ht 1 <0.001
323 cC 1 0.63
324 Genotype 1 0.67
325 < Treatment 5 <0.001 0.64%**
% Location 4 <0.001
326 gNDVI 1 <0.001
397 Ht 1 <0.001
ccC 1 0.04
328
Genotype 1 0.66
329 Treatment 5 <0.001 0.67***
o O Location 4 <0.001
330 £< enov 1 <0.001
331 Ht 1 <0.001
CcC 1 0.08
332
333

334 3.2 UAV-derived VIs and their correlation with Yield

335 The UAV-derived VIs showed varying characteristics of the vegetation and provided contrasting visual
336 indication of nutrient-induced differences in vegetational characteristics, especially in the NOTs (e.g. Fig
337 5and 6). The phenological changes between 4WAS and 8WAS growth stages were observable in all the
338 UAV-derived VIl images (e.g. Table 2). The NDRE exhibited highest variation across farms, with highest
339  coefficient of variation (CV) of 1.13 in NOT plots at 4WAS, compared to GNDVI which consistently had
340 lowest CV at each growth stage, in both NOT and FMFs. Considering overall data from NOT and FMF, the
341 correlation matrix indicates that none of the Vls had a significant relationship with yield at 4WAS

342 (r<0.02, P>0.1), however, weak correlation emerged at 8WAS for NDVI and GNDVI (r<0.3; P<0.001). In
343 the NOTs, the Vis and grain yield were weakly correlated at 4WAS (r=0.23 and 0.33 for GNDVI and NDVI,
344  respectively, p<0.001), but this improved at later growth stage, 8WAS (r=0.40 and 0.47 for GNDVI and
345 NDVI, respectively, p<0.001). Contrastingly, in FMF, no meaningful relationship could be established
346 between Vs and grain yield at 4WAS, while the significant relationships at 8WAS were weak (r<0.2,

347  p<0.001).
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348  Table 2: Descriptive statistics of measured biophysical variables and UAV-derived vegetation indices within multilocation smallholder maize-
349  farms at two growth stages.

4WAS S8WAS
~Variable _min___max___mean _ CI(95%) SD ___ CV min___max___mean _ CI(95%) SD___ CV
UNDVI 0.00 0.82 0.42 0.02 0.18 0.43 0.29 0.89 0.77 0.01 0.10 0.13
NDRE 0.00 0.77 0.29 0.03 0.28 0.98 -0.18 0.82 0.30 0.04 031 1.04
GNDVI 0.24 0.71 0.48 0.01 0.10 0.21 0.39 0.86 0.67 0.01 0.08 0.12
w  gNDVI 0.15 0.82 0.42 0.02 0.14 0.34 0.19 0.85 0.68 0.01 0.08 0.12
% Ht (cm) 20.00 105.33 56.91 2.16 17.67 0.31 84.70 31430 182.12 5.29 43.20 0.24
la CC (%) 0.53 93.59 31.26 2.26 17.32 0.55 7.44 91.67 57.83 1.65 13.51 0.23
Z  vid(t/ha) 0.30 9.31 3.18 0.20 1.64 0.52 0.30 9.31 3.18 0.20 1.64 0.52
UNDVI 0.00 0.76 0.36 0.03 0.17 0.47 0.43 0.89 0.76 0.02 0.10 0.13
NDRE 0.00 0.75 0.22 0.04 0.25 1.3 -0.17 0.82 0.24 0.05 0.27 1.12
GNDVI 0.24 0.70 0.45 0.02 0.10 0.21 0.39 0.78 0.68 0.01 0.08 0.12
— gNDVI 0.15 0.82 0.38 0.02 0.12 0.33 0.19 0.85 0.68 0.02 0.09 0.13
2 Ht(cm) 24.00 105.33 55.48 3.12 17.98 0.32 92.00 272.67 184.42 6.96 40.10 0.22
CC (%) 0.53 93.59 33.50 3.36 19.37 0.58 2292 81.43 57.15 2.16 12.43 0.22
Yld (t/ha) 0.50 9.31 3.60 0.32 1.83 0.51 0.50 9.31 3.60 0.32 1.83 0.51
UNDVI 0.15 0.82 0.49 0.03 0.17 0.35 0.29 0.89 0.78 0.02 0.10 0.13
NDRE 0.03 0.77 0.36 0.05 0.30 0.84 -0.18 0.80 0.36 0.06 0.34 0.95
GNDVI 0.36 0.71 0.52 0.02 0.09 0.18 0.40 0.86 0.67 0.01 0.09 0.13
w Ht (cm) 20.00 96.70 58.36 3.02 17.31 0.30 84.70 31430 179.80 8.04 46.16  0.26
E gNDVI 0.15 0.72 0.47 0.03 0.15 0.32 0.45 0.81 0.68 0.01 0.07 0.10
CC (%) 3.62 63.38 2832 274 13.74 0.49 7.44 91.67 58.53 2.53 1453 0.25
Yld (t/ha) 0.30 5.40 2.75 0.23 1.30 047 0.30 5.40 2.75 0.23 1.30 0.47

350 Cl: Confidence interval ; SD: standard deviation; CV: coefficient of variation; min: minimum value; max: maximum value
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351
Figure 5: Vegetation indices (VIs) derived from UAV-sensed multispectral imageries, covering maize
plots within nutrient omission trials (NOTs) and farmers’ fields at Bunkure, Kano. The grey imagery
shows red-edge reflectance band acquired at 8 weeks after sowing (WAS) while the colored
imageries show the Vls at 4 and 8WAS.

352
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Figure 6: Nutrient-induced variation of UAV-derived vegetation indices (VIs) within multilocational
nutrient omission trials (NOTs) in smallholder maize farming systems at 8 weeks after sowing.

*NDVI denotes Normalized difference VI, NDRE is Normalized difference red-edge, and GNDVI is
green normalized difference VI.

353
354

15


https://doi.org/10.20944/preprints202010.0264.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 October 2020 d0i:10.20944/preprints202010.0264.v1

355
356  3.3. Predictability of grain yield variability with(out) biophysical variables

357  Considering relationship between observed grain yield and each Vls separately, highest explained yield
358  variability at 4WAS and 8WAS growth stages (49% and 54%, respectively) were recorded in NOTs,

359 compared to FMFs where highest yield variability explained was 42% at 4WAS (in the calibration

360 dataset). However, up to 73% of the observed yield variability was explained when the measured Ht
361  variable was separately included in the model, without including the VIs. At the validation stage, the
362 metrics (Tables 3a & b) showed low yield predictability with UAV-derived VIs alone, in both NOTs and
363 FMF. The maximum prediction of yield variability (r=0.56; R?=0.29) was achieved by fitting the mixed
364  model with GNDVI values from NOTs at 8WAS (Table 3a). There was no meaningful improvement in
365 yield variability that was explained by the VIs after merging datasets from both phenological stages (i.e.
366  4WAS + 8WAS) and analyzing them as time-series data.

367  Comparing the null model with and without the inclusion of each UAV-derived VI as explanatory

368  variable, the accuracy of yield prediction improved, with R? increasing from 0.03 (null model) to the

369  highest value of 0.29, based on GNDVI in NOTs. Following the pairwise inclusion of Ht in each prediction
370 model of the UAV-derived VIs, the predictability of grain yield at 4WAS and 8 WAS increased significantly
371 in NOTSs (Table 3a) but not in FMFs (Table 3b). In NOT, improved predictability of grain yield was seen in
372 NDRE+Ht, with R? increasing from non-significant low value (0.03) to a very significant high value (0.63,
373  p<<0.001) . Similarly, other VIs showed improved grain yield prediction to attain, with R? value peaking
374  at 0.64. The overall yield prediction error, RMSEP mainly decreased after the inclusion of the height
375 parameter (except when 4WAS & 8WAS NDRE data were combined), with maximum change (~79%)

376  associated with NDVI (Table 3a).

377 In contrast to NOTSs, the predictability of grain yield with VIs in FMF did not improve meaningfully (at
378  4WAS) or declined (~20% at 8WAS) after the inclusion of Ht variable in each model fit (Table 3b).
379  Similarly, the RMSEP values were stable, hovering around 0.03 —0.07, at both growth stages assessed.

380
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Figure 7a: Relationship between observed and predicted maize grain yield based on fitted linear mixed effect model using UAV-derived
Vegetation Indices (VIs) data that was acquired from multilocation smallholder maize farms in Nigeria. NOT=Nutrient Omission Trials;
FMF=Farmer managed fields; WAS=Weeks after sowing; a = Intercept; b=slope estimate; *Calibration metrics are shown on the charts and
additional validation metrics are presented in Tables 3a&b.
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Figure 7b: Relationship between observed and predicted maize grain yield based on fitted linear mixed effect model using and UAV-derived
Vegetation Indices (VIs) combined with plant height (Ht) data, from multilocation smallholder maize farms in Nigeria. NOT=Nutrient
Omission Trials; FMF=Farmer managed fields; WAS=Weeks after sowing; a = Intercept; b=slope estimate; *Calibration (Cal) metrics are
shown on the charts and additional Validation (Val) metrics are presented in Tables 3a&b.
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385  Table 3a: Model performance metrics for maize grain yield prediction using UAV-derived vegetation indices (VI), with(out) inclusion of
386 measured biophysical variable, height (Ht) in multilocational Nutrient Omission Trials (NOTs) within farmers’ fields.

No-VI NnovI NDRE GNDVI

-Ht§  +Ht “Ht ___ +Ht -Ht _ +Ht - Ht + Ht

a - 1.73 241 175 281 174 235 1.73

b - 0.43 018 041 009 043 019 0.42

< r - 0.65 043  0.63 023 065 043 0.64
= R? - 0.41 016 038 003" 040 0.6 0.39
RMSEP - 0.21 038 023 029 021 040 0.23

a - 0.77 182 077 282 075 180 0.76

b - 0.69 029  0.68 009 069 033 0.68

2 r - 0.80 049  0.79 024 080 056 0.80
z R? - 0.62 022 062 0.03™ 063 029 0.62
RMSEP - 0.30 059 033 029 030 049 0.32

a - 0.80 1.84  0.67 2.8 075 180 0.69

2 b - 0.69 029  0.70 009 068 033 0.71
= r - 0.80 050  0.81 023 079 055 0.81
4 R? - 0.63 023  0.64 003" 061 029 0.65
RMSEP - 0.30 057 035 029 032 049 0.30

387

388 ns denotes non-significance at a = 0.05; WAS denotes Weeks After Sowing; a is the model intercept, b is the slope, r is the correlation coefficient,
389 R?is the adjusted coefficient of determination, and RMSEP is the root mean square error of prediction. # Metrics of Null yield model without
390 any explanatory variable: a=2.80; b = 0.09; r = 0.24; R? = 0.03"; RMSEP = 0.30

391
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392  Table 3b: Model performance metrics for maize grain yield prediction using UAV-derived vegetation indices (VI), with(out) inclusion of
393 measured biophysical variable, height (Ht) in multilocational smallholder farmers’ fields.

No-VI NDVIE NDRE GNDVI

- Ht¥ + Ht - Ht + Ht - Ht + Ht - Ht + Ht

a - 1.74 1.73 1.73 1.75 1.75 1.71 1.71

b - 0.25 0.26 0.25 0.26 0.26 0.25 0.26

< r - 0.53 0.53 0.54 0.52 0.53 0.54 0.53
E R? - 0.26 0.26 0.26 0.24 0.25 0.26 0.25
RMSEP - 0.05 0.05 0.05 0.07 0.06 0.04 0.04

a - 1.75 1.75 1.79 1.75 1.75 1.73 1.74

b - 0.25 0.25 0.23 0.26 0.26 0.26 0.25

< r - 0.53 0.53 0.49 0.52 0.51 0.54 0.51
ogo R? - 0.25 0.25 0.21 0.24 0.23 0.26 0.24
RMSEP - 0.04 0.06 0.05 0.07 0.07 0.06 0.04

a - 1.74 1.75 1.77 1.72 1.74 1.70 1.71

2 b - 0.25 0.26 0.24 0.27 0.26 0.27 0.26
% r - 0.53 0.52 0.49 0.53 0.53 0.54 0.50
& R? - 0.25 0.24 0.21 0.25 0.25 0.26 0.23
RMSEP - 0.04 0.07 0.06 0.07 0.06 0.05 0.03

394

395 ns denotes non-significance at a = 0.05; WAS denotes Weeks After Sowing; a is the model intercept, b is the slope, r is the correlation coefficient,
396 R?is the adjusted coefficient of determination, and RMSEP is the root mean square error of prediction. # Metrics of Null model without any
397 explanatory variable: a=1.74; b =0.25; r = 0.53; R = 0.26; RMSEP = 0.05
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398
399 4.0 Discussion
400 4.1 Grainyield relationship with measured biophysical variables

401 In this study, the set-up of NOTs next to farmers field provided important context for the understanding
402 of grain yield gap and predictability in smallholder farming systems. For instance, the attainment of very
403  vyield (up to 9.3t/ha) in NOT plots where nutrient limitations are fully addressed, in contrast to control
404 plots where grain yield was as low as 0.49 t/ha, supports the notion that proper soil nutrient

405 management can reduce the existing yield gap within the smallholder farming systems (Giller et al.,

406  2011). Availability of nutrients for plants uptake at various growth stages affects overall plant

407 development, including tallness, greenness, and canopy formation, which are represented by the

408  measured biophysical variables (height, gNDVI, percent canopy, respectively). The significant

409 relationships assessed between observed yield and measured variables (mainly gNDVI and Ht) aligns
410  with previous findings that support selection of relevant proxies for rapid in-season assessment of yield
411  variability (Tittonell et al. 2005, Tagarakis and Ketterings, 2017). However, the assessed relationships
412 were weakly expressed (R?<0.17 and r<0.42), in contrast to reported findings where strong relationships
413 were established between maize grain yield and proximally-sensed biophysical variables in Maize farms,
414  with R%-value typically greater than 0.5 (e.g. Tagarakis and Ketterings, 2017). It should be noted that
415 assessed relationships between yield and proxy variables can be influenced by artefacts of location-

416  dependent soil nutrient conditions and environmental factors, such as short-term drought conditions.
417  Such artefacts can negatively impact the final yield outcome by compromising plant vigor during the
418  reproductive/grain-filling stages (before- and after-8WAS). In the study area, soil nutrient limitations and
419  poor soil management practices are common (Olarinde et al., 2007; Shehu et al., 2018), and we

420  observed that most farmers applied nutrients at early growth stage (mostly by surface dressing or

421 broadcasting) without considering the high potential for rapid nutrient losses due to the sandy textural
422  characteristics of the soil. This prevalent practice may pose implications on the crop performance and
423 predictability of the grain yield based on snapshot spectral information acquired at 2 growth stages.
424  However, further discussions on potential effects of nutrient management practices on yield, based on
425  farmers’ resource endowment and preferences, are beyond the scope of this paper.

426
427 4.1 Nutrients, not genotype, may influence UAV-derived Vis — Insights from NOT

428 Based on results derived from the multi-locational NOTs, we noted that the light reflectance signals

429  recorded by the UAV-borne multispectral sensor is more sensitive to nutrient variations than genotype
430  variations in smallholder farmer fields. This provides relevant insight about the potential effect of

431 inherent genotype diversity in smallholder farming systems on wider applicability of UAV across many
432 (and independently managed) farmers fields. Similar to other crops, maize genotypes are often released
433 with intent to improve resilience or tolerance to stress (such as drought and weed) and consequently
434  improve quality and quantity of yield outcomes. In some instances, such improvement may include

435 modification of traits related to leaf morphology and canopy characteristics, to achieve desired response
436  totarget stress condition. Despite the expected difference in phenotypic traits of different genotypes
437 (Makanza et al., 2018), the implementation of this study during the wet season, with full control of

438  weed in the experimental plots, may have addressed the major stresses that are likely to compromise
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439  the growth of the OPV genotype in this study. Therefore, it is noteworthy that the variations of soil

440 nutrients exerted dominant effect on the overall yield outcomes for both OPV and Hybrid genotypes,
441  without noticeable contrast. This is further supported by our observed data on percent canopy coverage
442 (not reported) which showed that canopy coverage was similar within the OPV and Hybrid genotype

443 plots, at both growth stages evaluated. Since N and P are the most prevalent soil nutrient deficiencies
444 within the savannah maize-based system of Nigeria (Carsky et al., 1998; Hartmann et al., 2014), the

445 application of appropriate fertilizer likely supported similar leaf formation and ground coverage of maize
446 plant across the plots, without disparity between genotypes.

447
448 4.3 In-season grain yield variability prediction with UAV-derived VI: A nuanced outcome

449  The comparison of grain yield predictability in NOTs versus FMFs unravels often-neglected limitation to
450  the applicability/transferability of agronomic predictive tools from experimental “controlled” conditions
451  to usually “complex” farming systems. Despite the set-up of multilocational NOTs in smallholder farmers
452  field, next to fields that are managed by farmers, we observed a strongly contrasting difference in the
453 potential to predict grain yield based on UAV-derived VIs under both conditions. The differentiated

454 contribution of Ht as an ancillary predictor variable for grain yield, showing high influence in NOTs and
455 negligible/negative influence in FMFs, erodes the expectation that such a variable is universally potent
456  to improve the application of Vs for yield prediction. Rather, an interplay of factors can confound the
457  usefulness of high-resolution UAV-derived VIs, including (amplified) noise that may be generated at the
458  canopy level, especially in smallholder farming systems where canopy formation and structure are

459 usually indeterminate across farms (Giepel et al., 2014; Tittonnel et al. 2005).

460  The grain yield variability explained by the UAV-derived VIs in FMFs (maximum of 42% in calibration and
461 26% in validation ) is lower than reported accuracy from other studies which are based on ground-level
462 proximate-sensing of crop fields, plots, or at point locations (Maresma et al., 2016; Tagarakis and

463 Ketterings, 2017; Tagarakis et al., 2017; Benincasa et al., 2017), and suggests that the application of UAV
464  forin-season yield assessment is limited by issues related to predictability of yield from single (or sparse)
465  time-stamp imageries. Recently, similar findings from complex farming systems in sub-Saharan Africa
466  have been reported (e.g. Wahab et al. 2018), where the explained maize yield variability hovered

467  around 40%. Notwithstanding the low predictability of grain yield in farmers’ fields, high resolution UAV-
468  imageries are useful to generate agronomically relevant information about crop health and nutrient

469  status. For instance, the UAV-derived Vls distinctly showed major differences between NOTSs plots, and
470  to certain extent in the farmers fields (Fig. 5), and this may be useful as a comparative basis for

471  assessment of relative differences in nutrient and overall crop health status in non-uniformly managed
472 smallholder farming systems.

473  Generally, VIs derived during or close to the reproductive stages have been reported to be more suitable
474  foryield assessment (Schut et al. 2018). For instance, around 8WAS, the maize plants are closer to

475  anthesis and plant health at this stage is more likely to determine grain yield outcomes (Ritchie et al.,
476 1993). However, unanticipated environmental stress after the anthesis can negatively impact the grain-
477  filling process, with consequent implication for the final grain yield. The potential to achieve better

478  predictability of grain yield by combining time series imagery-derived Vls (e.g. at 4WAS + 8WAS)

479 deserves further consideration. Our comparison of prediction results from combined time-series data to
480 results from single timestamp (especially at 8WAS) showed negligible or no improvement in the
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481  explained yield variability across farmers’ fields. Although this contrasts slightly with the suggestion that
482 time-series UAV imageries may improve yield hindcasting in cropping systems (Schut et al. 2018), it

483  aligns with idea that vegetation sensing should be implemented close to the most critical reproductive
484 stage of the target crop (Teal et al., 2006, Maresma et al., 2016, Sakamoto et al., 2014). By implication,
485  the additional costs associated with the acquisition of multiple/time-series imageries (time and

486  resources for flights and analytics) may not be justifiable, given the results of the yield prediction from
487  the time-series data. Rather, targeting the most promising growth stage(s) can potentially be a more
488  suitable and reliable approach.

489  Although the combination of sparsely measured biophysical variable (mainly Ht) with UAV-derived VIs
490 did not result in any clear gain in the predictability of grain yield in actual farmer-managed fields, Ht

491  stands as a relevant predictor variable, especially in the NOTs. This was shown by the significance of

492 relationship between yield and point-measured canopy Ht (R?20.62) in NOT, compared to the null model
493 (R20.25). This suggests that UAV-derived canopy height data may be very relevant for spatially-explicit
494  prediction of grain yield if the mounted sensor is properly calibrated (with ground control references) to
495 provide reliable elevational/surface height (z) data. In agreement with Burke and Lobell (2017), the

496  opportunity to broaden the use of remotely-sensed imageries (including UAV-derived) at a larger scale
497  for rapid yield assessment, especially across complex smallholder farmers’ field, may be harnessed with
498  ground data for improved calibration of sensors and models. This is evident under researcher-managed
499 field conditions but results from farmer-managed field conditions seemingly requires further indepth
500 enquiry. We were unable to fully elucidate the other factors that may account yield variability across the
501 Farmer managed fields compared to NOTs due to lack of complete information from farmers. Although
502  the farmers volunteered their farms for data collection and provided basic information on approximate
503  sowing date, they were unavailable and unwilling to document actual tending operations (such as

504  weeding, type and quantity of fertilizer, organic manure application, genotype etc). Future study on

505  complex farming systems should include careful assessment of these potential factors.

506
507 5.0 Conclusion

508  Successful acquisition of quality high-resolution imageries and processing of the agronomically-relevant
509  vegetation indices is an important step towards understanding within- and between-farm spatio-

510 temporal variability of yield and related indicators at field-scale. This study provides further insight into
511 potential use of UAV-derived vegetational indices to assess yield variability for rapid agronomic

512 monitoring and robust decision-support in smallholder farming systems. The weak predictability of

513 maize grain yield variability based on selected indices (NDVI, NDRE, and GNDVI) indicates a lingering gap
514 in UAV application for rapid yield assessment under complex smallholder farming systems, beyond the
515 experimental conditions and large-scale field conditions. By setting up multilocational nutrient omission
516 trials close to several farmers’ fields, our findings showed that nutrient, not genotype, significantly

517 explained the observed yield variability. Based on the results obtained from the combination of UAV-
518  derived Vs with the ground-measured and promising biophysical variable (i.e.height), we reckon that
519 the VIs do not provide sufficient basis to reliably predict grain yield. However, a likely advantage

520 associated with the UAV relates to the potential to generate continuous high-resolution canopy height
521  data which may be useful for spatially-explicit relative yield prediction, contingent on accurate

522 calibration. While the demand for in-season prediction of crop yield in smallholder farming systems
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523 remains topical, especially between- and within-fields, further explorations of UAV application should
524  consider and account for potential confounding factors in farmers’ fields (such as nutrient application
525 regimes, soil characteristics, and planting density) which can vary between farms and influence canopy
526  formation, light interception, and spectral reflectance at various stages of growth.
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