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Abstract:   Air sampling using vortex air samplers combined with species specific amplification of 

pathogen DNA, was carried out over two years in four or five locations in the Salinas Valley of 

California.  The resulting time series data for the abundance of pathogen DNA trapped per day 

displayed complex dynamics with features of both deterministic (chaotic) and stochastic dynamics.  

Methods of nonlinear time series analysis developed for the reconstruction of low dimensional 

attractors provided new insights into the complexity of the pathogen abundance data, but also 

indicated that practicality may limit the capacity for definitively classifying the dynamics of air 

borne plant pathogen inoculum.  Over the two years of the study five location/year combinations 

were classified as having stochastic linear dynamics and four were not.  Calculation of entropy 

values for either the number of pathogen DNA copies or for a binary string indicating the pathogen 

abundance data were increasing or not, revealed (1) some robust differences in the dynamics 

between seasons that were not obvious in the time series data themselves, and also (2) that the series 

were almost all at their theoretical maximum entropy value when considered from the simple 

perspective of whether instantaneous change along the sequence is positive or not.    

Keywords: time series; entropy, average mutual information, stochastic processes, deterministic 

dynamics 

1. Introduction 

“We now have to look at apparently random time series of data, be they from the stock market, 

or currency exchanges, or in ecology and ask are we seeing “random walks down Wall street” or 

deterministic chaos, or, often more likely, some mixture of the two.” —Sir Robert May [1]. 

 

The study of disease dynamics in plant pathology has been dominated by analysis of situations 

where disease increases monotonically within single growing seasons, or over several seasons [2]. 

Reflecting this focus, the literature on the use of monotonic growth curve models is voluminous and 

methodology is well developed. In contrast, the literature on how to handle long, oscillating  data 

series for plant pathogen populations is rather thin, with only isolated case studies [3-7] employing 

a range of statistical approaches. To date there has been no serious effort in the botanical 

epidemiology literature to establish general properties of time-series data associated with disease.  

This is due in part, no doubt, to the fact that time series methods have been considered to be relevant 

mostly to multi-season data, and mult-season datasets are scarce in plant pathology. However, with 

the advent of molecular probes for studying the airborne inoculum of plant pathogens, it has become 

much easier to capture time-series data within single growing seasons [5, 6, 8]. 
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The increasing number of studies monitoring airborne inoculum offers a promise to 

epidemiologists who have an interest in developing evidence-based decision rules for managing 

interventions during the growing season of the crop. Given that potential application in disease 

management for spore traps and quantification of target nucleic acid sequences, it is important that 

efforts are made to develop an analytical approach which takes account of the relevant statistical 

properties of such data. What can experimenters expect to see when they collect such data? What 

types of dynamical behaviour are likely to be apparent, and how should the results be interpreted in 

relation to the use of the data in disease management?  

The work we report here falls into the broad theme on decision-making that runs through several 

of the contributions in this special issue [refs from special issue]. In the case of the current work, our 

effort is aimed more at understanding the basic properties of the data, than in deriving decision-rules 

from them. Nonetheless, it is important to be aware of any informational limitations inherent in the 

data, so that efforts to use air sampling as a means of forecasting intervention occur with realistic 

expectations. 

Airborne concentrations of pathogen inoculum have been recently monitored using vortex 

(spinning rod) air samplers combined with species-specific quantitative polymerase chain reaction 

(qPCR), in some cases used commercially for crop management decisions. Carisse and colleagues 

pioneered the approach in one of the first examples of commercial use in managing fungicide 

applications to control Botrytis leaf blight in onion in Quebec Province, Canada [5, 9, 10]. This work 

(along with characterization of effective fungicide regimes and conducive weather conditions) helped 

to improve monitoring and reduce disease outbreaks in onion crops in Quebec. The use of spore traps 

linked with qPCR assays has been developed successfully for disease monitoring in several other 

pathosystems, including monitoring for early season inoculum for grape powdery mildew [11], 

where mitigating early season inoculum can reduce yield losses in susceptible varieties. These studies 

show that managing disease based on the binary presence or absence of detection of pathogen 

inoculum can be quite successful, especially when monitoring for primary inoculum. The use of these 

systems for mitigating secondary inoculum is challenging. 

Spinach downy mildew, caused by the obligate oomycete pathogen Peronospora effusa, is the 

most important threat to spinach production worldwide. Choudhury et al. [6] analyzed several sets 

of qPCR-based spore trap data collected from the Salinas Valley in California.  The resulting time-

series data were analyzed by fitting a series of statistical models to characterize both trend and 

periodicity. While the approach was successful in producing a description of the observed dynamics 

and linking important statistical features to plausible biological mechanisms, it offered little in the 

way of general understanding of inoculum dynamics. Analyses of the coefficients of prediction and 

the Lyapunov exponents of the resulting time series suggested that the datasets were quasi-chaotic. 

Further analyses of this example dataset could reveal general dynamics of airborne inoculum for 

plant pathogens.  

Recent developments in time-series analysis [12], based on information-theoretic quantities  

offer some promise in being able to extract more generic properties from the available data and to 

provide a first example for the botanical epidemiology literature.  Our objectives in this paper are to 

revisit the data originally studied by Choudhury et al. [6] and apply the methods suggested by [12] 

in order to describe the dynamics in information theoretic terms. The analyses also place our data 

from botanical epidemiology in the wider context of the analysis of dynamical systems allowing 

interdisciplinary comparison and our primary intended audience is plant pathologists and 

epidemiologists who might be interested in an introduction to these topics. For that reason our 

approach is somewhat pedagogical but does not delve deeply into the underlying technical details. 

We provide R code and data necessary to replicate a full set of analyses for one of the nine time series 

analyzed, in the repository at this URL: 

https://github.com/robchoudhury/spore_trap_information_theory. 

2. Materials and Methods  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 October 2020                   doi:10.20944/preprints202010.0255.v1

https://github.com/robchoudhury/spore_trap_information_theory
https://doi.org/10.20944/preprints202010.0255.v1


 3 of 20 

 

2.1 Data collection. Air-borne inoculum of P. effusa was sampled at four locations in the Salinas 

Valley of California in 2013 and 2014 using vortex air samplers constructed by Dr. Walt Mahaffee 

(USDA-ARS Corvallis, OR) and operated by Dr. Steven Klosterman (USDA-ARS Salinas, CA). 

Presence of the inoculum and quantification were achieved using qPCR amplification of a species-

specific DNA sequence in the total DNA extract from the sampler rods. Details of the sampling 

procedure, qPCR primers, reaction conditions, and translation to pathogen DNA copy number for 

any day, t (Nt) from the qPCR cycle threshold number are described in Klosterman et al., (2014). 

2.2 Data preparation. Samples were recovered from the air samplers on an irregular sampling 

interval of two to three days depending on the availability of technical staff. In the original 2017 study 

we accommodated the irregular sampling interval by fitting flexible sine function to the observations, 

having first removed any temporal trend by linear regression. In the current work, in order to utilize 

methods based on information theoretic properties, we interpolated the raw data to produce 

transformed time series with a regular time step of one day. The interpolation was achieved by linear 

interpolation to fill in missing data points. All nine data series were subjected to the same set of 

analyses so that we could compare their statistical properties in light of additional information 

characterizing each individual location-season combination. The interpolation method will have the 

effect of somewhat smoothing the data and the interpretation of the results of the analyses takes that 

into account: we avoid over-interpretation of fine-grain aspects of the analyzed series and focus on 

the major dynamic features that are unlikely to be strongly influenced by the interpolation. 

2.3 Basic time series analysis. After interpolation of the data to a daily time step, each of the nine 

time series consisted of 129 observations of estimated target DNA copy number of P. effusa trapped 

for a 24 hour period. The nine time series were first inspected for evidence of an overall trend in copy 

number with time. Increasing trends were detected in seven of the nine series; and the series were 

tagged as to whether an increasing trend was apparent or not. Irrespective of whether the initial 

inspection suggested a trend to be present, in order to standardize the pre-treatment of the data, a 

simple linear regression with time (i.e. Julian day of observation) was fitted to the natural logarithm 

of the copy number. The residuals from the regression were then exponentiated to produce the 

detrended series that were subsequently used for time series analysis. In what follows we refer to the 

series analysed as Nt, indicating the (detrended) copy number on day t. When log-transformed values 

are analyzed they are denoted nt. 

For each series we obtained the autocorrelation function (ACF), the partial autocorrelation 

function (PACF), and the phase plot of the series with ln(Nt+1) on the ordinate and ln(Nt) on the 

abscissa. The PACF differs from the standard autocorrelation function in that it considers only the 

direct effect of observations at one point in the series on observations separated by lag τ; indirect 

effects, operating through the interposing points in the series are removed. 

2.4 Nonlinear time series analysis. To characterize the time series in terms of nonlinear dynamics 

we follow an approach suggested by Kantz and Schreiber [13] and Huffaker et al.  [12]. The various 

quantities estimated for each series were obtained using functions provided in the R packages 

“nonlinearTseries” [14] or “TseriesChaos” [15], “TseriesEntropy” [16]. Additional calculations to obtain 

empirical entropy values used the package “entropy” [17], or were coded directly in R. As with many 

other aspects of applied data analysis for several of the steps in nonlinear time series analysis, there 

is no single method that is guaranteed to provide optimal results under every circumstance, and for 

many of the procedures there are no formal test statistics to indicate that a “significant” result has 

been obtained; we followed the approaches suggested in the references. Code and data for example 

analyses are provided in the supplementary online material and, in addition can be downloaded from 

https://github.com/robchoudhury/spore_trap_information_theory. The R code is provided as is and 

we offer no guarantee that it will work when adapted to other data sets. 

2.4.1. Surrogate testing for nonlinear dependence. Since nonlinear analysis can be time-consuming, 

an initial step should be to test for lack of linear dependence in the observed data. An agreed 

approach for performing this is to perform surrogate tests [12, 14].   Different versions of the surrogate 

test are implemented in nonlinearTseries and TseriesChaos. The basic idea in both cases is to construct 

an empirical hypothesis test by resampling from the observed data, with the test statistic being a 

suitable property of the data that will hold under linear dependence but not under nonlinear 
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dependence. One of the simplest approaches relies on the idea that a Gaussian linear process will 

show time reversibility. Randomized permutations are obtained using an approach in which the 

phases of the Fourier transform of the observed data are randomized. A two-sided hypothesis test is 

implemented to examine whether there is evidence that the observed value differs from the set of 

surrogates generated in the data resampling routine. We set the “significance level” option at 0.02 

which results in the observed data being treated as one observation in a set of 100, with the two-sided 

test examining whether the observed data are in the p = 0.02 upper or lower tail of the sample. The 

supplied function includes a built-in diagnostic plot of the resampling test. We implemented our own 

diagnostic graphical representation for the test.  

TseriesEntropy implements a more complex surrogate testing procedure. First, the best-fitting 

linear autoregressive (AR) model is selected on the basis of the Akaike Information Criterion (AIC). 

The residuals of the AR model are resampled (with replacement). For each resampled series, a metric 

entropy measure ( the Bhattacharya–Matusita–Hellinger measure, Sp) [18] is calculated at different 

lags. Based on the relevant properties of the resampled data, the 95% confidence band for Sp can be 

calculated and the values for the observed series compared with the confidence band. If Sp for the 

observed series falls outside the band, the series can be considered to show nonlinear, as opposed to 

linear, dependence at the relevant lags. The entropy-based approach in TseriesEntropy is 

computationally more demanding than the expectation-based approach in nonlinearTseries. In initial 

work we examined both approaches. The results reported here are for the time-reversibility approach 

implemented in nonlinearTseries. The code supplied in the supplemental materials includes an 

example of the regression-based approach.  

2.4.2. Characterizing nonlinear properties. Assuming that the surrogate tests indicate sufficient 

reason to proceed with NLTS the characterization of the dynamics in terms of their tendency to 

chaotic versus stochastic uncertainty is an important component of the ensuing effort. Following the 

pioneering work of Takens [19] one widely accepted approach to NLTS analysis proceeds by 

attempting to reconstruct important features of the complete (and only partially observed) phase 

space of the whole system by using the methods of time delay embedding to characterize the time 

series of a single component of the system. 

In the current context, where we want to understand the dynamics of the observed series in 

order to be able to use similar time series data in disease management, the capacity to reconstruct the 

phase portrait of the whole system is of secondary importance to characterizing the dynamics of the 

observed series. Nonetheless, the time delay embedding approach is valuable because the features of 

the dynamics it reveals are useful for our primary purpose. 

Three properties of the series are important in NLTS these being; (i) the average mutual 

information (AMI), I(Nt,; Nt-τ), of the time series data at successive lags, τ = 0, 1, 2, … τmax; (ii) the 

Theiler Window, tw, and (iii) the embedding dimension, m. 

2.4.2.1. The AMI function The AMI function is calculated by binning observations and calculating 

the mutual information that the observation that Nt-τ is in the jth bin provides about Nt being in the ith 

bin. The results are averaged over all of the available data to produce the average mutual information. 

A graphical plot of I(Nt,; Nt-τ) against lag, τ = 0, 1, 2, … τmax produces an information-theoretic 

analogue of the ACF plot, but one in which nonlinear, as opposed to linear, lagged dependence is 

visualized. The first minimum, or the first occurrence of a value below an empirical threshold, of the 

AMI function are taken to be an indication of the embedding time delay, d, of the series, since these 

values indicate a time lag at which observations have a low AMI and are, in a general sense, 

uncorrelated. 

2.4.2.2. The Theiler Window (tw) The Theiler Window, tw, [20, 21] is used to define the minimum 

separation along the time series that two points must have in order to be included in procedures used 

to find the embedding dimension, m (see below). Theiler’s review [21] gives a detailed and technical 

account of the issues and the various approaches suggested (up to that time). 

For long time series both TseriesChaos and nonlinearTseries offer functions to generate a space-

time plot [22] from which tw can be selected by choosing a value at which  there is a low probability 

of points being close in the phase space for a given time lag separation.  For short time series the 
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space-time plot approach may not give usable results and other options may need to be tried; this 

was the case with our datasets which consist of 129 observations. 

As an easily obtained first approximation, Huffaker et al. [12] suggest using the first minimum 

of the standard autocorrelation function (ACF). Since ACF is a linear function there are risks in using 

it to estimate correlation structure of nonlinear data, indeed this issue was one of the motivations for 

Theiler’s review [23] of methods for identifying the dimensionality of nonlinear attractors. The 

problem, in general, appears to be that nonlinear correlation may occur at larger lag separation that 

would be suggested by the ACF. 

In the current case, lacking a reasonable alternative, we opted for a trial-and-error approach. 

With both the AMI function and the ACF available we had estimates of both general and linear 

correlation with lag, while the original time series and the corresponding phase plots, in particular, 

also help to indicate suitable values of tw. For each series, we started with the value suggested by the 

first minimum of the ACF, noting also whether this lag separation was longer or shorter than the 

value suggested by the AMI. Where the AMI reached its first minimum at longer lag than the ACF 

we used a range of estimates for tw and examined the effect of changing tw on the estimated 

embedding dimension, m. 

2.4.2.3. The embedding dimension, m. Options for estimating, m, are either the method of False 

Nearest Neighbors (FNN) offered in TseriesChaos (Huffaker et al. [12] pp 67-69) or Cao’s [24] 

algorithm implemented in nonlinearTseries. Briefly, the motivation for the FNN approach comes from 

the idea that (in the current case) the observed time series of pathogen DNA copies represents only 

one dimension of a higher order dynamical system. We can think of the observed series as 

representing the whole higher order dynamical system projected onto a single dimension. With this 

perspective, points that appear close to one another may actually be widely separated in the full 

dimensional space of the dynamical system. The idea of the FNN computation is to select a subset of 

points within a given “radius” of each other, but separated by at least the value of tw, and to track 

whether they remain as neighbours as the dimensionality of the assumed attractor is incrementally 

increased. If the proportion of FNN is plotted against the number of dimensions, m, the first value of 

m at which the proportion of FNN is minimized provides an estimate of the embedding dimension. 

In the approach suggested by Cao [24] the embedding dimension is identified by calculating a 

pair of functions, referred to as E1(m) and E2(m), of putative values for the embedding dimension. 

Note that Cao’s original notation used d in place of m. Cao’s method starts by calculating an overall 

Euclidean distance measure between pairs of points on time delay vectors for successively larger 

assumed values of m. Function E1(m) calculates the ratio of the distance measure at successive pairs 

of values, (m+1,m). Cao’s insight was that this ratio stabilizes close to 1 if the data are generated by 

an attractor. The second function, E2(m), focuses on the distance between only the nearest neighbours 

in the time delay vectors and operates on the distance measure based only on them. As with E1(m), 

the function returns the ratio between successive pairs (m+1,m).  If the data are generated by a 

deterministic attractor E2(m) has the property that at some value m*, E2(m*)! = 1, whereas if the data 

are generated by a process dominated by stochastic noise E2(m) ≅ 1,∀m. Thus, in addition to providing 

an estimate of the relevant embedding dimension, Cao’s method offers the advantage over the FNN 

approach, of providing an indication of whether the data-generating process is characterized by 

deterministic or stochastic uncertainty. 

2.5 Additional entropy measures. In addition to the characterization of the dynamics provided by 

the time-delay-embedding approach, we calculated two empirical entropy values to help in 

understanding the uncertainty of the data on airborne pathogen DNA. The first approach worked 

directly on the DNA copy number time series (following detrending if necessary, see above). The 

entropy function from the R package entropy was used to calculate empirical estimates of the entropy 

in the data at each time point by iteratively adding the datum for each time point to the data used for 

calculation and recalculating the entropy. Calculation using this approach starts by constructing a 

binning structure for the data and then estimates the entropy based on the frequencies of observation 

in each bin. We started the iterative process at the 10th time point, so that the first estimate of entropy 

was based on the first 10 observations of each series. The calculation then proceeded as outlined 
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above, with the second estimate being based on the first 11 data points and so on. The maximum 

likelihood option for the entropy function was used throughout. 

As a second approach to characterize uncertainty in the time series data in relation to decision 

making, we first transformed each series into a binary string of length (tmax-1). First differences 

between successive pairs of values were calculated and if the resulting difference was greater than 0 

(indicating Nt+1>Nt) then a 1 was entered for the value of the string; Nt+1≤Nt resulted in a 0. The 

calculation then proceeded along similar lines to those outlined for the entropy of the copy number, 

iteratively increasing the size of the dataset by one time point and calculating a new entropy value.  

In the current case at each time point we calculated the proportion of the data that were 1s and then 

used Shannon’s equation for expected information to give an entropy value in bits for the string at 

each time point (including all data up to that time). The calculation was coded directly in R. We 

initiated the calculation with the first two observations and then iterated the calculation one time 

point at a time. 

2.6. Linear auto-regressive models. In discussing the analysis of time series data for biological 

populations, Royama [25] noted that for auto-regressive (AR) models where instantaneous growth 

rate is modeled as a function of lagged population sizes, there is a qualitative difference in the types 

of behaviour that a second order lag model can display compared with a first order model. Further, 

given the capacity for second order models to generate quite complex oscillatory patterns, even when 

completely deterministic, Royama [25] suggested they could be expected to approximate the 

behaviour of simple nonlinear models. Since the main aim of our investigation is to look at the utility 

of non-linear methods, the linear AR models included here were fitted for the purpose of illustrating 

the extent to which a linear model can account for the observed behaviour of the data collected from 

air samplers.  

We followed the conceptual approach that draws on the work of Royama [25] and Turchin [26] 

in fitting the AR linear models. The process starts with the log-transformed (loge) time series, denoted 

nt. The instantaneous log growth rate Rt, is defined as nt+1-nt and the estimated linear AR model is, 

then  

 

Rt = a0 + a1nt + a2nt-τ+ ε, τ = 1, 2, ... τmax                       (1) 

 

in which a0, a1 etc are parameters to be estimated, ε is an error term, and τ is an index indicating  

lag dependence. Selection of the order of lag dependence (i.e. the value τmax) to use in fitting the AR 

models in each case was guided by the estimates of ACF and AMI functions (see section 2.4.2, above). 

Parameter estimation was achieved by the standard least-squares approach implemented in the lm() 

function in the R base statistics package. For the selected model in each case we noted the percent 

variance accounted for by the model in form of the standard adjusted-R2, and a coefficient of 

prediction similar to the one proposed by Turchin [26]. The coefficient was obtained as follows. We 

fitted a model consisting of only the mean value of the dependent variable and captured the residual 

sum of squares, (RSSmn). Next we calculated 1-(RSSmod/RSSmn), in which RSSmod is the residual sum 

of squares from the selected model. When RSSmod>RSSmn the coefficient has a negative value and 

indicates that the model is fitting noise. Values approaching 1 occur when the observed series has a 

pattern of oscillations that can be captured reasonably well in simple auto-regressive models. Finally, 

values in the region of 0 indicate that the series is dominated by noise and, possibly, too short and 

complex to be characterized well. 

 

3. Results 

3.1. Time series properties and nonlinearity. Time series graphs for the nine series of spore trap DNA 

copy number data are shown in Figure 1. Two of the nine series did not require detrending prior to 

analysis, these being King City South, 2014 and Gonzales, 2014. The results of testing for evidence of 

nonlinear dependence using Cao’s method are shown in Table 1 along with other summary 

parameters of interest for the nine series. For four series – Salinas 2013, Soledad 2013, King City North 
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2013, and Gonzales 2014 – the surrogate (bootstrap) test led to rejection of the null hypothesis that 

the data were compatible with a stochastic linear (i.e time-reversible) process. The output from the 

bootstrap analysis for each series is shown in Figure 2. 

 

Table 1. Summary statistics for the 9 time series of pathogen DNA copy number.  

 Sal13 Sal14 Gon13 Gon14 Sol13 Sol14 KcN13 KcS13 KcS142 

ACF1 3 6 9 7 5 8 5 7 5 

PACF 4 8 3 10 6 5 4 5 5 

AMI 5 11 6 10 4 10 6 7 6 

m 6 6 6 6 9 6 6 7 7 

λ1 0.05 0.16 0.09 0.06 0.13 0.18 0.04 0.04 0.05 

Linear? N Y Y N N Y N Y Y 

Entropy, 

nats 

(copy no.) 

1.00 0.98 1.58 0.88 1.70 0.88 0.63 2.04 1.14 

Entropy, 

bits 

(binary) 

0.99 0.99 1.00 1.00 0.98 0.98 1.00 1.00 1.00 

%VAF 11.4 6.6 3.6 4.2 7.1 17.0 26.4 20.1 7.5 

pred Coeff 0.14 0.14 0.10 0.06 0.08 0.18 0.30 0.22 0.09 

1ACF, lag at which series autocorrelation function has first minimum; PACF, lag at which the partial 

autocorrelation function has first minimum; AMI, lag at which the series average mutual information function 

has its first minimum; m, estimated embedding dimension; λ1, the maximum Lyapunov exponent; Linear?, 

outcome of surrogate test for compatibility of series with stochastic linearity; Entropy copy no., estimated 

entropy (nats) of the copy number time series; Entropy binary,  entropy (bits) of the binary series indicating if 

the copy number increased between successive pairs of observations; %vaf, percent variance accounted for in 

the best auto-regressive linear model for the series of instantaneous rates of change in the log copy number data; 

pred Coeff, prediction coefficient for the auto-regressive linear model (see text for details) 

2Location/year combination: Sal, Salinas; Gon, Gonzales; Sol, Soledad; KcN, King City, North; KcS, King City, 

South; 13, 2013, 14, 2014  

 

The results of using Cao’s [24] method to test for deterministic versus stochastic dynamics indicated 

that all 9 series had a stochastic nature; the value of function E2(m) stayed close to the value 1 for all 

values of m tested. Graphical output from the R function is given in the supplemental material In 

Appendix A in Figure A1.  Note that the R function uses the symbol, d, in the place of, m. 
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Figure 1. Detrended daily pathogen DNA copy number trapped (right axis scale) and cumulative 

entropy (nats, left axis scale) in the copy number series for 9 location/year combinations in which 

vortex air samplers were used to sample for the presence of DNA from the downy mildew pathogen 

of spinach, P. effusa in the Salinas Valley of California. Left column, 2013, right column, 2014. The 

King City, North location was sampled only in 2013. 
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Figure 2. Results from surrogate tests (i.e. bootstrap data resampling) to assess the compatibility of 

spore trap data giving daily pathogen DNA copy numbers with time reversibility. The initial bar (in 

red) in each graph is the test statistic calculated for the original data. The remaining bars are the 

values calculated for bootstrap resamples of the data constructed in such a way as to break any 

temporal autocorrelation in the original data. The dashed horizontal lines show the standard 

deviation of the surrogates. Four of the nine series fail the two-sided hypothesis test for compatibility 

with time reversibility (i.e. stochastic linearity). Further details are given in the main text. 
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Figure 3. Phase space plots for the 9 series of detrended daily pathogen DNA copy numbers detected 

on vortex air samplers. The data are loge values of the detrended data. Series orbiting a fixed attractor 

or a limit cycle show clockwise orbits. The obvious tendency for the phase portraits to lie along the 

diagonal for which nt = nt+1 is partly an artifact of detrending and partly a result of the fact that the 

series all contain sequences of observations that are very close to the mean value of the detrended 

series. 
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The phase plots (Figure 3) for the detrended series show a strong tendency for the points to lie along 

the diagonal on which nt = nt+1, with short orbits away from this line, typically lasting no more than 

three to four time steps. These features are indicative of stochastic variation around a fixed value with 

a mixture of immediate and time-delayed feedback Turchin [26]. 

For all 9 series the value of the dominant Lyapunov exponent (λ1) was greater than 0, indicating 

chaotic divergence would occur in independent realizations generated by the same data generating 

process in every case. Although positive, the values of λ1 were small, ranging from 0.04 to 0.17 (Table 

1). A correlation matrix plot for the numerical data in Table 1 is given as Figure A2 in Appendix A. 

Across the nine series the value of the Lyapunov coefficient was negatively correlated with the 

percent variance accounted for in fitting linear regression models to the series of instantaneous log 

growth rates and the coefficient of prediction for the linear fits; series with a higher Lyapunov 

exponent gave rise to poorer linear auto-regressive models. 

The best fitting auto-regressive models for the time series of instantaneous rates generally captured 

a low proportion of the variance in the series (Table 1).  Additional information about each model is 

given in the supplementary material. In general, the fitted values from the model showed less 

variability than the observed data, although in some cases the qualitative fit to the series, in tracking 

the direction of the oscillations was reasonably good (see Figure A3 and associated text in the 

supplemental material). The main result from these analyses was that while the data did not exhibit 

oscillations that could be easily attributed to a low-dimensional nonlinear attractor, nor were they 

easily described by auto-regressive linear models.  

The AMI and ACF functions were correlated, but there was no consistent tendency for the AMI to 

reach its first minimum at higher lag than ACF.  The AMI function minimized at higher lag than the 

ACF in five of nine cases, the functions minimized at the same lag in one case, and in the remaining 

four cases the AMI minimized at lower lag than the ACF.  

In general, the estimated embedding dimension, m, was similar to the value suggested by the first 

minimum of the AMI and ACF functions; across the nine series m was negatively correlated with 

both AMI and ACF. The relatively large estimated values for m are indicative of complex dynamics 

in the observed data, but we note, again, that the data series are relatively short which may affect the 

accuracy of the estimated parameter. 

Summarizing the results for the diagnosis of time series properties, a mixture of findings resulted.  In 

some cases there were indications of deterministic chaos – i.e. positive estimated values for the 

Lyapunov coefficient, failure of time reversibility test in surrogates in some cases  – while others were 

indicative of stochastic noise  – i.e. in five out of nine cases the surrogate test failed to reject the 

hypothesis of time reversibility, and the first minimum value of the ACF and AMI functions were 

generally similar, indicating that the more general information-theoretic test of association based on 

average mutual information, did not routinely detect dependence in the series beyond the linear 

association measured by the ACF. 

3.2 Entropy measures of time series uncertainty. We calculated entropy values along the time series for 

each location/year combination in two different ways. For the detrended copy number data the 

entropy was calculated (in nats) using an automated binning procedure. The resulting series of 

entropy values are shown together with the data in Figure 1. 

In the second year of observations (2014) the detection of pathogen DNA on the traps was sporadic.  

All four series showed an early peak in copy numbers around day 10 and then a long period of low-

to-no detection until around day 80, when all locations experienced another peak in detection.  Apart 

from these two shared features, the time series of trap counts were superficially dissimilar across the 
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four locations sampled in 2014, but the series of cumulative entropy values showed a similar pattern 

in all four cases, with an initial peak corresponding to the trap data at day 10 followed by a long 

reduction as successive, similar trap results resulted in a reduction in heterogeneity in the data. The 

peak in trap counts caused a further peak in entropy around day 80, followed by a second period of 

decline. In general the cumulative entropies in 2014 did not exceed 1.5nats, except in the case of King 

City, South for which the initial peak was 1.78 nats. The final values for the entropy of the four series 

in 2014 are given in Table 1 and range from 0.88 to 1.14 nats. 

In contrast to the more or less consistent pattern revealed by the 2014 data, the cumulative entropy 

values for the 2013 data sets were more variable. The final values for the five series tended to be 

higher than those in 2014 ranging from 1.00 to 2.04 nats, with the exception of the King City North 

location which had a final entropy value of 0.63 nats. In Salinas and Gonzales the entropy value 

peaked early at over 2 nats and declined somewhat over the course of the season, although still 

finished at or above 1.00 nats. In contrast to this early peak and decline pattern, at the remaining three 

sites in 2013 uncertainty increased through much of the season, in association with repeated 

oscillations in the trap copy number data. 

In addition to characterizing uncertainty in the daily trap data directly we also assessed the 

uncertainty in the simpler issue of whether the observed series increased or not between each 

successive pair of days. Figure 4 shows the time series for the entropy of the cumulative binary series 

together with the corresponding series of Rt, the instantaneous change in the log copy numbers 

between pairs of observations. The analysis showed that in all nine series the entropy remained close 

to its theoretical maximum value (i.e. 1 bit) over much of the season, following an initial transient 

period lasting approximately 30 days. In three of the series (King City, North 2013, Soledad, 2013 and 

Salinas, 2014) ) the entropy did settle close to its maximum until later in the season, but even in these 

cases the final entropy value was close to the theoretical maximum of 1 bit.  Note that in Figure 4 the 

entropy values are shown on a log scale to allow detail of the changes over time to be visible.  

4. Discussion 

The quotation from the late Sir Robert May’s introduction to the Landmark edition [1] of his 

monograph Stability and Complexity in Model Ecosystems was chosen deliberately, and for more 

than one reason. First, May’s point that the dynamics of real systems are likely to be a mixture of 

stochastic and deterministic processes applies directly to our observations on the time series of spore 

trap DNA copy numbers for P. effusa in the Salinas Valley. Secondly, May was an advocate of the idea 

that models can and should be used in biology in a strategic way to try to understand broad types of 

behaviour, without necessarily considering immediate questions of application or numerical 

accuracy in any specific case. While our analyses are predominantly statistical in nature, they are 

nonetheless carried out from the same strategic perspective. Our aim in this study was not so much 

to produce accurate predictive models of any of the series, as it was  to use the tools of nonlinear time 

series analysis, together with some linear methods, to investigate the broad properties of pathogen 

DNA copy data collected from vortex air samplers. 

Our analyses of the copy number data obtained over two seasons in the Salinas Valley indicate that 

the time series exhibit a mixture of stochastic and deterministic properties. For example, all of the 

series had positive Lyapunov exponents, indicating a tendency to deterministic sensitivity to initial 

conditions. On the other hand application of Cao’s [24] approach indicated that the series were 

stochastic. The surrogate (bootstrap) test of time reversibility indicated that five series were 

compatible with the hypothesis that they were generated by a stochastic linear process while four 

were not. Relatively low values for the coefficient of prediction calculated from linear autoregressive 

models also suggests that the series were strongly influenced by stochastic noise. Taken together 

these results indicate that the series lie in the transition between stochastic and  
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Figure 4. Graphs for 9 location years showing the series of instantaneous growth rates between 

successive time points (right axis scale) and the cumulative entropy (bits) of the series of binary 

values indicating whether the growth rate series is positive or not (left axis scale). The left axis is 

shown on a loge scale to allow the variation in the entropy values to be visible. Note that on this 

scale the theoretical maximum value is 0.  

 

deterministic uncertainty, in what Turchin [26] refers to as quasi-chaotic territory at the boundary 

between the two types of dynamics. 

It seems reasonable, based on the dependence of oomycete pathogens such as P. effusa on suitable 

weather for spore production and release, that the copy number on air sampler traps would show 
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appreciable stochasticity. Not only is the number of DNA copies detected dependent on the response 

of the pathogen to uncertain weather conditions, the physical processes of dispersal and transport in 

the air, together with the vortex sampling process mean that there are multiple sources of 

stochasticity between the release of spores and subsequent trapping events. At the same time, crop 

management practices associated with planting and harvesting salad spinach happen on cycles of 

between 30 and 45 days and may be a source of deterministic forcing in the data which complicates 

the dynamics. If the data are predominantly stochastic in nature, then traditional statistical models 

should be able to describe the pattern and characterize the uncertainty. Similarly, Turchin [26] argues 

that dynamic patterns generated by low-dimensional attractors can also successfully be described by 

relatively simple models. Our analyses indicate that, at least in the case of P. effusa in the Salinas 

Valley in California, the observed dynamics may fall between these two preferred making 

characterization of the dynamics difficult. The estimated embedding dimension values ranged from 

6 to 9, indicating that the detrended time series did not have dynamics compatible with a low-

dimensional attractor.  On the other hand, when the time series were regressed on their own lagged 

history the adjusted percentage variance accounted for was small, ranging from a minimum of 3.6% 

(Gonzales, 2013) to a maximum of 26.4% (King City, N, 2013). 

If we consider the wider implications of our results some general comments are warranted.  First, if 

we consider the data in relation to variability in time and space there are clear implications for making 

robust inferences about the quantity of pathogen inoculum in the air.  For example, at three of the 

four locations where samplers were deployed in two successive years, the dynamics were classed as 

linear in one year and not linear in the other.  The four locations span a linear distance of 

approximately 80km for Salinas in the north to King City in the south.  In 2014, a year with relatively 

little pathogen activity, peaks in trap counts and corresponding time series of entropy values showed 

relatively good agreement.  In contrast, in 2013, when inoculum pressure was higher generally, there 

was much less agreement between locations, and extrapolation from one location to another would 

not necessarily have yielded robust conclusions about the dynamics of the pathogen at another 

location.  The most striking example is the contrast between Salinas and King City S. In Salinas 

between day 20 and day 80, trap catches were relatively low and the cumulative value of the entropy 

showed a steady decline from approximately 1.5 nats to under 1 nat.  In contrast, over the same period 

in King City multiple peaks in trap catches were noted and entropy in the catch data rose from 

approximately 1 nat to approximately 2 nats.    

Our analyses suggest that there may be quite severe practical limitations to being able to characterize 

pathogen dynamics using the combination of vortex air sampling and DNA target amplification.  

There are few, if any, other comparable published datasets to compare with these data.  Even with 

data series extending over to nearly 130 data points, the fact that the coefficient of prediction for 

autoregressive models was close to zero is an indication that the time series may be so noisy that 

extracting a useful, succinct, model of the dynamics may be difficult.  This view is reinforced by the 

results of analyzing the simplified data series in which the quantitative variation in the copy number 

was replaced by a binary string indicating whether the differences between successive pairs of points 

were positive or not.  Analysis of that binary string showed that in all 9 cases it was at, or close to its 

theoretical maximum value of one bit.  As Grünwald [27] points out, model selection and fitting can 

be considered as analogous to data compression and when a string of bits is essentially random it is 

difficult to achieve an accurate description of the data that is more concise than simply writing the 

data out.   The results obtained here indicate that the binary strings derived from the time series data 

are close to being simple sequences of independent Bernoulli trials with a probability of 0.5 

determining the outcome.   While these results point to restrictions in the utility of dynamical analysis 

for helping with practical problems in disease risk forecasting, at the same time they suggest a great 

deal of interesting investigative research on dynamics and their positions on the continuum form 

pure deterministic complexity to pure stochastic noise. 
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In spite of the potential limitations that our work has indicated in relation to being able to describe 

dynamics in a concise, robust way, there are existing examples of the successful use of spore samplers 

combined with DNA quantification in disease management [10,11] and the limitations that may exist 

in being able to classify dynamics, do not prevent the use of the technology in providing empirical 

evidence of abrupt peaks in the abundance of aerial inoculum that may indicate the onset of disease. 

 

Supplementary Materials: The following are available online at 

https://github.com/robchoudhury/spore_trap_information_theory, R code to reproduce results for 

Salinas, 2103:Sal_13.R, Data required to run the analysis for Salinas 2013: spore_fill.csv, R Project 

file:spore_trap_information_theory.Rproj. 
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Appendix A 

 

￼ 

Figure A1.  Output from the R function estimateEmbeddingDim for each series.  The dimension, d, at 

which function E1 first falls within the critical region around 1 is taken to be the embedding 

dimension for the series.  The behaviour of function E2 is provides an indication of the nature of the 

series.  In this case E2 is approximately equal to 1 for all values of d for all series, indicating the the 

series are stochastic in nature.  Note that the embedding dimension is denoted with the letter m in 

the main text of the paper. 
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Figure A2.  Correlation matrix plot indicating the numerical value and direction of correlations 

among the summary variables for of time series properties across the 9 example times series.  

Abbreviations for the series are explained in footnote 1 of Table 1 in the main text. 
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Figure A3.  Observed data and fitted values for linear auto-regressive models fitted to equation 1 in 

the main text in the case of each of the nine series.  Observed data: gray dashed line with open 

symbols.; fitted values black open symbols.  The simple autoregressive models are capable of 

capturing some of the dynamic behaviour in the series, but generally lack the amplitude of the 

observed data and are poor at representing abrupt changes from large positive to large negative 

growth rates. 
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Appendix B 

All appendix sections must be cited in the main text. In the appendixes, Figures, Tables, etc. 

should be labeled starting with ‘A’, e.g., Figure A1, Figure A2, etc.  
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