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Abstract: The purpose of this paper is to provide the necessary mathematical justification for 
applying the methods of econophysics into economics, particularly with introducing the second law 
of thermodynamics as a fundamental economic constraint. This was done by beginning with the 
axioms defining game theory and presenting a new set of desiderata that define logical consistency 
instead of economic rationality. The focus on utility was entirely removed from the derivation of 
subjective probability. Utility was then reintegrated with the derivation of the entropy functional of 
the canonical ensemble for the individual. The individual’s entropy functional was then aggregated 
to create a group entropy functional. This approach formally resolved the Allais paradox providing 
a formal methodology for choice under uncertainty. Because entropy is simply a measure of 
information, it should only be natural to consider this a fundamental part of economic theory. 
Macroeconomic models have no formal inclusion of entropy. Because of this, those models ignore 
the simple fact that the economy is made up of people. As entropy is a direct result of the complexity 
of human action, it makes little sense for the study of human action not to explicitly use and rely 
upon entropy. 
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1. Introduction 

Physicists tend to be more concerned about explaining what is observed than providing a 
cohesive underlying theory explaining why things are a particular way. What comes first is the 
quantification of the observation and then, eventually (although not always), some advance in 
providing an underlying theoretical basis for the model. This mindset has its roots in the origin of the 
modern physical sciences. In fact, the development of the study of thermodynamics was driven 
entirely by the economic need of improving heat engines at the beginning of the industrial revolution 
[1]. Similarly, the modern chemical industry grew from satisfying the economic needs of improving 
textile dyeing and petroleum processing [1, 2]. In the physical sciences, theory is always derived from 
empirical observation. 

Given this background, it is understandable that physicists went off and founded the field of 
econophysics without having any formal theoretical basis in economics – relying entirely on 
heuristics and intuition to advance their field [3]. In econophysics, they grafted the same 
mathematical approaches that were developed and refined in physics over the past 200-years into 
economics [3]. Because there was not a provided theoretical basis with a suitable mathematical 
explanation, the economic journals have refused publication limiting the acceptance of econophysics 
in economics [3]. 

The purpose of this paper is to provide a theoretical basis to formally bridge the work of 
econophysics into macroeconomics and microeconomics. If history is to be our guide, we need to turn 
to how thermodynamics became explained entirely by statistical mechanics. This was done in 1902 
by Josiah Willard Gibbs in his seminal work Elementary Principles in Statistical Mechanics developed with 
especial reference to the rational foundation of thermodynamics [4]. Gibbs applied Hamiltonian mechanics 
to create a distribution for a set of particles’ distribution-in-phase. Then, he applied information 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/


 2 of 20 

 

theory1 to that distribution to derive an expression for the entropy of the system [4] 46-years before 
Shannon developed information theory [5]. 

To be an effective bridge, this paper needs to be firmly rooted in the underlying mechanics of 
microeconomic theory and then to develop from that foundation the necessary structure to provide 
a rational foundation to econophysics.2,3 To provide the economic foundation, the paper will use the 
subjective probability of the individual which was developed as part of subjective expected utility 
theory, SEU [6, 7]. Because of the shortcomings of SEU [8, 9] and the limitations of economic 
rationality [10], this paper will have to make some adjustments to SEU to make it work for what we 
need of it. 

The paper will then derive the entropy of an individual using the maximum entropy approach 
of Jaynes [11] for the discrete case and the generalization of Matsoukas [12] for the continuous case. 
It is at this point that the approach presented here differs from Gibbs [4] in two ways. Frist, Gibbs 
considered the aggregate probability of the canonical ensemble from the beginning of his book, we 
are starting with a similar expression of the canonical ensemble of the individual first and will then 
aggregate into the group. Second, Gibbs began with continuous distribution functions, while here we 
begin with discrete distributions later generalizing into continuous distributions. We will then apply 
some simplifying maximum entropy assumptions taken from Rawls political philosophy [13] to 
provide a maximum entropy representation of social entropy. 

The derived entropy functional will then be extended further into economics to provide the 
fundamental relationships of econophysics, provide the economic canonical ensemble, derive the 
various thermodynamic relations, provide an absolute metric of economic utility, and resolve the 
Allais paradox by presenting a model for choice under uncertainty that incorporates entropy. 

The derivation of the functional relations similar to those of thermodynamics allows 
econophysics to apply their models directly into economics. We hope that by providing a general 
derivation based on the axioms underlying game theory, that econophysics can gain more purchase 
in the realm of mainstream economic thought. 

2. Foundation 

Because the approach taken here relies extensively on information theory, we need to turn to an 
existing economic theory which formally defines a measure space suitable for stochastic analysis, game 
theory. Specifically, we will focus on SEU at the point of development as it was in the early 1960’s.4 By 
“rolling back” to this earlier version of game theory, we will be removing a number of “patches” that 
have been implemented since then and we will have to spend some time on patching the theory 
ourselves to make it functional. 

This section will present the necessary adjustments to the theory to make it a suitable foundation 
for statistical economics. These changes are broken down into four main areas: exploring the Allais 

 
1 Gibbs called this his index of probability [4]. Shannon would later call the same thing uncertainty 
[5]. The expectations of these measures are Clausius’ entropy and information entropy respectively. 
The difference being the application of the Boltzmann constant 𝑘 to give the Clausius entropy [4]. 
2 Because this paper so closely mirrors the approach of Gibbs [4], the author felt that the title should 
reflect Gibbs’ in honor of and acknowledgement to his work. 
3  Gibbs use of the word rationality was based on the observability of a system. In economics, 
rationality is defined as a being conforming to a narrow set of rules. These rules restrict the domain 
of what is and is not acceptable economic behavior. For the purposes of this paper, rationality is 
defined as being that activity which is observable. Because this has to be contrasted with economic 
rationality, economic rationality will be referred to as “economic rationality” to delineate it from 
rationality. 
4 There has been nearly 60-years of work on game theory since the early 1960’s. The intent with 
selecting this time of development was to limit the amount of work needed to reconcile later advances 
in the field and create as manageable of an approach as possible by selecting only what was absolutely 
needed from the first 20-years of game theory’s existence. 
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paradox, shifting economic rationality to being the much weaker condition of observability, providing 
the desiderata necessary for consistent reasoning, and then deriving subjective probability and 
subjective utility under the new framework. 

Before beginning in earnest, it is important to go through the pertinent developments in the first 
20-years of game theory. The field was launched in 1944 with the release of John von Neumann’s and 
Oskar Morgenstern’s book [14].5 In it, they defined a set of axioms under an ergodic framework to 
develop a formal measure of a person’s utility under a finite set of choices. A decade later, Savage 
separated the subjective probability from the subjective utility [6] which created SEU as a field of study. 
As Savage was developing SEU, Allais and Ellsberg among others noted contradictions within the 
theory and where the theory did not check with experiment [8, 9]. Finally in 1968, Pfanzagl showed 
how to remove the dependence on ergodicity from subjective probability [7], placing it squarely within 
the Bayesian framework. 

2.1. Paradox 

Savage’s and Pfanzagl’s approaches to subjective expected utility both ran into paradoxes, 
notably the Allais Paradox [9]. Allais provided a simple game that showed that people would not 
make decisions that maximized their subjective expected utility (payout) and be consistent with the 
constraints of economic rationality. Ellsberg presented a similar argument but in a game that presents 
the paradox more clearly [8], Pfanzagl specifically notes this [7] (p. 206), but fails to reconcile it. 

Ellsberg’s experiment is represented in Table 1 [8] (pp. 653-654),. In it, there are three different 
colored balls: red, black, and yellow. There are a total of 90 balls within the urn with 30 of them being 
red and the remaining 60 balls some unknown distribution between black and yellow. The example 
presents two different games with the purpose of presenting a contradiction in Savage’s rationality. 
In each of the two games, the outcome of the SEU is the same for each of the wagers, 33.3 and 66.6 for 
games A and B respectively. What Ellsberg found through experiment is that the individuals express 
a preference that is not consistent with the lack of illusion principle, “virtually identical wagers 
presented in different ways have the same utility” [7] (p. 202). 

Under the lack of illusion principle, wagers I and III are virtually identical because in each the 
red balls are selected. Wagers II and IV are identical because of the preference for the set of 
black/yellow balls. What Ellsberg found was that during experiments that the outcomes were not 
consistent with the definition of economic rationality. Ellsberg noted that people in a greater fraction 
would prefer the set of the shaded wagers (I, IV) over the set of unshaded wagers (II, III). But that the 
pairings were always the same [8]. Ellsberg [8] (p. 655) and Pfanzagl [7] (p. 206) saw this as a 
contradiction to the Savage’s lack of illusion principle. In their minds, the ordering should be (I, III) 
and (II, IV) as the outcomes under uncertainty represent virtually identical wagers, assuming that the 
number of black balls, 𝛼, was uniformly distributed on 𝛼 ∈ [0,60]. If an individual had a different 
prior probability other than the uniform distribution for the distribution of 𝛼, that would affect their 
selection of the different outcomes and affect their expectations, changing the game in their minds. 

The entropy in Table 1 is calculated by using Shannon’s formulation of information entropy: 

𝐻(𝑝 ⋯ 𝑝 ) = −𝐾 ∑ 𝑝 ln 𝑝  [11] (p. 622),6 (1) 

where 𝑝 is the probability of the 𝑖th event, and 𝐾 is a positive constant which we will assume 𝐾 =

1. 

 
5 Utility as it is discussed in game theory generally refers to the measure of the reward of the payout 
from a wager made in a game. 
6 Referring to Shannon’s entropy as 𝐻 is done here because this is the typical variable in information 
theory for referring to information entropy. This will be the only time in this paper that entropy will 
be denoted as 𝐻 . For the remainder of the paper entropy will follow the convention of 
thermodynamics and be either a lower case 𝑠 for the specific entropy of the individual or the upper 
case 𝑆 for the entropy of the group. 
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Table 1. Summary of Ellsberg's Game [8] (pp. 653-654) where 𝛼 ∈ [0,60] is an unknown number to 
the player. The highlighted wagers demonstrate those that were empirically preferred in each game. 

 Odds 30 𝛼 60 − 𝛼   
  Payout   

Game Wager red black yellow Expected 
Payout 

Entropy 

A I 100 0 0 
100 ∙

1

3
 0.637 

II 0 100 0 
100 ∙

1

3
 0.637 

B III 100 0 100 
100 ∙

2

3
 0.637 

IV 0 100 100 
100 ∙

2

3
 0.637 

In these games, A and B, the information content of each of the pairs of choices is equivalent, as 
are the expected payouts. The outcomes of either of the games are indistinguishable from each other. 
Where the paradox arises is that the preference for attributes that do not affect the underlying game. 
Like having a preference for either being the shoe, the dog, or the battleship in Monopoly. For the 
purpose of the game the set of choices, (I,III), (I,IV), (II,III), (II,IV) all represent identical and 
indistinguishable outcomes. If this represents a contradiction to the condition of rationality, then the 
condition of rationality is too strong. Saying that one is acting irrationally for choosing the dog as 
their playing piece when they play with their family, but then choose the battleship when playing 
with friends is an equivalent statement to the irrationality described in the paradox. Ultimately the 
choice is the same, they are choosing to play the game. 

The Allais paradox is created entirely by the constraints of Savage’s theory, particularly from 
the narrowness of the definition of economic rationality. The theory must admit the set of all possible 
outcomes. We cannot arbitrarily cull what, through observation, are clearly allowed states. Nor can 
we distinguish between states of equivalent outcome even if they are presented differently. For these 
reasons, we have to abandon the conventional formulation of rationality and develop a new one that 
is consistent with all of our observations. 

2.2. Rationality 

One of the areas where Savage and Pfanzagl shared their approach is with the “lack of illusion” 
principle and the “sure-thing” principle which they used to define rational economic behavior. 
Pfanzagl defined them as: 

“Lack of Illusion” Principle: 
Virtually identical wagers presented in different ways have the same utility. 
“Sure-thing” Principle: 
i. The utility of a wager remains unchanged if an outcome is substituted by an 
outcome of the same utility. 
ii. If one of the outcomes is substituted by an outcome with higher utility, then the 
utility of the wager either increases or remains unchanged for all possible substitutions 
of this outcome. [7] (p. 202) 

von Mises notes that “[h]uman action is necessarily always rational” [10] (p. 19). He is referring 
to the idea that for any individual, their choices are consistent within their own frame and judgment 
and are then by definition rational. And that by applying an arbitrary set of judgments on rationality, 
we exclude whole sets of individual choice from economic consideration. Thus, we need to rethink 
defining rational behavior as the “sure-thing principle and the lack of illusion principle” [7] (p. 205). 
Instead, we will use the definition of rationality as being that action which is observable – fully 
adopting the rationality principle of von Mises [10] (p. 12). Furthermore, by restricting consideration 
of the theory only to observable events of human action, we have also adopted von Mises action 
axiom [10] (p. 11). 
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Clearly, we need a different set of principles, desiderata, that seek to impose constraints of 
logical consistency instead of forcing an arbitrary definition of rationality. 

2.3. Desiderata 

The problem is that if we are going to follow von Mises principle that all action be rational, we 
need to take a more general approach. Where instead of demanding rationality, we demand logical 
consistency. For these principles we turn to Jaynes’ desiderata [15] (pp. 17-19). The desiderata below 
are modified slightly from what Jaynes originally wrote with the intention of improving clarity not 
modification of the meaning. 

1. Degrees of plausibility are represented by real numbers. 
2. Qualitative correspondence with common sense. 
3. Consistency 

a. If a conclusion can be reasoned out in more than one way, then every 
possible way must lead to the same result. 

b. All of the evidence that is relevant to a question is always taken into account. 
Some of the relevant information is not arbitrarily ignored, with conclusions 
based only on the remaining restricted information. In other words, 
reasoning is done in a completely nonideological manner. 

c. Equivalent states of knowledge are represented by equivalent plausibility 
assignments. That is, if in two problems the state of knowledge is the same 
(except perhaps for labeling the propositions), then the same plausibilities 
are assigned to both. 

It is clear to see that desiderata 3.a is a reformulation of the “lack of illusion” principle, desiderata 
3.b is an equivalent way of stating von Mises’ condition of rationality and the action axiom, and that 
desiderata 3.c is a reformulation of the first half of the “sure-thing” principle. The second half of the 
sure thing principle is contained in desiderata 2. To demonstrate this, we will use Jaynes’ example of 
how changing the given information changes the plausibility of an event. 

Let the plausibility of a number of subsets of events of all of the available events ℰ  be 
represented as being 𝐴, 𝐵, and 𝐶 , where 𝐴, 𝐵, 𝐶 ∈ ℰ  and the plausibility of the events being 
represented as (𝐴), (𝐵),and (𝐶). We can describe the plausibility of event 𝐴 given event 𝐶 as being 
(𝐴|𝐶) and similarly for event 𝐵 as (𝐵|𝐶). 

If we have a new event 𝐶’ that increases the plausibility of event 𝐴, we can represent that as 

(𝐴|𝐶′) > (𝐴|𝐶); (2) 

but the updated information did not change the plausibility of 𝐵 given 𝐴: 

(𝐵|𝐴𝐶′) = (𝐵|𝐴𝐶). (3) 

This can only increase, never decrease the plausibility of the truth of events 𝐴 and 𝐵: 

(𝐴𝐵|𝐶′) ≥ (𝐴𝐵|𝐶) [15] (p. 18). (4) 

Savage and Pfanzagl were right in seeing the need for need of the sure thing principle and the 
lack of illusion principle as providing a measure of consistency. However, how they applied it forced 
too strong of a condition. The correct measure of consistency is applied through the desiderata of this 
section, which also reconcile the philosophical basis of the Austrian school, von Mises, with other 
theories of economics such as game theory and, as we will show later, macroeconomics. We now 
have a sufficient basis to derive subjective probability under the new desiderata independent of the 
derivation of economic utility. 

2.4. Subjective Probability and Utility 

Because of the length of the proofs of the derivations of subjective probability in Pfanzagl [5] 
and in Jaynes [15], an interested reader is recommended to those references for more detail. The “lack 
of illusion” and the “sure-thing” principles that Pfanzagl specified are not axioms. He used them as 
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tools, desiderata, to guide the selection of axioms. By changing the focus of what is measured from 
utility to plausibility. By adopting Jaynes desiderata, we have shifted the focus of game theory 
entirely to the plausibility of a set of individual choices. 

We will use Pfanzagl to develop the event space. Then we will use Jaynes to derive probability 
theory. Finally, we will adopt a set of axioms to derive the utility functional. This approach is similar 
to Savage’s where he derived subjective probability first and utility second [6]. Because of the 
difficulty in finding [7] the pertinent parts of that work relevant for the derivation are included in 
Appendix A. Those portions will be referenced as “A.x.x.x” where “x.x.x” is the relevant section 
number in Appendix A from the original text. 

There are two main sets used in deriving game theory, events and outcomes. The set of all events 
is ℰ and the set of possible outcomes is 𝐴. The event is tied to some uncertain process. The outcome 
can be thought of as the wager amount depending on whether a particular event obtains or does not 
obtain. The event space is defined in A.12.2.1 as being a Boolean algebra. It relies on all of A.12.1 to 
provide the formal relationships. The axioms defining the system of events are A.12.1.1 (the definition 
of a Boolean algebra). This approach is consistent with the Kolmogorov system of probability, which 
Jaynes showed as being contained within his derivation of probability theory [15] (Chapter 2 and 
Appendix A).7 

With probability as being a property of the event set, and the outcome space being “different 
quantities of a commodity” [7] (p. 202), it is clear that utility ties into the probability measure through 
the event space. Pfanzagl didn’t use the sure thing principle or the lack of illusion principle until after 
he had defined the event space. Because the desiderata adopted here transform the economic 
rationality of the sure thing principle and the lack of illusion principle into a constraint of logical 
consistency on the plausibility of events, the conditions needed to develop utility are now contained 
in the probability theory, specifically, A.12.2.12, A.12.3.2, and A.12.3.3. 

To formally show how the desiderata subsume economic rationality is beyond the need of this 
paper. Without assuming the economic rationality constraints, we can take A.12.2.7, A.12.2.12, 
A.12.3.2, and A12.3.3 as the axioms that define the utility space [7] (p.207). These axioms are used to 
derive the utility functional [7] (Sections 12.4 and 12.5) and are appropriate constraints on utility 
space, but are not appropriate for the reasoning space, there we have to apply Jaynes’ desiderata, 
which is why the proof was split as such. 

At this point subjective probability, as modified here, is sufficient to develop an expression for 
the specific entropy of an individual. It is important to note that little has changed in the formulation 
of game theory other than shifting the consistency condition from the utility to that of reasoning. The 
next section will derive the entropy functional. 

3. Derivation 

It is impossible to not emphasis enough how crucial Jaynes’ collected works are in generalizing 
statistical mechanics. He saw Gibbs mathematical foundation of thermodynamics as being an 
application of information theory to what Gibbs called the “distribution-in-phase”. Gibbs started his 
derivation with the Hamiltonian and then derived the canonical distribution. For him, the mechanics 
were known, but the distribution was not. In economics, we have the opposite problem: the 
distribution is known, but not the mechanics. 

Because Jaynes saw Gibbs so clearly [11], he cut straight to the essence of the problem – the 
entropy functional is a consequence of the distribution. This is why the desiderata from the previous 
section are so critical to the foundation of the overall theory. If any relevant observations are 
excluded, the distribution is affected, which in turn affects the entropy functional. Thus, by excluding 
relevant information it becomes impossible for us to describe what is. 

The derivation of this section contains two main parts: the derivation of the entropy functional 
for the individual and the derivation of the entropy functional for the group. The derivation of the 
individual entropy functional will follow two paths, first the discrete path following Jaynes method 

 
7 Jaynes showed that the axioms Kolmogorov used were a consequence of Jaynes’ desiderata. 
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[11] and second the continuous generalization following Jaynes [16] and Matsoukas [12]. The 
aggregation of the group will require a turn to political philosophy [13] for guidance. 

3.1. Individual Entropy 

3.1.1. Discrete Case 

By adopting the modified subjective probability, we can express our knowledge (represented by 
probability measures) of the observable outcomes from a finite set of options, with no knowledge of 
the actual underlying mechanics, the utility function. At this point, our knowledge of the individual’s 
choices can be expressed by the subjective probability for a particular event, 𝑝 , where 𝑝 ∈ 𝑃 ∀ 𝑖 ∈

[1, 𝑛]: 𝑃 ∈ ℰ , ℰ  is the set of possible events, and where the subjective probability has the 
normalization constraint, ∑ 𝑝 = 1. We let 𝑥 be a variable that assumes discrete values 𝑥  ∀ 𝑖 ∈ [1, 𝑛] 
corresponding with 𝑝 . We also define an arbitrary mapping 𝑢: 𝑥 ⟶  𝑢(𝑥) ∀ 𝑥 ∈ 𝑥  that satisfies 
Pfanzagl’s four axioms that derive utility. The general method of the proof is to maximize equation 
(1) through the use of Lagrangian multipliers. Because of Jaynes’ [11] (pp. 622-623) proof’s simplicity 
it will be replicated here in a slightly more condensed form, and restrict ourselves to the canonical 
representation. 

Because the entropy of equation (1) is solely a function of the probability 𝑝 , reformulate the 
probability to include the Lagrangian multipliers 𝜓 and 𝛽. 

𝑝 = 𝑒 ( ), (5) 

subject to the constraints, 

𝔼[u(𝑥)] = 𝑝 𝑢(𝑥 ) = 〈𝑢〉. (6) 

The expectation of the 0th moment, 𝜑 ≡ 1, must be 𝔼[𝜑 ] = 1. This is Jaynes’ normalization 
constraint [11] (p. 622). It is a more general statement of Gibbs’ conservation of the extension-in-phase [4] 
(p. 10). The normalization constraint directly results in the partition function, 

𝑍[𝛽] = 𝑒 = 𝑒 ( ). (7) 

The remaining Lagrangian multiplier can be determined from, 

𝔼[𝑢(𝑥)] = −
𝜕

𝜕𝛽
ln(𝑍[𝛽]) = −

𝜕𝜓

𝜕𝛽
. (8) 

Borrowing from Gibbs,8 we define the uncertainty as being 

𝜂 = ln 𝑝 = 𝜓 − 𝛽𝑢(𝑥 ). (9) 

The resulting canonical maximum entropy estimate of the individual’s demonstrated preference 
is, 

𝑠 = − 𝑝 𝜂 = −𝜓 + 𝛽〈𝑢〉. (10) 

Rearranging and defining 𝜓 ≡ 𝛽𝑓, 

𝑓 = 〈𝑢〉 −
𝑠

𝛽
. (11) 

 
8 The remaining derivation will follow the form Gibbs used for the continuous case in his derivation 
of the second law of thermodynamics [4] (pp. 42-44). In following section, it will be sufficient to show 
the proper form of the entropy functional for the continuous case without having to duplicate the 
derivation of the second law as the methodology there follows Gibbs almost exactly. 
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Assuming the utility depends not only on the individual, but also upon a set of external variables 
that they are not regarded as forming any part of the individual, although their values affect the 
individual. We can express their effect on the utility by, 

𝑑𝑢

𝑑𝑎
= 𝜑 (𝑥 ). (12) 

Taking the total differential of the partition function results in, 

𝑑𝑍[𝛽] = 𝑒 (−𝛽𝑑𝑓 − 𝑓𝑑𝛽) = −𝑑𝛽 𝑢(𝑥 )𝑒 ( ) − 𝛽𝑑𝑎
𝑑𝑢

𝑑𝑎
𝑒 ( ). (13) 

Multiplying equation (13) by, 𝑒  and substituting in equation (12) provides, 

𝑑𝑓 +
𝑓

𝛽
𝑑𝛽 =

1

𝛽
𝑑𝛽 𝑢(𝑥 )𝑒 ( ) + 𝑑𝑎 𝜑 (𝑥 )𝑒 ( ). (14) 

Substituting equation (11) and resolving the expectations results in and substituting 𝛽 ≡  

𝑑𝑓 = −𝑠𝑑𝑇 + 〈𝜑 〉𝑑𝑎 . (15) 

Taking the total differential of (11) results in, 

𝑑𝑓 = 𝑑〈𝑢〉 − 𝑇𝑑𝑠 − 𝑠𝑑𝑇. (16) 

And substituting the result with equation (15) provides, 

𝑑〈𝑢〉 = 𝑇𝑑𝑠 + 〈𝜑 〉𝑑𝑎 . (17) 

So far, there has been no loss in generality in deriving equation (21) which is the mathematical 
expression of the second law of thermodynamics for a reversible process [4] (p. 44). However, 
equation (17) is only applicable for a finite set of discrete events described by a probability mass 
function. It is not applicable to continuous density functions. To derive a relationship for a continuous 
probability density function, we need to turn our attention to Jaynes’ Brandeis lectures [16]. 

3.1.2. Continuous Case 

Jaynes [16] derived the entropy functional of a continuous density function, taken as the 
continuous limit of the discrete case, to be 

S[h] = − 𝑑𝑥 ℎ(𝑥) ln
ℎ(𝑥)

𝑚(𝑥)
, (18) 

where ℎ(𝑥) is a continuous density function for all 𝑥 and where 𝑚(𝑥) is the invariant “measure” 
of ℎ(𝑥) [16] (p. 202).9 Which, if the distribution ℎ is properly normalized, ∫ 𝑑𝑥 ℎ(𝑥) = 1, equation 
(18) reduces to the familiar Shannon differential entropy functional, 

S[h] = − ∫ 𝑑𝑥 ℎ(𝑥) ln ℎ(𝑥) [12]. (19) 

Using a similar method as in the discrete case, we will maximize the entropy functional, equation 
(19) subject to a set of constraints, but use the grand canonical ensemble. Define the probability 
density function to be estimated as, 

𝑓(𝑥) = 𝑒 ( ) ( ) ∑ ( ), (20) 

where 𝑎  and 𝜑 (𝑥) are defined as before with 𝜑 (𝑥) = 1 and the constraints: 

𝔼[𝜑  (𝑥)] = 𝑑𝑥 𝜑 (𝑥)𝑓(𝑥) = 〈𝜑 〉. (21) 

 
9 Matsoukas [12] (p. 205 and pp. 221-225) shows how to satisfy Jaynes’ invariance condition and an 
interested reader is referred there for further detail. 
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To keep 𝑓(𝑥) properly normalized, 𝔼[𝜑  (𝑥)] = ∫ 𝑑𝑥 𝑓(𝑥) = 1, allowing the use of the entropy 
functional equation (19). This constraint directly results in the partition function, 

𝑍[𝛽, 𝑎 ] = 𝑒 = 𝑑𝑥 𝑒 ( ) ∑ ( ). (22) 

The remaining Lagrangian multipliers can be obtained from, 

𝛽𝔼[𝜑 (𝑥)] = −
𝜕

𝜕𝑎
ln(Z) = −

𝜕𝜓

𝜕𝑎
. (23) 

And the resulting maximum entropy estimate of the individual’s demonstrated preference for a 
continuous distribution is, 

𝑠 = 𝛽〈𝑢〉 − 𝛽〈𝜑 〉𝑎 . (24) 

3.2. Group Entropy 

Before proceeding with the group aggregation, we need to assume logical independence of each 
individual’s action. This assumption has a physical meaning of the freedom of individual choice – 
there is no mind control or forced coercion (a truly ideal representation of the human action). It is 
another way of stating Rawls first principle of justice that, “[e]ach person is to have an equal right to 
the most extensive total system of equal basic liberties compatible with a similar system of liberties 
for all” [13] (Ch. V Sect. 46). This assumption is a maximum entropy assumption as any forced or 
coercive acts will reduce the choice of action of the individual, thus the allowed states and associated 
individual complexity [10]. As Jaynes notes, the assumption of the principle of maximum entropy is 
Laplace’s “principle of insufficient reason” [11] (p. 622). 

Mathematically this results in the group’s density function,10 𝐹[𝑿], being separable in 𝑥  ∀ 𝑥 ∈

𝑿,  

𝐹[𝑿] = 𝑓 𝑥 , (25) 

where 𝑥  is the domain of 𝑗th individual’s action, 𝑿 is the vector comprised of the 𝑥 ’s, and 𝑓  is the 
density function for the of 𝑗th individual in the group. From equation (19), 

S[𝐹] = 𝑑𝑿 𝐹[𝑿] ln 𝐹[𝑿]. (26) 

Due to the logical independence of the actors, equation (26) reduces to, 

𝑆 = 𝑠 . (27) 

At this point, no assumptions have been made outside of the axioms used to derive subjective 
probability other than the maximum entropy condition of each individual’s expression of their 
freedom to choose. Thus, equation (27) formally represents a complete group entropy functional. It is 
not however very tractable. To make it usable we need to assume Rawls’ veil of ignorance. “This 
ensures that no one is advantaged in the choice of principles by the outcome of natural chance or the 
contingency of social circumstances” [13] (Ch.1 Sect. 3). The veil of ignorance needs to be extended 
across time. What this means is that not only does one not know who they can choose to be in a 
society, but that they also cannot pick at what point in an individual’s life they can choose. This 
interpretation of the veil effectively states that each of us given a similar set of circumstances and 
experience would make a similar set of choices and results in, 

𝑆 = 𝑁𝑠, (28) 

 
10 Because of the high dimensionality of human action, we will use the continuous probability to 
define our knowledge of each person’s action. 
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where, 𝑁 is the integer value of the group’s population. 
The assumption of maximum entropy as a constraint provides some useful insights into the 

nature of a society. First is that social rules are constrained – rules cannot arbitrarily provide an 
individual access to additional choice without providing the necessary means exogenously. Thus, 
endogenous rules cannot create out of thin air, they can only restrict action. These social rules that 
have evolved over time affect the social entropy. For example, if there are any systemic effects where 
one group is disadvantaged to another, what will show up is that there will be a reduction in the total 
social entropy from those rules which provide maximum entropy subject to the endogenous and 
exogenous constraints: resources, history, technology, warfare, social reproductive needs, etc. 

What this provides the political scientist and economist is the ability to quantify the impact of a 
set of different policies. Those policies which increase social entropy should be kept and those which 
do not, discarded. This is a consequence of the second law of thermodynamics. Social change will 
occur spontaneously if the entropy gradient is positive. If the entropy gradient is negative, the society 
will have to consume additional resources to enforce the rule. One could say that we act as if “…led 
by an invisible hand [entropy] to promote an end which was no part of [our] intention” [17] (Book IV 
Ch. II). 

There are cases such as national defense, when a reduction in social entropy occurs in order to 
fund the defense of a nation. This slight reduction helps to provide protection against exogenous 
“black swan” events, which can act to significantly reduce social entropy. But here the appropriate 
amount of reduction in individual liberty to promote general liberty is not known and has to be 
determined at the societal level through debate. The justification of reducing liberty on the small to 
promote overall liberty is Rawls’ first priority rule [13] (Ch. V Sect. 46) and is warranted. 

4. Extension and Consequences 

So far, the work presented here has been abstract, proving the entropy functional of stochastic 
models that satisfy the axioms of a Boolean algebra used to define the set of events in game theory. 
While this has provided some additional insights, it is not very useful. Our next task is to explore the 
more traditional relationships. 

4.1. The Euler Relation 

Combining equations (24) and (28), we have the Euler relation, 

𝑆 = 𝑁 𝛽〈𝑢〉 − 𝛽〈𝜑 〉𝑎 = 𝛽〈𝑈〉 − 𝛽〈𝜑 〉𝐴 . (29) 

Where, 〈𝑈〉  and 𝐴  are the extensive macroeconomic variables, held invariant in the canonical 
distribution. Because 𝐴 = N 𝑎  and 𝑈 = 𝑁 𝑢, equation (29) is a first order homogenous equation 
satisfying 𝑆(𝜆 𝐴 , ⋯ , 𝜆 𝐴 ) = 𝜆 𝑆(𝐴 , ⋯ , 𝐴 ). Differentiating the homogeneity condition with respect 
to 𝜆 results in, 

𝑆(𝐴 , ⋯ , 𝐴 ) =
∂𝑆(𝜆 𝐴 , ⋯ , 𝜆 𝐴 , ⋯ )

∂(λ 𝐴 )

∂(λ 𝐴 )

∂λ
=

∂𝑆(𝐴 , ⋯ , 𝐴 , ⋯ )

∂𝐴
𝐴 . (30) 

and the intensive macroeconomic parameters are 𝛽 = 𝜕𝑆
𝜕〈𝑈〉 = 𝜕𝑠

𝜕〈𝑢〉 and 𝛽〈𝜑 〉 = − 〈𝜕𝑆
𝜕𝐴 〉 =

〈𝜕𝑠
𝜕𝑎 〉. 

Writing the first differential of 𝑆 = 𝑆(𝐴 , ⋯ , 𝐴 ) as, 

𝑑𝑆 =
∂𝑆

∂〈𝑈〉
𝑑〈𝑈〉 + 〈

∂𝑆

∂𝐴
〉

,⋯,

𝑑𝐴 , 
(31) 

Provides us with the familiar differential form of the fundamental equation of thermodynamics in its 
entropic representation. 
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4.2. The Gibbs-Duhem Relation 

Solving equation (31) for utility, we have, 

〈𝑈〉 = 𝑇𝑆 + 〈
∂〈𝑈〉

∂𝐴
〉 𝐴 . (32) 

Where, 

〈
〈 〉

〉 = − 〈 〉 [18] (p. 477). (33) 

 
And a resulting first differential of, 

𝑑〈𝑈〉 = 𝑇𝑑𝑆 + 〈
∂〈𝑈〉

∂𝐴
〉

,⋯,

𝑑𝐴 11. 
(34) 

[11]. Taking the total differential of equation (32) and subtracting equation (34) results in the 
Gibbs-Duhem relationship, 

0 = 𝑆𝑑𝑇 + 𝐴 𝑑 〈
∂〈𝑈〉

∂𝐴
〉

,⋯,

. 
(35) 

4.3. The Economic Variables12 

Along with utility, 𝑈 , we introduce two new extensive variables, 𝑀  and 𝑁  to specify the 
money supply and the population respectively. We define the intensive parameters of the extensive 
variables 𝑀 and 𝑁 as being the marginal utility of money, 𝜆, and the economic potential of the 
individual, 𝜇: 

−
∂𝑈

∂𝑀
≡ 𝜆, (36) 

∂𝑈

∂𝑁
≡ 𝜇. (37) 

We can look at the other extensive parameters, 𝐴 , having associated intensive parameters of ≡

𝑝 . This results in equations (32), (34), and (35) having the respective forms of, 

𝑈 = 𝑇 𝑆 − 𝜆 𝑀 + 𝜇 𝑁 + 𝑝  𝐴 . 
(38) 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝜆𝑑𝑀 + 𝜇𝑑𝑁 + 𝑝 𝑑𝐴 . 
(39) 

0 = 𝑆𝑑𝑇 − 𝑀𝑑𝜆 + 𝑁𝑑𝜇 + 𝐴 𝑑𝑝 . 
(40) 

The sign in equation (36) is there to follow how we think about the value of money in our society. It 
is analogous to pressure in a physical system and is empirically justified [19]. 

 
11  Comparing equation (21) multiplied by 𝑁  to equation (34) shows the equivalence and 
compactness of Jaynes method, and serves to prove the aggregate of the discrete case for the group. 
12 At this point we will drop the symbols of the expectations for clarity. 
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4.4. The Economic Potentials 

In general, the main economic potentials are the various partial Legendre transformations of 
𝑈[𝑆, 𝑀, 𝑁, 𝐴 , 𝐴 , ⋯ ] that replace: 
 entropy by temperature, Helmholtz potential (𝐹[𝑇, 𝑀, 𝑁, 𝐴 , 𝐴 , ⋯ ]), 
 the money supply by the marginal utility of money, enthalpy (𝐻[𝑆, 𝜆, 𝑁, 𝐴 , 𝐴 , ⋯ ]), 
 simultaneously entropy with temperature and the money supply with the marginal utility of 

money, Gibbs potential (𝐺[𝑇, 𝜆, 𝑁, 𝐴 , 𝐴 , ⋯ ]), and 
 simultaneously entropy with temperature and the population with the economic potential of the 

individual, grand canonical potential (𝑈[𝑇, 𝑀, 𝜇, 𝐴 , 𝐴 , ⋯ ]). 
There are a number of other potentials that arise from different combinations of partial Legendre 

transforms of utility. These other partial transforms are unnamed in thermodynamics and only arise 
infrequently in physics [18] (p. 148). For the application of the transforms and for further discussion 
a reader is recommended to [18] (pp. 146-148) and other references, e.g. [4, 20], which can provide 
more detail. We will provide the results of [18] to their economic analogs here. 

Helmholtz Potential, 𝑭 ≡ 𝑼[𝑻] 

𝑑𝐹 = −S𝑑𝑇 − 𝜆𝑑𝑀 + 𝜇𝑑𝑁 + 𝑝 𝑑𝐴 . 
(41) 

Enthalpy, 𝑯 ≡ 𝑼[𝝀] 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑀𝑑𝜆 + 𝜇𝑑𝑁 + 𝑝 𝑑𝐴 . 
(42) 

Gibbs Potential, 𝑮 ≡ 𝑼[𝑻, 𝝀] 

𝑑𝐺 = −S𝑑𝑇 + 𝑀𝑑𝜆 + 𝜇𝑑𝑁 + 𝑝 𝑑𝐴 . 
(43) 

Grand Canonical Potential, 𝑼[𝑻, 𝝁] 

𝑑𝑈[𝑇, 𝜇] = −S𝑑𝑇 − 𝜆𝑑𝑀 − 𝑁𝑑𝜇 + 𝑝 𝑑𝐴 . 
(44) 

The complete Legendre transformation is represented by the Gibbs-Duhem relationship, equation 
(40) where 𝑈[𝑇, 𝜆, 𝜇, 𝑝 , 𝑝 , ⋯ ] = 0. 

4.5. The Marginal Utility of Money 

As we have shown, utility is mathematically analogous to internal energy in physics. This, 
however, is not just an analogy. All human action is constrained by the laws of thermodynamics, thus 
for us to act, we must expend energy. If our utility is a measure of our ability to act, then the natural 
unit of utility is energy. Because the metric space of utility is defined as being “different quantities of 
a simple commodity (e.g. money), filling an interval” [7] (p. 202), energy suffices as a simple 
commodity filling an interval just as any other arbitrary commodity such as money does. For this 
reason, we are formally justified in defining the canonical form of utility as energy. For an empirical 
justification, we need to turn elsewhere. 

Ayers and Warr presented an econometric justification for the inclusion of exergy, useful work, 
into a production function [21]. They found that 80% of GDP can be explained solely by the exergetic 
input into the economy. By measuring the value of a currency in terms of energy, we have an absolute 
measure of the currency as energy is a conserved quantity. 

In order to develop the measure of energy for a currency, the author looked at data from the 
Energy Information Administration, EIA, which tracks the amount of energy sold each year from 
each fuel source along with how much was spent on that energy [22] (Table 1.5). This is from data 
aggregated from utilities, refineries, and distributors across the nation [22]. Figure 1 shows the 
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estimated Energy Price Index, EPI, from EIA data [22] (Table 1.5), the GDP deflator [23] and the 
Consumer Price Index- Urban Consumers CPI-U [24]. 

 
(a) (b) 

Figure 1. (a) The Energy Price Index derived from [22] (Table 1.5) plotted on a logarithmic 
vertical axis. This represents a measure of the marginal utility of the dollar. (b) The Consumer Price 
Index [24], Gross Domestic Product Deflator [23], and the inverted EPI from (a). All indices are 
normalized relative to their 1970 values. 

4.6. The Approach to Certainty Through Experience 

Savage presented an example of how certainty is approached through experience [6] (Section 
3.6). It is worth noting here and deriving it under a statistical economics framework using Jaynes’ 
method [11] (p. 625) which is duplicated below using the notation presented in this paper. 

We begin by defining 𝑥  as discrete numbers corresponding to events 𝑃 ∈ ℰ. Let 𝑛 be a non-
negative integer, and let 𝜖 be a small positive number, 

𝑥 = 𝜖, 𝑥 − 𝑥 =
𝜖

𝑥
 ∀ 𝑖 = 1, 2, ⋯. (45) 

According to equation (45), lim
→

𝑥  is unbounded. However, the density of the points increases 
at a rate determined by 𝑛. By choosing a small enough 𝜖, we can make the density of points high 
enough in the vicinity of any 𝑥 allowing the approximation as a continuous function, 𝑓(𝑥). 

lim
→

𝑓(𝑥 ) = 𝑑𝑥 𝑓(𝑥)𝜌(𝑥). (46) 

Where from (45), 𝜌(𝑥) = 𝑥 𝜖⁄ . 
Consider the forward problem, given 〈𝑥〉 provide a maximum entropy estimate of 𝑥 . Using 

equation (22) with 𝑘 = 1 and 𝜑 (𝑥) = 𝑥, 

𝑍[𝛽] = 𝑑𝑥 𝜌(𝑥)𝑒 =
𝑛!

𝜖𝛽
. (47) 

From equation (23), 

𝔼[𝑥] = −
𝜕

𝜕β
ln(Z) =

𝑛 + 1

𝛽
. (48) 

Then, 

〈𝑥 〉[〈𝑥〉] = Z 𝑑𝑥 𝑥 𝜌(𝑥)𝑒 =
𝑛 + 2

𝑛 + 1
〈𝑥〉 . (49) 

For the inverse problem, given 〈𝑥 〉 estimate 𝑥. Let 𝜑 (𝑥) = 𝑥 ,  
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𝑍[𝛽] = 𝑑𝑥 𝜌(𝑥)𝑒 =
√𝜋𝑛!

2
𝑛
2

! 𝜖𝛽
. 

(50) 

𝔼[𝑥 ] = −
𝜕

𝜕β
ln(Z) =

𝑛 + 1

2𝛽
. (51) 

〈𝑥〉[〈𝑥 〉] = Z 𝑑𝑥 𝑥𝜌(𝑥)𝑒 =
𝑛 + 1

2

𝑛
2

!

𝑛 + 1
2

!
〈𝑥 〉. 

(52) 

These provide, 

Var[x] ≡ 〈𝑥 〉 − 〈𝑥〉 =
〈𝑥〉

𝑛 + 1
 [11] (p. 625). 

(53) 

Thus, as 𝑛  increases, the variance decreases ∝ 1 (𝑛 + 1)⁄ . As more information comes in, the 
subjective definition of the event becomes more pronounced, reducing the number of ways 
something can be contextualized, e.g. the definition of words, human experience, concepts, etc. For 
something that is highly corroborated, 𝑛 ≫ 1, it becomes near certainty. This reasoning can be used 
to describe how markets are incredible information aggregators. Furthermore, we can see why 
economics, particularly macroeconomics, focused so strongly on deterministic models where the 
uncertainty, entropy, was entirely ignored. 

4.7. Choice Under Uncertainty 

We now develop the statistical economic foundation for choice under uncertainty that incorporates 
both economic utility and social entropy. Before proceeding we need to consider the impact of 
selecting the appropriate ensemble by looking at what is constant between the choices. If utility is 
constant between choices, the microcanonical ensemble is appropriate. If the utility is not constant, 
then the canonical ensemble is appropriate. The incorporation of entropy into choice has had work 
done previously [25], it resulted in complicated forms that are not intuitive and seek the introduction 
of measures, double counting the number of states of a system, etc. 

We recall from statistical mechanics that the canonical ensemble, 

𝑍[𝑇] = 𝑒
( )

, (54) 

𝑓 = −𝑇 ln(𝑍[𝑇]), and (55) 

𝑓 = 〈𝑢〉 − 𝑇𝑠, (56) 

represents systems in contact with a thermal reservoir. The Helmholtz potential is minimized in 
statistical equilibrium. However, individuals are trying to maximize their potential compared to each 
other – playing Maxwell’s demon. Which, when played out with a system of demons, will result in a 
state of maximum entropy. 

In the case of Maxwell’s demon, the thermal reservoir is the person making the choice between 
the various wagers. Their temperature represents their preference for risk – marginal utility of 
entropy – temperature. A low-risk tolerance would be a high temperature a high-risk tolerance would 
be a low temperature from the sign in equation (56), which shows how the expected utility of the 
outcome is modified by the uncertainty. In the case of equal utility, the wager with the lowest entropy 
(less risky option) is the one that is selected. If as discussed previously, the entropies and utilities are 
equal, the set of choices are indistinguishable from each other and are considered equivalent. If there 
is a difference in the empirical preference between the choices, then some additional information 
outside of what is presented is needed to resolve the difference. The canonical approach results in the 
selection of the greatest potential as a rule for individual choice. 
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We turn to two examples of presented in [25] (Table 2 and Table 3) presented here as Table 2 
and Table 3 respectively. Table 2 represents a comparison between two games where the utilities 
between the wagers for a particular game are the same but have different entropies. Table 3 presents 
the case where utility and entropy of the wagers are different within each game. 

Table 2. Example of equivalent utilities within games where the shaded wager represents the one that 
is empirically preferred for a particular game [25] (p. 3598 Table 2). 

Game Wager 
Outcomes and Their 

Corresponding Probabilities 
〈𝑢〉 𝑠 

A 
𝑎  6000 

0.45 
 0 

0.55 
2700 0.6881 

𝑎  3000 
0.90 

 0 
0.10 2700 0.3251 

B 
𝑏  6000 

0.001 
 0 

0.999 6 0.0079 

𝑏  3000 
0.002 

 0 
0.998 

6 0.0144 

We can see from Table 2 that the preference relation, ≺ A.3.2, between the sets of games should 
be 𝑎 ≺ 𝑎  and 𝑏 ≺ 𝑏  ∀ 𝑇  because 𝑠[𝑎 ] > 𝑠[𝑎 ]  and 𝑠[𝑏 ] > 𝑠[𝑏 ] . This corresponds with the 
empirical preference [25]. 

Table 3. Example of varying utilities within games where the shaded wager represents the one that 
is empirically preferred for a particular game [25] (p. 3599 Table 3). 

Game Wager 
Outcomes and Their 

Corresponding Probabilities 
〈𝑢〉 𝑠 

A 
𝑎   3000 

1 
 

3000 0 

𝑎  
4000 
0.80 

 0 
0.20 3200 0.5 

B 
𝑏  

3000 
0.25 

 0 
0.75 

750 0.56 

𝑏  4000 
0.20 

 0 
0.80 

850 0.5 

In Table 3, because the expected utilities are not same between the wagers, we need to consider 
the risk preference of the individual, Figure 2. We can conclude that in general the risk tolerance of 
the individuals is relatively low because for game A the empirical preference was 𝑎 ≺ 𝑎  which 
holds ∀ 𝑇 > 399.7. The empirical preference demonstrated in game B, 𝑏 ≺ 𝑏 , holds true ∀ 𝑇. 

 
Figure 2. The economic potential of an individual’s choice as a function of the individuals risk 
preference computed from equation (56) and Table 3. 
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5. Conclusions 

This paper began with the axiomatic definitions of game theory and derived subjective 
probability under a new set of desiderata independent of utility. With this new foundation of 
microeconomics, the paper then derived the entropy functional as an expression of the Euler relation 
for the macroeconomy. The concept of economic utility was reintroduced and the associated 
fundamental relationships (differential, Euler, and Gibbs-Duhem) were derived. The concept of the 
canonical ensemble for economics was introduced along with the corresponding extensive measures. 
The basis of economic utility as being energy was proposed. And finally, the Allais paradox was 
resolved by maximizing the Helmholtz potential for choice under uncertainty. 

The full integration of microeconomic principles into macroeconomics introduced the concept 
of entropy into both micro and macroeconomics. Entropy has to the author’s knowledge never been 
formally integrated into the study of economics. This is especially surprising because entropy can be 
used as a measure of complexity/uncertainty of a system and entire fields like game theory are 
focused on the study decisions made under uncertainty. While entropy was acknowledged early in 
the development of game theory [6] (p. 50), it was left as a curiosity, more of a mathematical footnote 
than anything else. 

From the standpoint of a practitioner of the physical sciences the absence of an entropic term 
when dealing with an aggregate is a glaring omission. When combined with the intentional exclusion 
of information (observed events) that don’t comport to a specified theory, it is little wonder that 
economics has been mired in controversy, paradox, and confusion. The lack of acknowledgement of 
the constraint of the second law of thermodynamics in economics is a scientific failure, sin qua non. 

“The law that entropy always increases holds, I think, the supreme position among the laws of 
Nature. If someone points out to you that your pet theory of the universe is in disagreement with 
Maxwell's equations – then so much the worse for Maxwell's equations. If it is found to be 
contradicted by observation – well, these experimentalists do bungle things sometimes. But if your 
theory is found to be against the Second Law of Thermodynamics, I can give you no hope; there is 
nothing for it to collapse in deepest humiliation [26].” 
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Appendix A 

This appendix contains the axioms used by Pfanzagl in deriving his version of subjective 
probability. They are included here due to the difficulty in finding his book in print. The axioms and 
proofs are in chapter “12. Events, Utility, and Subjective Probability” [7] (pp. 195-220). No quotations 
are used and [any comments from the author will be bracketed]. 
12.1 The Algebra of Events 

Let ℰ be a system of events. These events will be denoted by capital letters like 𝑃, 𝑄, 𝑅, ⋯. We 
will assume that for events in ℰ the following three operations are defined: the join (∪), the meet (∩

) and the complement (negation) . 𝑃 ∪ 𝑄 is to be interpreted as the event which obtains if at least 
one of the events 𝑃, 𝑄 obtains. 𝑃 ∩ 𝑄 is to be interpreted as the event which obtains if both 𝑃 and 
𝑄, obtain. 𝑃 is to be interpreted as the event which obtains if 𝑃 does not obtain. We shall assume 
that ℰ is closed under these three options. 

Furthermore, we shall assume that the following axioms are fulfilled: 
12.1.1 Definition: A system ℰ  is a Boolean algebra if operations ∪ , ∩ ,  with the following 
properties are defined: 
12.1.2 commutativity 𝑃 ∩ 𝑄 = 𝑄 ∩ 𝑃, 𝑃 ∪ 𝑄 = 𝑄 ∪ 𝑃 
12.1.3 associativity 𝑃 ∪ (𝑄 ∪ 𝑅) = (𝑃 ∪ 𝑄) ∪ 𝑅 

𝑃 ∩ (𝑄 ∩ 𝑅) = (𝑃 ∩ 𝑄) ∩ 𝑅 
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12.1.4 distributivity 𝑃 ∩ (𝑄 ∪ 𝑅) = (𝑃 ∩ 𝑄) ∪ (𝑄 ∩ 𝑅) 

𝑃 ∪ (𝑄 ∩ 𝑅) = (𝑃 ∪ 𝑄) ∩ (𝑄 ∪ 𝑅) 
12.1.5 absorption law (𝑃 ∪ 𝑄) ∩ 𝑄 = 𝑄, (𝑃 ∩ 𝑄) ∪ 𝑄 = 𝑄 
12.1.6 (𝑃 ∩ 𝑃) ∪ 𝑄 = 𝑄, (𝑃 ∪ 𝑃) ∩ 𝑄=Q  

This system of axioms remains unchanged if we interchange ∩ and ∪. Therefore, from the proof 
of any consequence of this system of axioms we obtain a proof of the “dual” consequence by 
interchanging ∩ and ∪. In the following we will prove only one of the two “dual” consequences. 

In sections following 12.2, we will use the shorter expression 𝑃𝑄 instead of 𝑃 ∩ 𝑄. 
… 
Now we can define a binary relation between events by 

12.1.8 Definition: 𝑃 ⊂ 𝑄 iff 𝑃 ∩ 𝑄 = 𝑃 
By the absorption law (12.1.5), “𝑃 ⊂ 𝑄 iff 𝑃 ∪ 𝑄 = 𝑃” is an equivalent definition. 
The intuitive interpretation of this relation is that 𝑃 implies 𝑄, i.e. 𝑄 obtains if 𝑃 obtains. 
… 

12.2 The Space of Wagers 
… 
The set of events will be denoted by ℰ, the set of possible outcomes by 𝐴. By a simple wager 𝑎𝑃𝑏 

with 𝑎, 𝑏 ∈ 𝐴 and 𝑃 ∈ ℰ, we mean the wager leading to outcome 𝑎 if 𝑃 obtains and to outcome 𝑏 
if 𝑃 does not obtain. 

For the sake of brevity let 
𝐴𝑃𝐴 ≔ {𝑎𝑃𝑏: 𝑎, 𝑏 ∈ 𝐴} and 𝐴ℰ𝐴 ≔ {𝑎𝑃𝑏: 𝑎, 𝑏 ∈ 𝐴, 𝑃 ∈ ℰ}. 
About ℰ and 𝐴 we will make the following basic assumptions 

12.2.1 ℰ is a Boolean algebra. 
12.2.2 𝐴 is an ordered and connected set containing at least two elements. 

In the simplest case ℰ might consist of the events 𝑂, 𝐸, 𝑃,  𝑃, and 𝐴 of different quantiles of a 
simple commodity (e.g. money) [measure], filling an interval. 

Of basic importance for the following is 
12.2.3 Order Axiom: 𝐴ℰ𝐴 is an order system (3.2.1). 

[“3.2 Order Relations 
3.2.1 Definitions: A relational system 〈𝐴, ≈, ≺〉 is called an order system iff the following axioms are 
fulfilled: 
3.2.2 Order axioms: 

O1. For all 𝑎, 𝑏 ∈ 𝐴, exactly one of the relations 
𝑎 ≈ 𝑏, 𝑎 ≺ 𝑏, 𝑏 ≺ 𝑎 holds 

O2. “≈” is an equivalence relation 
O3. “≺” is transitive. 
A trivial example of an order system is 〈ℝ, =, <〉, the system of real number. Most empirical 

relational systems are order systems. If, for example, 𝐴, are tones, “≈” and “≺” might be equivalence 
and order according to pitch. 

As in section 1.4, we can consider �̿�, the set of all equivalence classes and the relational system 
〈�̿�, =, <〉 defined as follows: 

𝑎 = 𝑏, if the two classes consist of the same elements. 
𝑎 < 𝑏, if 𝑎 ≺ 𝑏.”] 
According to the order axiom, between any two elements 𝐴ℰ𝐴 exactly one of the relations ≻, 

≈ or ≺ holds. The intuitive meaning of this order according to utility [plausibility]. The relation ≈ 
is to be interpreted as an equivalence (in the sense of equal utility [plausibility]) not as an equality. 
Such an order relation may, for instance, be defined by means of the (objective) probability with 
which one element of 𝐴ℰ𝐴  is [more plausible than] another, equivalence (preference [more 
plausible]) being the case in which this probability equals (is greater than) ½. 

The order of 𝐴ℰ𝐴 induces an order in ℰ, if the following axiom is fulfilled (see Savage (1954) 
[6], p. 31, p.4). 
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12.2.4 Uniqueness Axiom: If for a special pair 𝑎 , 𝑏 ∈ 𝐴  with 𝑎 > 𝑏 : 𝑎 𝑃𝑏
≻
≈
≺

𝑎 𝑄𝑏 , then 

𝑎𝑃𝑏
≻
≈
≺

𝑎𝑄𝑏 for all 𝑎, 𝑏 ∈ 𝐴 with 𝑎 > 𝑏. 

If 12.2.4 is fulfilled, we may define an order in ℰ by 

12.2.5 Definition: 𝑃
≻
≈
≺

𝑄 iff 𝑎𝑃𝑏
≻
≈
≺

𝑎𝑄𝑏 for all 𝑎, 𝑏 ∈ 𝐴 with 𝑎 > 𝑏. 

We remark that under suitable assumptions the order defined in 12.2.5 refines the order defined by 
12.1.8 (see 12.3.4). 

A special role is played by the events equivalent to 𝑂, called “almost impossible”, and the events 
equivalent to 𝐸, called “almost sure”. 

Interpreting ≺ on 𝐴ℰ𝐴 as an order of wagers according to utility [plausibility] and < on 𝐴 as 
an order of outcomes according to utility [plausibility] we obtain as a formalized consequence of the 
principles a) and b) the following 
12.2.6 Postulate: 

a) 𝑎𝑃𝑏 ≈ 𝑏𝑃𝑎 for all 𝑃 ∈ ℰ and 𝑎, 𝑏 ∈ 𝐴, 
b) 𝑃 ≈ 𝑂 implies 𝑎𝑃𝑏 ≈ 𝑎′𝑃𝑏 for all 𝑎, 𝑎 , 𝑏 ∈ 𝐴 and 

𝑃 ≉ 𝑂 implies 𝑎𝑃𝑏 ≺ 𝑎 𝑃𝑏 for all 𝑎, 𝑎 , 𝑏 ∈ 𝐴 with 𝑎 < 𝑎′. 
We remark that part (i) of the sure-thing principle [desiderata 3.c] is contained in 12.2.2: By 

assuming < to be an order relation for which the equivalence relation is the identity, we identify 
outcomes of equal utility [plausibility]. 

As a consequence of 12.2.6 we obtain that 
12.2.6.c) 𝑃 ≈ 𝑂 iff 𝑃 ≈ 𝐸. 

Proof: 12.2.5 and 12.2.6.a) imply that 𝑃 ≈ 𝐸  iff 𝑏𝑃𝑎 ≈ 𝑏𝑂𝑎  for all 𝑏 < 𝑎 . By 12.2.6.b) this is 
equivalent to 𝑃 ≈ 𝑂. 
12.2.7 Continuity Axiom: 

𝑎 → 𝑎𝑃𝑏 is continuous for all 𝑏 ∈ 𝐴. 
Together with 12.2.6.a) this implies that 

𝑏 → 𝑎𝑃𝑏 is continuous for all 𝑎 ∈ 𝐴. 
12.2.8 Proposition: The map of 𝐴 × 𝐴 into 𝐴𝑃𝐴 defined by (𝑎, 𝑏) → 𝑎𝑃𝑏 is continuous. 

Proof: If 𝑃 is almost impossible or almost sure, the assertion is trivial. If 𝑃 ≉ 𝑂, 𝐸 we argue as 
follows. As each one of the maps 𝑎 → 𝑎𝑃𝑏 and 𝑏 → 𝑎𝑃𝑏 is monotone increasing and continuous, 
(𝑎, 𝑏) → 𝑎𝑃𝑏 is continuous by 3.7.11. 

A special role is played by the wagers 𝑎𝑃𝑎  leading to outcome 𝑎 regardless of whether 𝑃 
obtains or not. Though it seems most natural to require such wagers to be equivalent to 𝑎 (for all 
𝑃 ∈ ℰ), it turns out to be unnecessary to formalize such an assumption in this section. 
12.2.9 Proposition: The map 𝑎 → 𝑎𝑃𝑎 of 𝐴 into 𝐴𝑃𝐴 is monotone increasing and continuous. 

Proof: If 𝑃 is almost impossible or almost sure the assertion is trivial. If 𝑃 ≉ 𝑂, 𝐸 we argue as 
follows: from 12.2.6 we obtain for 𝑎 < 𝑏: 𝑎𝑃𝑎 ≺ 𝑎𝑃𝑏 ≺ 𝑏𝑃𝑏. Continuity follows immediately from the 
fact that 𝑎 → (𝑎, 𝑎) is continuous by (3.7.2) and (𝑎, 𝑎) → 𝑎𝑃𝑎 is continuous by 12.2.8. 
12.2.10 Theorem: For all 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≠ 𝑏 there exists exactly one 𝑐 between 𝑎 and 𝑏 such that 
𝑐𝑃𝑐 ≈ 𝑎𝑃𝑏. 

Proof: Follows immediately from (12.2.9) and the intermediate value theorem (3.6.13). 
12.2.11 Definition: “∘ ” is the operation which assigns to each pair 𝑎, 𝑏 ∈ 𝐴 an element 𝑎 ∘ 𝑏 ∈ 𝐴 
defined by 𝑎𝑃𝑏 ≈ (𝑎 ∘ 𝑏)𝑃(𝑎 ∘ 𝑏). 

We remark that the existence of such an element is guaranteed by 12.2.10. 𝑎 ∘ 𝑏 will be called 
the safety equivalent of the wager 𝑎𝑃𝑏, for the subject is indifferent between the wager 𝑎𝑃𝑏 and the 
amount of 𝑎 ∘ 𝑏. 
12.2.12 Theorem: The operation ∘  and the relation ≈ have the following properties 
(i) ∘  is intern except 𝑃 ≈ 𝑂 or 𝑃 ≈ 𝐸. 
(ii) 𝑎 ∘ 𝑏 = 𝑎. 
(iii) ∘  is increasing in both variables except 𝑃 ≈ 𝑂 or 𝑃 ≈ 𝐸. 
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(iv) (𝑎, 𝑏) → 𝑎 ∘ 𝑏 is continuous. 
(v) 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 for all 𝑎, 𝑏 ∈ 𝐴, 𝑃 ∈ ℰ. 
(vi) The following three sentences are equivalent: 
a) 𝑎 ∘ 𝑏 = 𝑎 ∘ 𝑏 for at least one pair 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏, 
b) 𝑎 ∘ 𝑏 = 𝑎 ∘ 𝑏 for all 𝑎, 𝑏 ∈ 𝐴, and 
c) 𝑃 ≈ 𝑄. 

Proof: 
(i) See 12.2.10. 
(ii) Follows immediately from 𝑎𝐸𝑏 ≈ 𝑎𝐸𝑎 (12.2.6). 
(iii) We shall prove monotony in the first variable only: if 𝑎 < 𝑎′′, 12.2.6 implies 𝑎 𝑃𝑏 ≺ 𝑎′′𝑃𝑏. Let 

𝑐 = 𝑎 ∘ 𝑏, 𝑐 = 𝑎′′ ∘ 𝑏. We have 𝑐 𝑃𝑐 ≈ 𝑎 𝑃𝑏 ≺ 𝑎 𝑃𝑏 ≈ 𝑐′′𝑃𝑐′′. Hence 12.2.9 implies 𝑐 < 𝑐′′. 
(iv) We have to show that: {(𝑎, 𝑏) ∈ 𝐴 × 𝐴: 𝑎 ∘ 𝑏 < 𝑐} is open for all 𝑐 ∈ 𝐴. We have 𝑎 ∘ 𝑏 < 𝑐 iff 

𝑎𝑃𝑏 ≈ (𝑎 ∘ 𝑏)𝑃(𝑎 ∘ 𝑏) ≺ 𝑐𝑃𝑐. Hence {(𝑎, 𝑏) ∈ 𝐴 × 𝐴: 𝑎 ∘ 𝑏 < 𝑐} = {(𝑎, 𝑏) ∈ 𝐴 × 𝐴: 𝑎𝑃𝑏 ≺ 𝑐𝑃𝑐}. 
As (𝑎, 𝑏) → 𝑎𝑃𝑏 is continuous (12.2.8), this is an open set for all 𝑐 ∈ 𝐴. The other cases are dealt 
with similarly. 

(v) Follows immediately from 12.2.6a). 
(vi) Follows immediately from the uniqueness axiom (12.2.4) and (v). 
12.3 Compound Wagers 

… 
12.3.2 Postulate: For all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐴 and all 𝑃, 𝑄 ∈ ℰ, (≉ 𝑂, 𝐸): 

𝑎 ∘ | 𝑏 ∘ 𝑐 ∘ | 𝑑 = (𝑎 ∘ | 𝑐) ∘ (𝑏 ∘ | 𝑑). 
Furthermore the wagers (𝑎(𝑄|𝑃)𝑏)𝑃𝑏  and 𝑎𝑃𝑄𝑏  are identical, as for both wagers 𝑃𝑄 →

𝑎, 𝑃𝑄 → 𝑏, 𝑃𝑄 → 𝑏,  𝑃𝑄 → 𝑏. Hence they are judged equivalent due to our lack of illusion principle 
[desiderata 3.a]. Furthermore we obtain from the sure thing principle [desiderata 2 and 3.c] 
(𝑎(𝑄|𝑃)𝑏)𝑃𝑏 ≈ 𝑎 ∘ | 𝑏 𝑃𝑏 ≈ 𝑎 ∘ | 𝑏 ∘ 𝑏 and 𝑎𝑃𝑄𝑏 ≈ 𝑎 ∘ 𝑏. This suggests the following 
12.3.3 Postulate: For all 𝑎, 𝑏 ∈ 𝐴 and all 𝑃, 𝑄 ∈ ℰ (𝑃 ≉ 𝑂): 

𝑎 ∘ | 𝑏 ∘ 𝑏 = 𝑎 ∘ 𝑏. 
12.3.4 Theorem: The order in ℰ defined by 12.2.5 refines the order defined by 12.1.8: 𝑃 ⊃ 𝑄 implies 
𝑎𝑃𝑏

≻
≈

𝑎𝑄𝑏 for all 𝑎, 𝑏 ∈ 𝐴 with 𝑎 > 𝑏. 
Proof: By definition 12.1.8, 𝑃 ⊃ 𝑄  is equivalent to 𝑃 ∩ 𝑄 = 𝑄 . Hence 12.3.3 implies 

𝑎 ∘ | 𝑏 ∘ 𝑏 = 𝑎 ∘ 𝑏. 
By 12.2.12 (ii) and (iii) 𝑎 > 𝑏  implies 𝑎 ≥ 𝑎 ∘ | 𝑏 . Hence 𝑎 ∘ 𝑏 ≥ 𝑎 ∘ 𝑏  which proves the 

assertion. 
In the following sections we shall only use properties of the operation ∘  which are stated in 

12.2.12, 12.3.2 and 12.3.3. Instead of deriving these postulates from more general axioms (order, 
uniqueness and continuity) and principles (sure-thing and lack of illusion), another possible 
approach would be to forget about these general axioms and principles and to state 12.2.12, 12.3.2 
and 12.3.3 together with the continuity axiom as fundamental axioms. 

… 
12.5 Theorems on Utility and Subjective Probability 
12.5.1 Definition: The event 𝑄 ∈ ℰ is independent of the event 𝑃 ∈ ℰ′ iff ∘ | =∘ | . 

This definition is justified by the fact that ∘ | =∘ |  means that the knowledge of whether 𝑃 or 
𝑃 obtains is irrelevant for the evaluation of wagers based on 𝑄 . It will be shown in 12.5.14 that 
independence is a symmetric property, i.e. if 𝑄 is independent of 𝑃, then also 𝑃 is independent of 
𝑄. 
12.5.2 Axiom: For each event 𝑃 ∈ ℰ′ there exists an element of 𝑄 ∈ ℰ′ which is independent of 𝑃. 

This axiom is not very strong, of course, because any rational person will be willing to consider 
the tossing of a coin as an event which is independent of all other uncertain events. 

…  
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