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Abstract: Myostatin inhibition therapy has held much promise for the treatment of muscle wasting
disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD).
Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several
clinical trials were initiated in DMD patients using different modality myostatin inhibition
therapies. All failed to show modification of disease course as dictated by the primary and
secondary outcomes measures selected: the myostatin inhibition story thus far, is a failed clinical
story. These trials have recently been extensively reviewed and reasons why pre-clinical data
collected in animal models has failed to translate into clinical benefit to patients has been purported.
However, the biological mechanisms underlying translational failure need to be examined to ensure
future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore
the biology which could explain the failed translation of myostatin inhibitors in the treatment of
DMD.
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1. Introduction

Since McPherron'’s initial discovery of the mighty mouse [1] and the subsequent clinical case
report of an infant with uncharacteristic muscling and superhuman strength caused by mutations in
the myostatin (growth differentiation factor 8 (GDF8) gene [2], researchers and drug companies have
been in a race to develop drugs targeted against myostatin to treat muscle wasting conditions.
Therapeutic myostatin inhibition has been purported for muscular dystrophy, cachexia, sarcopenia,
disuse atrophy associated with osteoporosis, diabetes, amyotrophic lateral sclerosis (ALS) and
multiple sclerosis [3]. While myostatin inhibition cannot correct the primary defect in many of these
diseases, severe and progressive muscle wasting could, theoretically, be attenuated, halted or
reversed to increase the longevity and quality of lives of patients and reduce burden on the healthcare
system. Subsequent development of a range of myostatin inhibitors and promising pre-clinical results
encouraged human trials. However, for Duchenne Muscular Dystrophy (DMD) (as well as several
other diseases) human clinical trials have not progressed to an effective medicine.

Recently, Wagner (2020) reported on the failed clinical trials that have highlighted the futility of

myostatin inhibitor drugs against DMD and provided several key reasons for unsuccessful
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translation between pre-clinical and clinical studies [4]. These were: (1) the distinct differences in
native myostatin levels in mice compared to humans (by ~10 fold); (2) disparity in the proportional
basal suppression of circulating myostatin between wild-type/healthy and mdx/DMD muscles
(skeletal muscle myostatin is 25% of WT levels in mdx mice compared to 8% of healthy control levels
in DMD patients); and (3) the confounding effects of standard of care corticosteroid treatment in
DMD patients which was never extensively tested in pre-clinical animal trials. These factors are
explored in detail herein, in context of the known cellular pathophysiological events which drive
DMD. We also discuss other potential factors which might alternatively explain the failed translation

of myostatin inhibitor drugs with important implications for future drug development programs.

2.0 Myostatin is differentially expressed in mice and humans

Myostatin negatively controls skeletal muscle growth and quality through multiple molecular
mechanisms. A member of the transforming growth factor  superfamily, myostatin is important for
the regulation of both pre- and post-natal muscle growth. There is evidence to suggest that through
interplay with GDF11, myostatin coordinates muscle growth to ensure a proportionate ratio between
skeletal muscle and bone growth rate and density (as reviewed recently in [5]), such that the skeleton
is capable of supporting the musculature and the musculature capable of moving the skeleton.
Myostatin is a well-established inhibitor of mRNA translation, i.e. protein synthesis, in part, via
targeted suppression of mammalian/mechanistic target of rapamycin complex (mTORC), a highly
conserved serine/threonine kinase widely considered to be a master regulator of cell growth.
Additionally, myostatin drives atrophy through pro-degradative signal-transduction mechanisms in
a Smad?2/3-dependent manner, increasing FoxO transcriptional activity and upregulating the
expression of E3-ubiquitin ligases [6]. Collectively, these mechanisms account for most of myostatin’s
activity against post-natal muscle growth. In this regard, myostatin may act as an environmental
sensor/signaler of nutritional status (particularly in a low amino acid environment) [7] in synergy
with the cellular energy sensor, adenosine monophosphate-activated protein kinase [8], promoting a
negative feedback loop that inhibits ribosomal biogenesis and, subsequently, mTOR-dependent
protein synthesis [9-11].

Myostatin is also a negative regulator of muscle stem “satellite” cell proliferation and
differentiation at the G1 to S progression phase of mitosis, which maintains satellite cells in a
quiescent state [12]. While strong repressor activity of satellite cell proliferation and differentiation
through Smad 2/3 signaling may account for a proportion of myostatin’s role in post-natal muscle
growth inhibition, myostatin is probably most influential on the regulation of embryonic muscle
progenitors during pre-natal muscle growth. Embryonic muscle growth is both hyperplastic and
hypertrophic: that is, muscle tissue growth involves both increased myofibre number via the
accretion of myoblasts > myotubes > myofibres, followed by their relative diametric and longitudinal
growth, which is equally dependent upon motor neuron outgrowth and functional innervation [13].
Usually by 7 years of age, hyperplastic muscle growth ceases and thereafter, only hypertrophic
growth is responsible for increased muscle size [14] — this is achieved through protein synthesis,
which is dependent upon the genetic material donated through satellite-cell dependent myotube
fusion [15]. Myostatin is strongly expressed in embryonic somite where it appears to modulate the

balance between proliferation and differentiation of embryonic muscle progenitors during
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development [16], possibly by sensitizing progenitors to pro-differentiation signals (e.g. Notch
signaling [17,18]). In this manner, myostatin helps to set both the finite myofibre number as well as
the extent of the satellite cell pool, which dictates the capacity for post-natal growth. Thus, myostatin
exerts very different effects on skeletal muscle growth in the embryonic versus the post-natal cellular
environments.

The differential growth of skeletal muscle in the pre- and post-natal environment is important to
this story because proof of concept efficacy of myostatin inhibition in animal models of DMD was
initially proven through myostatin knockout (KO), which manipulates both pre- and post-natal
hyperplastic and hypertrophic muscling [19]. This is in stark contrast to drug inhibitors of myostatin
which can only manipulate the post-natal hypertrophic growth of muscle. It might be that myostatin
inhibition is much more influential on global muscle mass when applied from the earliest muscle
growth during embryogenesis — this explains the phenomenal impact of myostatin gene mutations
in mice [1], larger order animals (dogs [20], sheep [21], cows [22], horses [23,24]) and humans [2].
Indeed, in myostatin KO mice, hyper-muscling is attributable to hyperplasia (i.e. >80% more muscle
fibres) more so than hypertrophy (~30% larger cross-sectional area of the individual muscle fibres
[1,25]). Nevertheless, each of the experimental drugs which failed in clinical testing were shown to
modify the disease course of murine DMD in the gold standard mdx mouse model [26-29], albeit, only
some of these studies used sexually mature mice [26,29] as opposed to juvenile mice [27,28] which
are likely to be more amenable to myostatin inhibition [30] through hyperplasia. Wagner has reported
that mice (mdx) maintain ~10-fold higher circulating myostatin levels than humans and that
myostatin repression is ~3-fold higher [4]. This implies that more robust myostatin repressor activity
is required to keep muscle mass checked in mice compared to humans. Thus, human muscle mass
may, by comparison, be relatively less modifiable by drugs that interfere with myostatin activation
than murine muscle mass. This begs the question: why?

Satellite cell regulation of muscle stemness is maintained through daughter cell (muscle
progenitor) fate selection, which is under the influence of various factors, including inflammatory
cytokines and myokines, growth factors, local cell (i.e. fibro-adipocyte progenitors, extracellular
matrix and endothelial cells) and non-muscle stem cell signaling, the dystrophin-associated
glycoprotein complex (DGC; especially syntrophins), micro and long non-encoding RNA’s, and
telomere activity (reviewed in [31]). During moderate-severe muscle damage, satellite cell cycling is
amplified, and both daughter cells will commit to symmetric satellite pool expansion initially, before
next undergoing asymmetric division where one daughter cell will commit to myogenic lineage and
the other to self-renewal of the satellite cell pool to prevent the depletion of stem cell function [32].
This facilitates the rapid repair of lost muscle tissue to maintain mass and function, which is
advantageous to the organism during acute muscle injury, but which adversely impacts telomere
length. In contrast, during steady-state muscle turnover or minor injury, only asymmetric division
occurs [32]. In this scenario, muscle repletion is slower, but telomere shortening is minimized. This is
an important concept because muscle regenerative capacity is contingent not only on the number of
satellite cells available but also on their proliferative capacity i.e. how many times they can re-enter
the cell cycle. Satellite cells have a finite replicative life which is proportional to telomeric DNA length
[33]. It is a well-established pathogenic feature of DMD that the satellite cell pool becomes exhausted
(both in satellite cell content and proliferative capacity) due to unremitting cycles of chronic muscle
injury and regeneration caused, fundamentally, by the absence of dystrophin protein and alterations

to the DGC. In this setting, satellite cells are less able exit the cell cycle and revert to their homeostatic
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quiescent state, which is required for telomere maintenance and long-term regenerative capacity [32].
Compared to humans and for reasons unknown, mice have remarkably longer telomeres, which do
not substantially shorten through replication and aging [34]. This suggests a greater comparative
capacity for satellite cell activity-mediated regeneration and muscle growth and may explain why
the mdx mouse recapitulates a milder phenotype than human DMD, particularly since knockdown
of telomerase in the mdx mouse induces “human-like” DMD [35]. Thus, an exaggerated myostatin
repressor function might be fundamentally important to restrain a naturally higher propensity for
muscle growth in mice compared to humans because satellite cell activity is more robust and
enduring. This effect seems to even endure the elevated demand for muscle regenerative activity
caused by dystrophin-deficiency, as suggested by the higher relative suppression of circulating
myostatin levels in mdx mice (25%) versus DMD patients (8%) compared to healthy controls [4]. For
this reason alone, myostatin may be more amenable to inhibition in mice but less so in humans,
simply because there is more of it to inhibit and thus the scope for biological modification of muscle
growth is greater (as summarized in Figure 1). It would be interesting to determine the capacity for
myostatin inhibitor drugs to modify murine DMD using the mdx/mTR-/- model, which has shortened
telomeres, as a staple in pre-clinical trials, where the scope for modification is more comparable to
human DMD [36,37].
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Figure 1. Summary of the contrast between satellite cell regulation in the murine mdx model of
Duchenne Muscular Dystrophy (DMD) and human DMD patients. It is proposed that a larger and
more enduring satellite cell replicative capacity in the mdx mouse model of DMD, which is associated
with longer telomere length compared to humans, results in a greater scope for myostatin inhibition
therapies to prevent myostatin-mediated repression of myoblast differentiation. Conversely,
unremitting satellite cell cycling in non-ambulant DMD patients in response to chronic muscle
degeneration compared to mdx mice, results in depletion of the satellite cell pool, reduced
regenerative capacity and, thus, the scope for myostatin inhibition to be therapeutically effective.
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3.0 Myostatin inhibition enhances muscle mass but not necessarily function

Despite the lack of translational outcomes for myostatin inhibitors so far, it is important to note
that the clinical trials investigating myostatin inhibitors against DMD did not all fail to elicit muscle
mass increases. ACE-031 (NCT01099761) and ACE-083 (NCT02927080) both developed by Accleron
Pharmaceuticals, domagrozumab developed by Pfizer Inc (NCT02310763) and RG6206/R07239361
(NCTO03039686) developed by Hoffman La Roche, all produced mild (generally <5%), yet statistically
significant increases in muscle/lean mass as measured through non-invasive imaging of DMD
patients [4,5]. However, what these studies did fail to show were concomitant improvements in
strength which should have accompanied these mass gains. Each of these trials failed to meet either
their primary or secondary/surrogate outcome measures concerning muscle function [4,5]. This is
important when considered in context of the endpoint and surrogate outcome measures selected
through which to validate drug efficacy. The only successful outcome for patients is the attenuation
of disease course sufficiently to maintain or improve quality of life. For most of these trials, functional
tests to monitor the progression of DMD in the clinic (i.e. the 6 minute walk test) were used as
outcome measures to evaluate the efficacy of myostatin inhibition against muscle wasting, and
therefore strength decline. However, this works off the assumption that myostatin inhibition can
induce both mass and function equally, or that mass increases always produce functional/strength
improvements. It is well known that muscle strength and size are not increased in concert [38,39] and
neither proportionate loss of mass can explain, nor gain of mass arrest, strength decline as humans
age [40]. Indeed, studies of myostatin inhibitor drugs against age-related sarcopenic muscle wasting
are consistent with data from the DMD clinical trials and support the lack of synergy between mass
and strength, as well as the poor translation of murine myostatin inhibition in clinical trials.

In vivo, muscle fibre growth is initiated through an interplay governed by the net positive
difference between protein synthesis and degradation, and satellite cell-dependent myotube fusion,
but is functionally modulated by neuromotor activation patterns across the neuromuscular junction
and mechanical loading [41]. Strength gains are most intensely observed when type II myosin heavy
chain isoforms are preferentially expressed (i.e. over slow type I isoforms). Type II fibres have higher
power due to faster contraction velocity and larger cross-sectional areas [42], thus greater type Il fibre
expression leads to bigger fibres capable of higher force outputs and therefore strength. Type II fibres
are induced through specific stimuli, namely intense mechanical loading which induces rapid
succession action potential transfer across the neuromuscular junction into the t-tubules, and
comparable sarcoplasmic reticulum-mediated calcium (Ca?") transients which are typically longer
and more concentrated than for temperate mechanical loading [43,44]. Myostatin inhibition induces
slow (type I) to fast (type II) fibre transition [45], and thus should theoretically evoke strength gains
in the clinic. To understand why this may not be possible for DMD patients, one must consider the
pathogenesis of the disease, which preferentially drives the wasting of type II(x) fibres first [46-48].
Dystrophin stabilizes the sarcolemma during muscle contraction and is, thus, particularly important
to type II fibres which bear the brunt of the mechanical load. Type II fibres are more prone to damage
for this reason alone, but without dystrophin (i.e. in DMD), mechanical damage is intensely
exacerbated. As such, converting fibres towards type II, yet maintaining the lack of dystrophin, may
simply make them bigger and more susceptible to damage. Further, type II fibres also lack the

magnitude of endogenous antioxidant and cytoprotective responsivity of type I fibres [49,50] because
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they rely less on oxidative metabolism by the mitochondria, which is a principle source of damaging
free radicals in cells. Notwithstanding, type II fibres can produce significant amounts of reactive
oxygen species (ROS) during explosive, high-intensity activation which drives xanthine oxidase
activity through the degradation of purine nucleotides: the net result is a rapid and intense ROS
production [51]. DMD mitochondria are notoriously dysfunctional and produce appreciably less
adenosine triphosphate (ATP) [52-54] but more ROS [53,55,56], placing stress on the anaerobic energy
systems, which further drives cytosolic ROS production (i.e. through xanthine oxidase, amongst
other ROS producing enzymes). DMD muscles, particularly dystrophin-deficient type II fibres, are
thus also more prone to oxidative stress-induced damage [48]. For this reason, drugs that mediate
fibre type transformations from fast to slow have been suggested as a therapeutic treatment avenue
for DMD [57]. Conversely, myostatin inhibition directly contests this idea by promoting expression
of the very fibres that are prone to damage and wasting. This might explain why strength gains are
less obvious than mass gains, since any muscle mass induced by higher proportions of larger type I
fibres likely manifests as a more severe pathology, which limits functionality. It might also explain
why, for domagrozumab, muscle volume gains were observed following the first few months of
treatment [58], yet at ~12 months, there was no observable difference in muscle volume compared to
placebo [59] i.e. the initial muscle gained had preferentially wasted.

Without proportionate synthesis of contractile proteins as part of the overall protein synthesis
rate, muscle mass gains are futile. Indeed, for sarcopenia (the age-related loss of skeletal muscle mass
and function), functional decline has been delineated as the most important indicator of this condition
[60] i.e. without functional improvement, there is no point to mass increases. Exercise represents the
definitive muscle growth stimulus (particularly eccentric resistance exercise) where intrinsic skeletal
muscle molecular signaling of hypertrophy (e.g. ROS, metabolites, and mechanical signals) are
synergistically activated alongside motor neuron stimulation. While myostatin inhibition may
represent an important molecular signal for hypertrophy and hyperplasia, these events may in fact
be futile without synergistic motor neuron signaling. To illustrate this point, it is important to
highlight that muscle satellite cells represent the only means for post-natal muscle hyperplasia,
except for the fact that developing myotubes have no means to access the neural input required to
translate new muscle accretion into functional improvements. For this reason, myotubes must, in
post-natal muscle, fuse with pre-existing fibres possessing established neuromuscular connections to
gain access to neural motor input and become “functional” [15]. Muscle fibre “splitting” is
characteristic of DMD muscles [61] and is purportedly caused by the incomplete fusion of satellite
cell-mediated myotubes with existing skeletal muscle fibres [62]. The extent to which incomplete
fusion might contribute to corresponding increases in function comparative to skeletal muscle
accretion is unknown but can be logically interpreted. The less able a myotube is to fully fuse with a
given skeletal muscle fibre, the less access its nucleus has to the molecular signals of skeletal muscle
contraction e.g. the t-tubular action potential and the myoplasmic Ca? and ROS transients among
others, which denote the magnitude of mechanical stress relative to neuronal input. A flow on effect
of this is a reduction in myokine signals released from muscles during activation, which in turn,
attract nerve outgrowth, an essential event that must accompany hypertrophic growth of fibres to
maintain proportionate function [63-65]. In the muscles of mdx mice, aberrant pre- and post-synaptic
neuromuscular junction changes have been described [66], but otherwise, mdx mice maintain robust
contractile function and ambulation throughout life [67]. This might explain why in mdx mice,

myostatin inhibition induces both muscle mass and function gains. In DMD patients, neuromuscular
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junction vulnerability is evident [66], which along with reduced neural input through developmental
delay of weight-bearing activities such as standing and walking, and wheelchair confinement
following loss of ambulation, could contribute significantly to the impaired translation of the
neurological signal to skeletal muscles. Combined with myostatin inhibitor drugs, the likely outcome

is muscular hypertrophy without the synergistic improvement of skeletal muscle function.

4.0 Corticosteroids interfere with myostatin inhibition

In pre-clinical animal studies, it is relatively simple to control for the many confounding variables
that can inadvertently impact research outcomes. This becomes more difficult in clinical trials with
humans, and ever more difficult again with rare diseases where there are so few patients to access.
Corticosteroids (prednisolone/prednisone, or deflazacort) are standard of care for DMD treatment
(which may also include angiotensin converting enzyme (ACE) inhibitors or angiotensin blockers)
[68], but due to significant side-effects, not all DMD patients are amenable to them. This leaves a very
small population of DMD boys who are steroid naive and prime candidates for trialing candidate
therapeutics. For the rest of the DMD patient population, standard of care cannot be ethically
withdrawn, which has important implications for trial participant selection and stratification.
Inevitably, there is a trade-off that must be made between having a sufficiently powered trial to
establish efficacy of a therapeutic candidate, which can only be achieved with larger numbers of
study participants; and introducing significant confounders to the research.

Paradoxical to their use against muscle wasting, corticosteroids are atrophic agents, but were
introduced for the treatment of DMD due to their potent anti-inflammatory and immuno-modulatory
action [68]. There has been only one myostatin inhibitor drug tested pre-clinically in combination
with corticosteroids. Hammers ef al. demonstrated that when administered with prednisone, the
muscle mass increases induced by myostatin inhibition (with a pro-peptide) were abolished [69].
Importantly, the failed trials testing domagrozumab and RG6202 enlisted patients receiving the
standard of care, giving scope for drug interactions which likely impacted myostatin inhibition
capacity.

Genetic myostatin deletion can curb the muscular atrophy effects of corticosteroid treatment,
suggesting that myostatin may modulate corticosteroid receptor signaling in skeletal muscle [25]. In
healthy mouse muscle, glucocorticoids reduce IGF-1 mRNA leading to removal of IGF-R1 repression
of atrogin-1, causing muscle atrophy. When administered to myostatin KO mice, the same skeletal
muscles respond to corticosteroid treatment by upregulating IGF-2, which can alternatively interact
with the IGF-R1 receptor [25] to repress atrogin-1 and muscular atrophy. While these data ostensibly
suggest that myostatin inhibition could be useful to counteract the side effects of corticosteroid
treatment, i.e. muscle atrophy, it is important to highlight that corticosteroids also increase the
expression of myostatin mRNA and protein [70-72]. Since this effect cannot occur in genetically
ablated KO mice, but can during drug-induced myostatin inhibition where the myostatin gene is
functional, it stands to reason that corticosteroids may directly oppose myostatin inhibitor drug
action through increasing myostatin levels to competitively antagonize the activinin receptor or
myostatin activation. In this regard, whether a DMD clinical trial participant is steroid treated (as
opposed to steroid naive), and then specifically, the dosage of corticosteroid administered to

individual participants, would be highly influential on the capacity of myostatin inhibitor drugs.
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5.0 Conclusions

Myostatin inhibitor drugs have the potential to be greatly beneficial against muscle wasting
diseases and disorders yet have to date been highly ineffective. The dramatic impact of loss of
function myostatin mutations on muscle mass and strength accretion, which are probably most
profoundly influential during embryonic development, must be balanced against the capacity of
drugs to resist skeletal muscle wasting driven by a plethora of stimuli in the post-natal environment.
Clinical trials in DMD patients present a variety of challenges which make participant stratification,
and the selection of primary and secondary outcomes measures difficult, and confounding variables
numerous. We suggest that in addition to corticosteroid use as standard of care, the physical capacity
of patients as well as their relative level (volume and intensity) of physical activity should be
considered when testing myostatin inhibitors, since neural input is likely very impactful on eliciting
functional improvement alongside mass gains. Emerging evidence suggests that myostatin not only
regulates muscle mass, but also metabolism, adiposity and insulin-sensitivity [73]: targeting
downstream molecular targets of myostatin rather than upstream activation and receptor binding,

could thus represent an alternative druggable target against DMD.
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