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Abstract

The calculation of echo intensity involved in the SAR image simulation is usually based on the electromagnetic formula
or approximate formula derived under certain assumptions. However, the parameters used in these formulas are often
difficult to obtain, and the formulas have errors with the actual situation. In this paper, a method of embedding deep
neural network (DNN) into the simulation process based on ray tracing is proposed, so that the DNN model can be di-
rectly used to fit the calculation formula of echo intensity from real SAR images. Simulation results show that this
method can obtain SAR images with high similarity.
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1 Introduction

SAR image simulation can quickly provide a large num-
ber of images of a target under different imaging condi-
tions at a low cost, and it has been applied in many appli-
cation fields, such as target classification, building height
inversion, and SAR image interpretation.

There are usually two main problems to be solved in SAR
image simulation. One is to determine the location of the
echo in the range-azimuth image domain. The other is to
calculate the strength of the echo. Geometrical optics (GO)
and ray tracing techniques are commonly used to calcu-
late the location of the echo. The physical optical (PO)
method or approximate physical electromagnetic formula
is used to calculate the echo intensity [1].

However, PO and approximate physical electromagnetic
formulas have some problems in the actual simulation.
First, the accuracy of these methods or approximation
formulas is limited because they are obtained by ignoring
certain components of electromagnetic wave propagation
under some approximation assumptions. Second, the rele-
vant parameters required by these methods are either ex-
pensive to acquire or require a lot of time and effort to
manually adjust.

In our previous work, we proposed a framework to auto-
matically extract simulation parameters by using deep
neural network (DNN) combined with simulation images
and real SAR images [2]. In this work, we will use convo-
lutional neural network (CNN) to directly learn the calcu-
lation formula of electromagnetic intensity from real SAR
images and apply it to SAR image simulation.

The calculation formula of electromagnetic wave intensity
is a function, whose input is geometric and material in-
formation, and the output is the intensity of electromag-
netic wave. The basic function of DNN is to automatically
learn the function from input to output through back
propagation algorithm. Therefore, as long as the DNN
model is trained with the correct incident and reflection

information of electromagnetic wave, it may fit the calcu-
lation curve of electromagnetic wave intensity.

However, a SAR image is the result of multiple interac-
tions between a large number of electromagnetic waves
and a target. In most simulation methods, it is difficult to
separate the single electromagnetic calculation from the
imaging process while ensuring the whole simulation pro-
cess is differentiable. To our knowledge, although there
are some attempts to apply DNN to SAR image simula-
tion [3][4], there is actually no work directly using DNN
to calculate the intensity of each reflection of electromag-
netic wave.

In this paper, we proposed a novel method of embedding
DNN into SAR image simulation. By designing the simu-
lation process and data structure, the function of the DNN
model is equivalent to that of the original electromagnetic
intensity calculation formula, and the process from elec-
tromagnetic intensity calculation to the range-azimuth im-
aging is completely differentiable. Thus, the DNN model
can fit the calculation curve of electromagnetic wave in-
tensity from real SAR images and be directly used in SAR
image simulation.

The paper is organized as follows. Section 2 explains the
method and structure of embedding DNN into SAR image
simulation, including the process of the modified simula-
tion and the design of DNN architecture. Section 3 gives
the experimental data and results. Section 4 summarizes
some conclusions and gives the following research con-
tents.

2 Approach

2.1 Simulation Process

Figure 1 shows the process of the proposed SAR image
simulation method which embeds the DNN model to cal-
culate the echo intensity. This process is mainly divided
into four parts: ray tracing, calculation of echo intensity
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Figure 1 The process of SAR image simulation embedded with DNN model.

based on DNN model, range-azimuth imaging, and post-
processing imaging.

The first part, ray tracing, compared with traditional simu-
lation methods, needs to record not only the geometric
and material information of every intersection between
the ray and the surface element, but also needs to record
the coordinate position of the echo in the range-azimuth
image domain, so as to provide necessary information for
the subsequent SAR image domain imaging.

The second part, calculation of echo intensity through
DNN model, can only be input the necessary geometric
and material information, but not the additional infor-
mation of the imaging position. Such input and output can
make DNN model consistent with the calculation formula
of echo intensity in the original ray tracing method, pre-
vent DNN model from directly calculating intensity ac-
cording to position, and ensure the generalization ability
of DNN model.

The third part is to image in the SAR image domain ac-
cording to the position information of the echo provided
in the first part and the intensity information of the echo
provided in the second part. This step needs to be differ-
entiable to ensure that the gradient information can be
passed forward when training the DNN model. The com-
putational model of this step can be regarded as a fully
connected neural network model with all parameters of 0
or 1. For different images, the value of parameters will
change according to the coordinates of the echo.

The fourth part, the post-processing imaging, mainly
completes the change of resolution, adds the function of
impact response, and image registration during DNN
model training. This part can be realized by fixed convo-
lution operation or a trainable CNN.

2.2 Ray tracing information

As shown in Figure 1, the information recorded during
ray tracing can be divided into two categories: local geo-
metric and material information required for calculating
echo intensity, and global coordinate information required
for range-azimuth imaging.

Different from the traditional ray tracing method which
directly accumulates the echo intensity in the range-
azimuth image domain, we need to record the information
of each ray separately. Therefore, we record this infor-
mation using the coordinates of the starting points of the
ray in the orthogonal image field.

Figure 2 shows some of the ray tracing information,
where different values are assigned different colors. The
pixel value in (a) and (b) represents the range-azimuth
coordinate values of the echo of the ray emitted from the
pixel’s position. (c) shows the material category of the
local surface element when the electromagnetic wave is

reflected. (d) shows the geometric information of the in-
tersection of electromagnetic waves and surface elements.
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Figure 2 Some of the ray tracing information. (a) The
azimuth coordinate value in the range-azimuth domain. (b)
The range coordinate value in the range-azimuth domain.
(c) Material category information. (d) Geometry infor-
mation: The angle between the incident ray and the nor-
mal direction of the plane element.

2.3 DNN Architecture and Intensity Calcu-
lation

The DNN model for calculating the echo intensity of a
single reflection can be regarded as a fully connected
network, whose input is the geometric information and
material information of the local surface element, and the
output is the intensity in the backscatter direction and the
intensity in the specular reflection direction.

The difference between the calculation of echo intensity
in multiple reflections and that in single reflection is that
the intensity of this reflection needs to be obtained by
multiplying the intensity obtained in the last reflection by
the attenuation rate obtained in this calculation. Therefore,
in the network structure, it is necessary to multiply the
output of the previous network and the output of the cur-
rent network.

After viewing the geometric and material information ob-
tained from ray tracing as different channels of an image,
we find that the fully connected network in the direction
of the image channel is completely equivalent to the full



convolutional network whose convolution kernel size is
one (see Figure 3). Therefore, we directly use such a
network structure for intensity fitting and calculation.
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Figure 3 The basic structure of DNN model. In the im-
age, the convolution operation with kernel size one is
equivalent to the full connection operation in the channel
direction.

2.4 Image formation

Since the image domain of the recorded data is different
from the range-azimuth domain of the SAR image, the
echo intensity calculated by the DNN model needs to be
converted to obtain the simulated SAR image. In this step,
the echo should be accumulated to the range-azimuth co-
ordinates (see Figure 2 (a)(b)) obtained by ray-tracing
method. The calculation completed in this step must be
differentiable in order to propagate the error value be-
tween the simulation image and the real image forward to
the DNN model that calculated the echo strength in the
previous step.

3  Experiment
3.1 Dataset

The real images used to train and evaluate DNN models
are the images of SLICY (Sandia Laboratory Implementa-
tion of Cylinders) target in the Moving and Stationary
Target Acquisition and Recognition (MSTAR) public da-
taset [5]. Figure 4 shows the 3D model of SLICY target
for ray tracing which was constructed from [6].

Figure 4 The 3D model of SLICY target.

In the MSTAR dataset, SLICY target has 288 images

with the 30° depression angle and 274 images with the 15°
depression angle. We randomly select 80% of the images

under 30° depression angle and 20% of the images under

15° depression angle as the training set, and use the re-

maining images as the verification set.
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3.2 Specific Structure

With the help of the open source deep learning framework
PyTorch [7] and ray tracing engine OptiX [8], we com-
pleted the construction of the entire image simulation pro-
cess and DNN model training process.

Table I and Table II give the specific structures of the
DNN models used in this experiment. The mean square
error (MSE) between the simulated image and the real
image is taken as the loss function of the whole network.
The optimizer is the Adam optimizer [9].

The network structure provided in this article is only to
verify the methods in Section 2. In the following work,
we will finish the fine tuning of the model hyperparame-
ters to get better performance of the model.

Table I Structure of DNN Model for Calculating Echo

Intensity
Layer Kernel Kernel Mode Activation
No. Size Num Function
0 1X1 32 SAME ReLU
1 1X1 32 SAME ReLU
2 1X1 16 SAME ReLU
3 1X1 2 SAME None
Table II Structure of DNN Model for Post-imaging Pro-
cessing
Layer Kernel Kernel Mode Activation
No. Size Num ° Function
0 5X5 32 SAME ReLU
1 5X35 24 SAME ReLU
2 5X5 16 SAME ReLU
3 5X5 16 SAME ReLU
4 5X35 8 SAME ReLU
5 3X3 1 SAME Tanh
3.3 Results
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Figure 5 MSE loss value curve on the training set and
verification set. (a) on the 30° depression angle data set (b)
on the 15° depression angle data set

Figure 5 shows the loss value curve on the training set
and verification set during the training of DNN model.
Figure 6 and Figure 7 show the simulation images ob-
tained by the proposed simulation method from different
depression angles on the verification set. These simulation




images are very similar to real SAR images in the intensi-
ty, distribution, and size of scattering points. From the
loss curve, we can see that the DNN model embedded in
the simulation can gradually fit the calculation method of
echo intensity in the real SAR image, and in the case of
less data in the 15° depression angle training set, the loss
function value is still significantly reduced, which indi-
cates that the DNN model has generalization ability.
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(a) (b) (c) (d)
Figure 6 Simulation results under 30° depression angle.
(a)(c) is the simulation image and the (b)(d) is the real
image.

(a)

(b) () (d)
Figure 7 Simulation results under 15° depression angle.
(a)(c) is the simulation image and the (b)(d) is the real
image.
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4 Conclusions and Future Work

The method presented in this paper realizes the correct
decomposition and combination of the original SAR im-
age simulation, so the DNN model is directly embedded
into the ray-tracing method to calculate the echo intensity.
Since the steps of calculating echo intensity to image
post-processing in the simulation process are differentia-
ble, this method can directly use real SAR images to train
the embedded DNN model. In other words, the embedded
DNN model can directly fit the curve of calculating elec-
tromagnetic intensity in real SAR images.

In the following work, we will further adjust the architec-
ture of DNN model, improve the calculation method of
loss function, and use more kinds of target images to ob-
tain better model generalization performance. And we
will try to give the calculation curve of echo intensity fit-
ted by the network and compare it with the physical for-
mula or approximate formula.
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