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Abstract: The spatiotemporal variability of vegetation in the Middle East was investigated for the 
period 2001–2019 using the Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day/500 
m composites of the Normalized Difference Vegetation Index (NDVI; MOD13A1). The results reveal 
a strong increase in the NDVI coverage in the Middle East during the study period (R = 0.75, p-value 
= 0.05). In Egypt, the annual coverage exhibits the strongest positive trend (R = 0.99, p-value = 0.05). 
In Turkey, both the vegetation coverage and density increased from 2001 to 2019, which can be 
attributed to the construction of some of the biggest dams in the Middle East, such as the Atatürk 
and Ilisu dams. Significant increases in the annual coverage and maximum and average NDVI in 
Saudi Arabia are due to farming in the northern part of the country for which groundwater and 
desalinated seawater are used. The results of this study suggest that the main factors affecting the 
vegetation coverage in the Middle East are governmental policies. These policies can have a positive 
effect on the vegetation coverage in some countries such as Egypt, Saudi Arabia, Qatar, Kuwait, 
Iran, and Turkey. 
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Vegetation Index; time series analysis; governmental policy 

 

1. Introduction 

During last few decades the impact of global climate change on land-dwelling ecosystems at 
local, regional, continental, and global scales has triggered public concern and thus additional focus 
has been given to monitor vegetation growth dynamics [1-8]. Vegetation is simultaneously influenced 
by the soil characteristics, its moisture and atmospheric parameters [9]. The air temperature and 
precipitation impacts water balance, and thus the amount of the soil moisture content available for 
plant growth [10, 11], influencing vegetation dynamics [12]. Natural vegetation is changing not only 
due to intra-annual seasonal dynamics and inter-annual climate variability, but also other factors, 
such as anthropogenic activities and/or changes in those activities [13-16]. While field surveys can be 
used to obtain accurate ground data related to vegetation variations and their indicators; in situ 
observations are expensive, time-consuming, laborious, spatially limited, and are rapidly becoming 
outdated [17-20]. After the introduction of remote sensing (RS) techniques, satellite-based remotely 
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sensed data have been progressively used to monitor the vegetation dynamics because of their 
contiguous long-term spatiotemporal variability, free availability, large geographic coverage, and 
frequent and near-real-time workability [21-34]. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a spaceborne imaging sensor 
aboard the NASA Terra satellite, which produces ecological indicators that are available on a global 
scale [35]. MODIS has a high temporal (daily to annual) and a varying spatial (250 m to 1 km) 
resolution. The MODIS is used to track environmental characteristics such as land use, food security, 
environmental sustainability, disruption, and climate change [4]. The vegetation index (VI) is used as 
an indicator of vegetation variability, and is a sensitive spectral signature of vegetation phenology. It 
combines different spectral bands of RS data, which can be used to quantify the vegetation conditions 
[36, 37], growth status, or biophysical variables (e.g., Leaf Area Index LAI, productivity, and 
vegetation cover types) [38-41]. Among all VIs, the Normalized Difference Vegetation Index (NDVI) 
is the most well-known and widely used. The NDVI is based on red and near-infrared (NIR) spectra 
[42, 43]. The NDVI varies from -1.0 to +1.0, where positive values (following an increasing trend) 
denote healthy vegetation conditions. However, zero and negative values usually indicate non-
vegetation elements such as clouds, dust, water, rock, and water vapor [44]. NDVI values close to 0 
can also be found in senescent vegetation, in dormancy, or in cultivation sites prepared for sowing 
or after harvest. The mesophyll structure of healthy leaves influences an NIR spectrum signal, 
because it strongly imbibes photosynthetically active radiation [10]. The NDVI is used to monitor the 
green vegetation status and land cover, which comprises unstressed vegetation [23], and to evaluate 
ecological responses to environmental changes [40, 45, 46]. The NDVI correlates with vegetation 
functions, such as the biomass [47, 48], primary productivity [49, 50], and LAI, and can be used to 
investigate land-dwelling vegetation and climate relationships [9, 13-16, 43, 51-54]. 

The NDVI index has been applied to many scientific studies worldwide. The long-term NDVI 
can be used to indicate vegetation trends [12, 55, 56] and monitor local, regional, and global trends as 
well as vegetation diversity [57, 58]. Bagherzadeh et al. confirmed the utility of the NDVI to express 
the vegetation variability under semiarid climate conditions [12]. In their study NDVI, LU/LC map, 
and climate variables (temperature, precipitation) were analyzed at both inter-annual and monthly 
scales, revealing correlations between NDVI variations and yearly sum of the precipitation with 
correlation coefficient 0.419 and a very high correlation between monthly NDVI variations and air 
temperature, reaching 0.769 [12]. Therefore, they concluded that the NDVI is a good quantity to 
investigate vegetation dynamics in the Mashhad-Chenaran plain (northeast of Iran), with relation to 
climatic parameters in semi-arid ecosystem [12]. The results of several other studies utilizing NDVI 
time series revealed the recent increase in the vegetation performance in the karst regions [9, 19, 59, 
60], indicating that the NDVI of each vegetation type has different value. Evans reported that the 
viable rainfed agricultural land area has decreased by >170,000 km2 until the end of the 20th century 
in the Middle East (ME) due to climate change [61]. Quaye-Ballard et al. showed high variability in 
the NDVI in the upper east region of Ghana and have found overall negative trend in the vegetation 
growth during the study period (from 1982 to 2015) [62]. They also recognized anthropogenic 
activities as a possible reason of 16.6% decrease in vegetation [62]. Zhang et al. studied the 
spatiotemporal heterogeneity of vegetation coverage with relationship to climate change in the 
Yangtze river basin (YZRB) and Yellow river basin (YRB) in China and found that the growing-season 
NDVI increased by 0.011/decade during study period. A significant upward trend in vegetation 
coverage in the central and eastern part of YRB and the central part of YZRB was found, whereas in 
the eastern part of YZRB vegetation coverage considerably decreased [63]. They also found in the 
central area of the YRB-YZRB that the vegetation were influenced more by climate change than by 
anthropogenic activities, whereas in other parts of YZRB and in the southwest part of the YRB-YZRB 
areas the vegetation were influenced more by anthropogenic activities than by climate change [63]. 
Jiang et al. studied the impact of climate change and human activities on vegetation dynamics in the 
ago-pastoral transitional zone of northern China (APTZNC), an arid and semi-arid ecosystem. In 
their analysis they combined meteorological data with net primary productivity (NPP) [64]. It 
stemmed from the analysis of the annual NPP that the vegetation in APTZNC were greener in 48.78% 
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and degraded only in the 0.39% of the APTZNC area [64]. Greening of the vegetation was caused in 
26.93% by climate change, and in 19.80% was due to ecological conservation project [64].  

The ME comprises both arid and semiarid regions, which are considered as the hottest places on 
earth, such as the Saudi Arabia deserts and Dasht-E-Lut in Iran. The vegetation in this region is 
affected by many anthropogenic and natural phenomena. The region suffers from severe droughts 
and some of the long-lasting wars (Syria, Yemen, and Iraq). In some parts (e.g. in Egipt) the enormous 
population pressure exists, causing policy orientation on maximizing food production at the expense 
of environmental disruptions [65]. Intensively-managed irrigated systems in these areas cause 
diminishing of water reservoirs [66]. Additionally, traditional agricultural soil management systems 
increase risks of ground-water pollution, its shortages or salinity buildup [67]. Large parts of ME 
depend on groundwater raised through wells which are ineffective and costly. In some areas the 
brackish or salty water is used for agriculture which increases soil salinization. In some mountainous 
terrains (eg. In Iran or Turkey) extreme variability of air temperatures and wind speed cause 
cultivation problems as well as water and wind erosion susceptibility [68]. Therefore, in the recent 
years national policies in ME countries are focused on implementing all possible measures to mitigate 
desertification processes. Large investments (also with private sector) have been made concerning 
the control of water in the largest rivers, its preservation and distribution. These efforts brought some 
progress in reducing the overexploitation of water resources, enabled to increase the non-
conventional water sources. Some wealthiest countries managed to create efficient systems of 
seawater desalinization to improve their irrigation infrastructure and drainage networks [69]. Based 
on MODIS data Badreldin and Goossens detected anti-desertification change in El-Tina plain and 
Qanatra Shark in Egipt in the studied years 2002, 2005, 2008 and 2011 and indicated that societal 
drivers contributed to mitigate and compact desertification process [70]. The same authors analyzed 
land use/land cover change in El-Arish, Egypt in the period from 1999 to 2010 using multi-temporal 
Landsat satellite images and noticed a remarkable changes in the vegetation cover as a result 
anthropogenic activities and the climate impact (mainly wind and water erosion) [11]. In spite of 
these studies, the knowledge of the vegetation dynamics in the ME is still insufficient. Therefore, the 
aim of this study was to investigate the trends in vegetation productivity and coverage in the ME 
using satellite-derived information. An attempt was made to measure the long-term spatiotemporal 
variability of the vegetation coverage using time series analysis and correlation assessment in ME 
countries. 

2. Materials and Methods  

2.1. Study area 

The use of “Middle East” first arose in the early years of the present century, referring to the area 
surrounding the Persian Gulf. According to Fisher, it is the logical intermediate delineation between 
the Mediterranean “Near East” and “Far East” [71]. The region includes Bahrain, Egypt, Palestine, 
Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syrian, Turkey, the United 
Arab Emirates (UAE), and Yemen [72, 73]. During the 1990s, the economic development of ME region 
grew at 50% of the rate of other developing countries [72]. The region is located between 12°N and 
42°N and 24°E and 63°E, covering a total area of ~7.2 million km2 (Figure 1 top panel) and including 
a population of ~420 million people (Table 1). The largest part of the ground cover is barren land 
(5,091,844 km2), whereas the most common vegetation are grasslands (944,286 km2), croplands 
(453,315 km2), and open shrublands (387,244 km2) (Figure 1, bottom panel & Table 2). It results from 
Figure 1 that the vegetation occurrence in the studied region is closely related to the orography and 
the presence of water reservoirs. For example in Iran the vegetation covers mostly the mountain 
ranges of Zagros and Elburz, whereas in Saudi Arabia and Yemen – the Sarawat mountains. In Egypt 
influence of the Nile river is clearly visible, and in Iraq - the Euphrates and the Tigris rivers. 
Unfavorable thermal conditions in the lowlands of the Middle East lead to much lower vegetation 
cover than in highlands and foreland areas, in which milder weather conditions occur. In Figure 1 
the land cover type map from 2017 is presented, whereas the maps for other years are included in the 
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Supplement 1 file, in Figure S1. For the analyzed years (2001-2019) no significant changes in land 
cover types were observed. 

 

 

Figure 1. Maps presenting the study area (the Middle East) including an elevation profile (top) and 
land cover types from MODIS (MCD12Q1) image from 2017 (bottom). 
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Table 1. Population and area of Middle East countries. 

Country name Middle East population Population (%) Area (km2) 

Egypt 90,253,760 21.5 1,010,407 
Iran 82,467,049 19.6 1,648,195 

Turkey 78,214,000 18.6 783,562 
Iraq 36,575,000 8.7 438,317 

Saudi Arabia 31,521,000 7.6 2,149,690 
Yemen 26,745,000 6.4 527,970 
Syria 23,270,000 5.5 185,180 

Jordan 10,248,069 2.4 92,300 
UAE 9,154,000 2.2 82,880 
Israel 8,547,000 2.0 20,770 

Lebanon 6,185,000 1.5 10,452 
Palestine 4,816,503 1.1 6,220 

Oman 4,181,000 1.0 212,460 
Kuwait 4,161,000 1.0 17,820 
Qatar 2,113,000 0.5 11,437 

Bahrain 1,781,000 0.4 665 

Total 420,232,381 100 7,198,325 

Table 2. Land cover types of the Middle East identified from MODIS (MCD12Q1) images using 

IGBP classification [74, 75]. 

Land cover type Area (km2) Percent of the whole area 

evergreen needleleaf forests  20,949 0.29 

evergreen broadleaf forests 289 0.005 

deciduous needleleaf forests  0 0.0 

deciduous broadleaf forests  24,356 0.34 

mixed forests  15,105 0.21 

closed shrublands  35 0.001 

open shrublands 387,244 5.38 

woody savannas  52,058 0.72 

savannas  72,498 1.01 

grasslands  944,286 13.12 

permanent wetlands  5,468 0.08 

croplands  453,315 6.3 

urban and built-up lands  39,784 0.55 

cropland/natural vegetation mosaics 8,981 0.12 

permanent snow and ice 285 0.004 

barren  5,091,844 70.73 

water bodies  81,827 1.14 

Total 7,198,325 100 
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2.2. Data description 

In this study, we used the Normalized Difference Vegetation Index (NDVI) data acquired by the 
Moderate Resolution Imaging Spectroradiometer (MODIS), precipitation data from Global 
Precipitation Measurement (GPM) and Tropical Rainfall Measuring Mission (TRMM) measurements 
integrated by the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm [76, 77], and 
surface skin temperature and soil moisture content data from NASA Global Land Data Assimilation 
System (GLDAS) Noah Land Surface Model [78]. To provide an elevation map of the study area the 
Shuttle Radar Topography Mission (SRTM) digital elevation data with a resolution of 1 arc-second (~30 
m) [79] were used, whereas land cover types of the ME were identified using MODIS (MCD12Q1) 
images, which are produced based on the International Geosphere–Biosphere Programme (IGBP) land 
cover classification system [80]. 

2.2.1. NDVI data 

The NDVI has become the most common and widely used index to investigate the vegetation 
status and is derived from the production variety and LAI [81-84]. In the modern era, many scientists 
used the NDVI in various studies relating to vegetation class, vegetation phenology, continental land 
cover mapping, chlorophyll content, land use/land cover changes, and water stress [31, 37, 43, 85-89]. 
The NDVI provides information about the inner mesophyll of healthy green leaves that highly 
reflects near-infrared (NIR) radiation, whereas leaf chlorophyll and other pigments assimilate a huge 
proportion of the visible (VIS) radiation. In the case of unhealthy vegetation the spectrum that reflects 
the inner leaf composition is reversed [24, 81]. The NDVI is calculated as: 

𝑁𝐷𝑉𝐼 =
ேூோ ି ோா஽

ேூோ ା ோா஽
 ,          (1) 

where NIR is near-infrared light (at 0.841–0.876 μm) and RED is visible red light (at 0.62–0.67 μm). By 
definition, the NDVI index ranges from -1 to +1, where healthy vegetation generally falls between 
values from 0.2 to 0.8 [90-94]. 

In the present research, the NDVI data were acquired from the Terra-MODIS Vegetation Indices 
MOD13A1 products delivered by the Earth Observing System of the National Aeronautics and Space 
Administration (NASA). These products provide the vegetation conditions with a 500-meter spatial 
resolution and a 16-day temporal resolution (MOD13A1.006__500m_16_days_NDVI). For analysis, the 
time series of NDVI data from 2001 to 2019 were downloaded using the Application for Extracting and 
Exploring Analysis Ready Samples (AρρEEARS) application platform 
(https://lpdaacsvc.cr.usgs.gov.appeears) [95]. The whole downloaded set consisted of 437 images, with 
23 images numbered chronologically from 1 to 23 for each year. The quality assessment (QA) was 
performed for all of the downloaded images using VI quality indicator, which describes the conditions 
under which each pixel was acquired and/or processed [74]. To obtain the yearly value of the NDVI for 
each pixel, an arithmetic mean from all of the 23 annual observations was calculated for each pixel as: 

𝑌𝑒𝑎𝑟𝑙𝑦 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =
∑ ே஽௏ூ೔

಼
೔సభ

௄
,       (2) 

with K = 23. For the seasonal vegetation indices only a subset of the data was used to calculate arithmetic 
means for each pixel for each year (images with numbers 1-6 for winter, 7-12 for spring, 13-18 for 
summer and 19-23 for fall vegetation coverage). 

Additionally, to study the NDVI variations in more detail and to check what type of the 
vegetation are increasing/decreasing, the NDVI was divided into seven categories with 0.1 interval 
(namely < 0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8, and > 0.8) [90-93, 96]. Very low values of 
NDVI (0.2 and below) correspond to barren areas of rock, sand, or snow, with values between 0.1–0.2 
indicating almost absent canopy cover [97]. Moderate NDVI values represent shrubs and grasslands 
(0.2 to 0.3), sparse vegetation (0.3 to 0.4), and moderate vegetation (0.4 to 0.5). The NDVI values from 
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0.5 to 0.6 indicate temperate vegetation, 0.6 to 0.7 - dense vegetation, and > 0.7 - very dense vegetation, 
with values close to +1 (> 0.8) indicating the highest possible density of green leaves [90-93, 96]. 

To calculate the vegetation coverage, the number of pixels with vegetation, that is, having the 
NDVI > 0.2, were summed up and multiplied by the resolution of one pixel (500 m x 500 m = 0.25 km2). 
The same procedure was used for calculating the yearly and the seasonal vegetation coverages. 
Additionally, several statistical indicators were calculated using ARC GIS cell statistics. They 
included seasonal and yearly maximum, average, and majority NDVIs for each ME country and for 
each year from the period from 2001 to 2019, as well as the average values of these indicators for the 
whole analyzed period. The majority NDVI is a preferable indicator for studying the variation of the 
vegetation coverage because other indicators can be sensitive to just one value. For example, the 
maximum NDVI is sensitive to the highest value; thus, just one value can affect the indicator, whereas 
the majority refers to the value that occurs most often. Therefore, it is not sensitive to values from one 
pixel and is representative of the vegetation status in an area. When calculating the statistical measures 
of the NDVI, only the pixels having NDVI > 0.2 were considered. It was done, because if the areas 
having NDVI~0.0 (these were covered mostly (~70%) with the barren land) were included to calculation 
of such measures as the average or majority NDVIs, the final results would be dominated by those 
values, being very close to 0 and they would practically not change with subsequent years.  

2.2.2. Precipitation, surface skin temperature and soil moisture data 

The GPM is a result of cooperation between NASA and Japan Aerospace Exploration Agency 
(JAXA) [98, 99] and is a global successor to TRMM. The GPM was launched in 2014 and its key 
advancement over TRMM, system developed to observe precipitation in tropical and subtropical 
regions and launched in 1997, is the extended coverage to higher latitudes (from 65°S to 65°N degrees 
south over the 35°S to 35°N of TRMM coverage) to provide a near global view of precipitation [100-
102]. The GPM is also characterized by an extended capability to measure light rain (< 0.5 mm·hr-1), 
solid precipitation, and the microphysical properties of precipitating particles [102]. The 
precipitation-related sensors included in TRMM - visible and infrared radiometer system (VIRS), 
microwave imager (TMI), and precipitation radar (PR) [103, 104] have been substituted in GPM to 
the first space-borne Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel 
GPM Microwave Imager (GMI). NASA’s TRMM and GPM measurements are now available as one 
unified data set. In the latest Version 6 release of the Integrated Multi-satellitE Retrievals for GPM 
(IMERG) early precipitation estimates collected in 2000-2014 during the operation of the TRMM 
satellite are combined and homogenized with more recent precipitation estimates, collected during 
operation of the GPM satellite. In this study, the GPM_3IMERGM monthly precipitation dataset with 
0.1×0.1 degree spatial resolution and the NASA GLDAS (Global Land Data Assimilation System) 
surface skin temperature and soil moisture content datasets from the Noah Land Surface Model L4 
3-hourly 0.25 x 0.25 degree version 2.1 (V2.1) from 2001 to 2019 were downloaded from Giovanni 
website (https://giovanni.gsfc.nasa.gov/giovanni/). The temperature data was in Kelvin (K) scale and 
further converted into Celsius (°C) scale in GIS domain. The unit of downloaded soil moisture data 
was kg m-2 and it was estimated for the 0-10 cm topsoil layer. 

2.3. Methods 

2.3.1 Anomaly algorithm and interpretation 

The anomaly is an indicator calculated on the basis of the selected periods of time and shows how 
the value of the assessed quantity for a particular time period compares with the entire period [43, 105] 
by indicating how many standard deviations away a given observation is from the mean. Conceptually, 
the calculation of the anomaly is equivalent to the calculation of the Z-score used in statistics and is 
formulated as follows: 

Zij =
௑௜௝ି௎

ఙ௜௝
,          (3) 
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where Zij is the anomaly of the i-th time period at the j-th time-scale, Xij is the parameter (as NDVI) 
sum for the i-th time period at the j-th time-scale, and Uij and σij are the long-term mean and standard 
deviation, respectively, connected with the i-th time period at the j-th time-scale [106, 107]. A positive 
anomaly indicates that the values of the investigated quantity are greater than the mean, whereas 
negative values indicate that the values of the investigated quantity are lower than mean. Typically, 
data with an anomaly score exceeding an arbitrary threshold of 2 is flagged as abnormal, while data 
with an anomaly <|0.5| can be treated as typical and is indicated in the figures as “normal area” [108]. 
In our study, the anomalies were calculated using the time period i equal to 1 year, whereas the time-
scale j was 19 years. 

2.3.2 Linear regression 

Linear regression is a statistical method to model the relationship by fitting a linear equation 
between two variables, where one is as an explanatory variable and the other is a dependent variable. 
In this study, linear regression was used to define the relations of vegetation coverage and precipitation 
(dependent variables) with time (explanatory variable) at a significance level of 0.05 [109, 110]. 

3. Results 

3.1. NDVI changes 

Figure 2 shows the average vegetation coverage (NDVI > 0.2) in the ME during the study period. 
The vegetation coverage gradually increases from January (12% of the whole study area) and peaks 
in late April. Consequently, ~21% of the area is covered by vegetation (~1,519,200 km2). Starting in 
May, the vegetation cover gradually decreases and reaches its minimum annual value in the warm 
season by the end of September (14% vegetation coverage; ~1 million km2). The vegetation cover 
gradually increases from the first of October to mid-November and, then, decreases. Accordingly, the 
primary growing season (GS) in the ME starts around January 1 and ends within the first ten days of 
May (Figure 2). Because the study area is large (extends to different northern latitudes) and the 
elevation significantly varies, it is difficult to generalize the data for the whole area. Spring is the 
greenest season. This greenness continues into the summer season until the end of June. 
Subsequently, the vegetation coverage decreases, primarily because of the scarcity of rain in the study 
area. 

 
Figure 2. Average annual vegetation coverage in the Middle East during 2001–2019. 
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Figure 3 shows the annual average vegetation coverage in the ME based on all NDVI categories 
(0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8, and > 0.8) for the study period. A significant positive 
trend of the NDVI coverage in the study area can be observed in the period 2001–2019 (R = 0.75, p-
value = 0.05); however, a substantial interannual variability can also be detected. The years 2015, 2018, 
and 2019 exhibit the maximum coverage, accounting for 17%, 18%, and 20% of the study area, 
respectively (1.22, 1.28, and 1.43 million km2, respectively), whereas the minimum vegetation 
coverage was observed in 2001, 2003, and 2008, accounting for 14%, 15%, and 14% of the study area, 
respectively (1.02, 1.05, and 0.975 million km2, respectively). 

 
Figure 3. Average annual vegetation coverage in the Middle East during 2001–2019 (black bars), 
showing the linear trend line (black discontinuous line) supplemented by the Normalized Difference 
Vegetation Index (NDVI) coverage anomaly (red continuous line) and normal area (red dotted lines). 

 
Figure 4. Total annual precipitation in the Middle East during 2001–2019 (black bars), with the linear 
trend line (black discontinuous line), precipitation anomaly (red continuous line), and normal area 
(red dotted lines). 
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 Figure 4 shows the changes in the total annual precipitation in the ME during the study period. 
The trend line indicates that the precipitation insignificantly changes during the study period. 
Instead, a high interannual variability can be observed, which correlates with the interannual 
variability of the NDVI (Figure 5). This suggests that precipitation is one of the factors affecting the 
changes in the NDVI; however, it cannot fully explain the significant positive trend of the NDVI 
shown in Figure 3. In fact, positive and significant correlation between the annual anomaly of 
precipitation and vegetation coverage was obtained (R = 0.5). However, a factor that influenced 
vegetation coverage much more strongly was the surface skin temperature (R = 0.73). The correlation 
between soil moisture and vegetation coverage was very small and insignificant (Table 3). 

 
Figure 5. The annual anomaly of soil moisture, precipitation, vegetation coverage and surface skin 
temperature in the Middle East during 2001–2019. 

Table 3. The correlation coefficients R between annual anomaly of soil moisture, precipitation, 

vegetation coverage and surface skin temperature in the Middle East during 2001–2019. 

Anomaly of 
NDVI 

coverage 
Soil 

Moisture 
Precipitation 

Surface skin 
temperature 

NDVI coverage 1    

Soil Moisture 0.21 1   

Precipitation 0.50* 0.77* 1  

Surface skin temperature 0.73* -0.31 0.16 1 

 * denotes correlations significant at p=0.05 

Figure 6 shows the maps of the NDVI in the study area for four years (2003, 2009, 2013, and 
2019). A large increase in the vegetation area can be observed on the border of Iran and Iraq, Iraq, 
and Saudi Arabia, and Israel, Lebanon, and Jordan; in the central part of Turkey; in the northern part 
of Syria; and in the western parts of Saudi Arabia and Yemen. 
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Figure 6. Maps of the Normalized Difference Vegetation Index (NDVI) for the study area for the 
chosen years (2003, 2009, 2013, and 2019). 

Figure 7 shows the time series of different NDVI categories for the ME from 2001 to 2019. A 
significant increasing linear trend (p-value = 0.05) can be observed in the NDVI all categories above 
0.3 and an insignificant increase can be detected in the NDVI category 0.2–0.3. In all categories, a 
trough can be observed in 2008, 2012, and 2017 and a ridge can be detected in 2010, 2015, 2018, and 
2019. This indicates that the first group is the driest (less vegetation) and the second group is the 
greenest (denser vegetation) during the study period (Figure 7). 
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Figure 7. Average annual coverage (km2) for different vegetation categories in the Middle East during 
2001–2019. *denotes that the trend is significant at p = 0.05. 

Table 4 presents the correlation coefficients of NDVI over time in the ME for time series of 16-
day MODIS images, having fixed date from subsequent years during the study period. A significant 
positive linear trend can be observed in all images, except for the images obtained on January 17, 
February 2, and March 6. This reveals that the ME is becoming greener and the vegetation coverage 
increases in all months. The correlation coefficients obtained for August 13 and 29 and September 14 
and 30 are higher than those determined in other months (R = 0.76, 0.76, 0.81, and 0.83, respectively). 
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Table 4. Correlation coefficients for the time series of vegetation coverage determined from MODIS 
images having fixed dates from subsequent years for the Middle East for the period 2001–2019. 

Date Correlation 
1 Jan 0.59* 

17 Jan 0.35 

2 Feb 0.41 

18 Feb 0.48* 

6 Mar 0.40 

22 Mar 0.46* 

7 Apr 0.57* 

23 Apr 0.60* 

9 May 0.62* 

25 May 0.57* 

10 Jun 0.56* 

26 Jun 0.65* 

12 Jul 0.67* 

28 Jul 0.73* 

13 Aug 0.76* 

29 Aug 0.76* 

14 Sep 0.81* 

30 Sep 0.83* 

16 Oct 0.69* 

1 Nov 0.66* 

17 Nov 0.67* 

3 Dec 0.62* 

19 Dec 0.62* 
* denotes a significant correlation at p = 0.05. 

3.2. Seasonal NDVI dynamics 

Figures 8 and 9 show the seasonal NDVI dynamics of the ME in the study period (2001–2019). 
Overall, vegetation covers ~19.2% of the study area during the study period. In the study area, spring 
is the greenest season, followed by winter, fall, and summer, with vegetation coverage of 22.8%, 
20.2%, 17%, and 16.8% of the study area, respectively. In all seasons, the densest vegetation coverage 
was observed in the coastal areas of the Caspian Sea in northern Iran, Black Sea in northern Turkey, 
Mediterranean Sea in western and southwestern Turkey, western Syria, Lebanon, Israel, Palestine, 
and Egypt or along large rivers such as the Nile. The driest countries in the ME are Qatar, Kuwait, 
the UAE, and Saudi Arabia, with vegetation coverage accounting for less than 1% of the total area of 
the country. Oman, Bahrain, Egypt, Jordan, and Yemen have vegetation coverage of 1%, 2.7%, 3.7%, 
3.9%, and 4.3% of the whole ME, respectively (Figures 8–9 and Table 5). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 December 2020                   doi:10.20944/preprints202010.0208.v2

https://doi.org/10.20944/preprints202010.0208.v2


 14 of 28 

 

 
Figure 8. Average seasonal Normalized Difference Vegetation Index (NDVI) in the Middle East for 
the period 2001–2019. 

Figure 9 shows the average seasonal vegetation coverage percentage, surface skin temperature 
and precipitation for each country in the ME. In winter, Palestine, Lebanon, and Turkey are the 
greenest countries in the study area, with vegetation coverage of 76.9%, 67.6%, and 54.2%, 
respectively. The highest precipitation was recorded during the winter (reaching 269, 400, and 254 
mm in Palestine, Lebanon, and Turkey, respectively). In spring, Turkey, Lebanon, and Palestine were 
the greenest countries, with vegetation coverage of 93.8%, 77.7%, and 67.2%, respectively. In summer 
and fall, Turkey, Lebanon, and Palestine were the greenest, with vegetation coverage of 83.4%, 66.1%, 
and 39.9% in summer and 73.7%, 66%, and 47.7% in fall, respectively. In spring, summer, and fall, the 
highest values of the precipitation were recorded in Turkey and Yemen (between 58 and 86 mm). The 
skin surface temperature varied significantly depending on the season, but was highest in UAE, 
Oman, Quatar, Kuwait, Saudi Arabia and Yemen (> 28°C in the spring and > 34°C in the summer). 
Egypt, Kuwait, Jordan, Qatar, UAE, and Saudi Arabia were the driest countries (< 8 mm in spring 
and < 5 mm in summer). In all seasons, Qatar, UAE, Saudi Arabia, Kuwait, and Oman were the least 
vegetated, with vegetation coverage <1.2% (Figures 8–9 and Table 5). 
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Figure 9. Average seasonal: vegetation coverage percentage, surface skin temperature and 
precipitation for the period 2001–2019 for each country of the Middle East. 
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Table 5. Average seasonal vegetation coverage percentage in Middle East countries for the period 
2001–2019. 

Country Winter (%) Spring (%) Summer (%) Fall (%) Average (%) 

Bahrain 3.2 2.6 1.9 3.0 2.7 

Egypt 3.8 3.6 3.6 3.6 3.7 

Palestine 76.9 67.2 39.9 47.7 57.9 

Iran 9.5 22.6 10.9 8.0 12.7 

Israel 40.0 37.6 31.8 33.6 35.7 

Iraq 22.2 17.7 8.8 11.3 15.0 

Jordan 6.0 5.1 2.0 2.6 3.9 

Kuwait 1.0 0.1 0.1 0.4 0.4 

Lebanon 67.6 77.7 66.1 66.0 69.3 

Oman 1.0 0.8 1.0 1.2 1.0 

Qatar 0.3 0.1 0.1 0.2 0.2 

Saudi Arabia 1.0 0.6 0.5 0.8 0.7 

Syria 33.9 31.6 12.5 13.7 22.9 

UAE 0.8 0.5 0.2 0.5 0.5 

Turkey 54.2 93.8 83.4 73.7 76.3 

Yemen 2.4 3.5 5.6 5.6 4.3 

Average (%) 20.2 22.8 16.8 17.0 19.2 

Figure 10 shows the seasonal average and maximum NDVI of the ME countries from 2001 to 
2019. In winter, the maximum NDVI in Egypt, Turkey, and Israel is 0.84, 0.81, and 0.76, respectively, 
and the NDVI average in Egypt, Israel, and Lebanon is 0.58, 0.48, and 0.41, respectively. The 
maximum NDVI is the lowest in Bahrain, Oman, and UAE (0.39, 0.53, and 0.55, respectively) and the 
average NDVI is the lowest in UAE, Bahrain, and Yemen (0.24, 0.246, and 0.249, respectively). In 
spring, the NDVI is the highest in Iran, Turkey, and Syria (0.86, 0.85, and 0.77, respectively) and the 
highest NDVI average in Turkey, Egypt, and Lebanon is 0.43, 0.404, and 0.402, respectively. The 
lowest maximum NDVI was observed in Bahrain, Oman, and Qatar (0.35, 0.43, and 0.43, respectively) 
and the lowest average NDVI of 0.231, 0.233, and 0.25 were detected in UAE, Bahrain, and Oman, 
respectively. In summer, the NDVI the highest in Turkey, Iran, and Syria (0.92, 0.88, and 0.79, 
respectively) and the highest NDVI average in Egypt, Turkey, and Iran is 0.49, 0.41, and 0.34, 
respectively. Moreover, the lowest maximum NDVI was observed in Bahrain, Qatar, and Kuwait 
(0.33, 0.38, and 0.42, respectively) and the lowest average NDVI was detected in Bahrain, UAE, and 
Palestine (0.227, 0.229, and 0.24, respectively). In fall, the maximum NDVI was observed in Turkey, 
Iran, and Egypt (0.84, 0.82, and 0.76, respectively) and the highest NDVI average in Egypt, Turkey, 
and Lebanon is 0.45, 0.38, and 0.37, respectively. The lowest maximum NDVI was observed in 
Bahrain, Kuwait, and Qatar (0.37, 0.48, and 0.49, respectively) and the lowest average NDVI was 
detected in Bahrain, UAE, and Kuwait (0.23, 0.24, and 0.25, respectively). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 December 2020                   doi:10.20944/preprints202010.0208.v2

https://doi.org/10.20944/preprints202010.0208.v2


 17 of 28 

 

 
Figure 10. Seasonal average and seasonal maximum Normalized Difference Vegetation Index (NDVI) 
for each country in the Middle East during 2001–1019. 

3.3. Yearly NDVI dynamics 

Table 6 shows the correlation coefficients of the annual coverage, and the maximum, average, 
and majority NDVI over time for each country in the ME, calculated for the period from 2001 to 2019. 
From 2001 to 2019, the annual coverage significantly increases in Egypt, Iran, Iraq, Kuwait, Lebanon, 
Oman, Qatar, Saudi Arabia, Turkey, and Yemen. A significant negative NDVI trend was observed in 
the UAE (R = -0.72, p-value = 0.05). The trends determined for Bahrain, Palestine, Israel, Jordan, and 
Syria are insignificant. Overall, the annual coverage in the ME shows a significant positive trend (R 
= 0.47, p-value = 0.05) from 2001 to 2019. In Egypt and Qatar, the annual coverage continuously 
increases, with the strongest positive trend in the ME (R = 0.99, 0.91, p = 0.05). Table 6 shows that the 
vegetation coverage in the UAE decreases from 2001 to 2019. 

The maximum NDVI in the ME exhibits a significant positive trend in Bahrain, Palestine, 
Kuwait, Lebanon, Saudi Arabia, Turkey, and Yemen. An insignificant positive trend can be observed 
for Egypt, Iran, Israel, Iraq, Jordan, Qatar, Syria, and the UAE. A significant negative trend was 
detected for Oman (R = -0.47, p-value = 0.05). The strongest correlations were observed in Palestine 
and Lebanon, with R = 0.90 and 0.88, respectively, and a p-value of 0.05. The overall trend of the 
maximum NDVI in the ME is positive and marginal (R = 0.43, p = 0.05).  

The average NDVI in ME countries exhibits a significant positive trend in Palestine, Iraq, 
Lebanon, Saudi Arabia, UAE, Turkey, and Yemen. The strongest correlations were observed in 
Turkey and Saudi Arabia (R = 0.88 and 0.83, respectively, and p = 0.05). In addition, a significant 
negative trend was observed in Egypt, Kuwait, and Qatar, with R = -0.77, -0.65, and -0.64, respectively, 
and a p-value of 0.05. In Oman and Saudi Arabia, the average NDVI shows no trend during the study 
period. 
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Table 6. Correlation coefficients of NDVI factors in the Middle East for the period 2001–2019. 

Country Annual 

coverage 

Max  

NDVI 

Average 

NDVI 
Majority 

NDVI 

Bahrain 0.37 0.69* -0.27 -0.36 

Egypt 0.99* 0.37 -0.77* 0.04 

Palestine 0.16 0.90* 0.47* 0.31 

Iran 0.68* 0.44 -0.39 0.11 

Israel 0.16 0.26 0.40 0.26 

Iraq 0.49* 0.26 0.75* -0.35 

Jordan 0.16 0.36 0.27 -0.09 

Kuwait 0.71* 0.58* -0.65* -0.19 

Lebanon 0.63* 0.88* 0.56* -0.08 

Oman 0.54* -0.47* 0.01 -0.23 

Qatar 0.91* 0.28 -0.64* -0.20 

Saudi Arabia 0.83* 0.71* 0.83* -0.03 

Syria 0.18 0.13 0.12 0.18 

UAE -0.72* 0.36 0.64* -0.31 

Turkey 0.75* 0.64* 0.88* 0.54* 

Yemen 0.63* 0.50* 0.76* -0.07 

Average 0.47* 0.43 0.19 -0.03 
* denotes that the correlation is significant at p = 0.05; 

NDVI: Normalized Difference Vegetation Index 

The majority NDVI in Turkey exhibits a significant positive trend (R = 0.54, p-value = 0.05); in 
other ME countries, the trend is insignificant. An insignificant positive trend was observed in 
Bahrain, Iraq, Kuwait, Oman, Qatar, and the UAE; in Bahrain, Iraq, and the UAE, the correlation is 
stronger than in other countries ( R = -0.36, -0.35, and 0.31, respectively). An insignificant positive 
trend was observed in Palestine, Iran, Israel, and Syria; in Palestine and Israel, this correlation is 
stronger than in other countries (R = 0.31 and 0.26) during 2001–2019. 

4. Discussion 

Water scarcity is one of the most severe issues in the ME. It can directly affect the vegetation 
coverage in this area. Water scarcity has several reasons including high temperatures, relatively 
irregular dissemination of rainfall, increasing irrigation water loads, and tourism inflation [111, 112]. 
Furthermore, climate change likely augments this situation. With respect to long-term trends of 
vegetation coverage and productivity, government policies play vital roles in this arid and semiarid 
region. The greenest areas of the region are located in 1) mountainous areas and 2) coastal areas of 
the Black, Caspian, and Mediterranean seas. The water bodies in the southern regions of the ME do 
not have any effect on the increasing vegetation coverage and the role of mountainous areas 
(elevation) is more important than the distance to the water bodies in these regions of the study area. 
Therefore, three main elements affect the vegetation cover in the study area: 1) elevation; 2) distance 
from the waterbodies in the western and northern regions; and 3) geographical coordinates 
(latitudes).  

The main weather phenomenon in the Persian Gulf, Oman Sea, Indian Ocean, Arab Sea, and the 
Red Sea is Subtropical High Pressure (STHP). This phenomenon prevents any convectional flows and 
there is no dense vegetation in the coastal areas of the mentioned water bodies despite the high 
humidity. The study area comprises the driest deserts in the world due to the STHP. The region is 
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characterized by very scarce vegetation, which entirely depends on the existence of the mountainous 
area [113-116]. The northern and western parts of the study area are located in the pathway of the 
westerlies (anti-trades, that is, steady prevailing winds that blow from the west toward the east and 
overlie the trade winds) [117, 118]. The main factors affecting the atmospheric dynamics are 
westerlies and the large water bodies (Black, Mediterranean, and Caspian seas), which supply the 
water vapor; therefore, these areas contain the densest vegetation in the ME [119-122]. 

In Egypt, almost all green places are located in the Nile Delta and along the Nile River, while 
other parts of the country (~97%) are characterized by the desert. The annual vegetation coverage of 
this country shows the strongest positive trend in the ME (R = 0.99, p-value = 0.05). Kuwait and Qatar 
have similar but weaker trends. The one of the main reasons for this strong positive trend in Egypt 
are governmental policies, which aim to extend the forest area of the country. Recently, 155,500 
feddan (1 feddan = 4,200 m2) that is equal to 653 km2 of wood forests and bio-oil crops have been 
irrigated with TWW (Treated WasteWater) in the desert areas adjacent to wastewater treatment 
plants. The Serapium Forest (located in the Ismailia governorate) is an example of the successful 
TWW use in Egypt. Various species of woody trees were well-adapted to the arid environment and 
provided a high wood yield in Serapium [123]. Also, scientists are recuperating wastewater from the 
city of Ismailia in northern Egypt and are using water to produce fecundate trees. Within less than 
20 years, over 4000 km2 of forests and other vegetation were developed in the desert, which is the 
main reason for the increase in the annual vegetation coverage in Egypt from 2001 to 2019, which is 
consistent with findings of other scientists [123-125].  

Despite the increase in the annual vegetation coverage in Egypt during the study period, the 
average NDVI is decreasing (R = -0.77, p-value = 0.05). This is due to the creation of new forest areas 
by policymakers, which leads to an increase in the annual coverage. The leaf cover of these new forest 
areas is still low, resulting in low NDVI, and this is the main reason why a decrease in the average 
NDVI is observed. However, this trend cannot be generalized to other countries. For example, a 
significant increase both in the annual vegetation coverage and the monthly average NDVI can be 
observed in Iraq, which includes areas with very sparse vegetation. The monthly average NDVI in 
this country is ~0.27 in all seasons and winter is the greenest season. Therefore, when local 
governments or farmers start to work on bare land, the average NDVI increases [126].  

Turkey is the only country in the ME in which all NDVI indicators are significant and increasing. 
Both the vegetation coverage and density (expressed by significant and positive trend of the 
maximum, average, and majority NDVI) increased from 2001 to 2019 in this country. The main reason 
is the construction of some of the biggest dams in the ME, such as the Atatürk Dam (1995) and Ilisu 
Dam (2006), which supported the increase in the vegetation coverage in these regions. Ilisu Dam is 
part of Turkey's large-scale project known as GAP (Guneydogu Anadolu Projesi) or the Southeastern 
Anatolia Project that involves the construction of 22 dams on the Euphrates and Tigris, as well as 19 
hydropower stations. Approximately one-fifth of the Turkish total irrigated lands and one-third of 
the energy potential of Turkey are located in this region [127]. Our results are consistent with the 
findings of Özcan et al. [128]. Due to the inundation of the Atatürk Dam Lake, a large area of 
agricultural fields (~368 km2) has been affected. However, the agricultural fields in the Harran Plain 
increased by 56.3% (by 1552 km2 up to 2756 km2) because of irrigation during the period 1984–2011 
[128].  

A major concern for Syria, Iran and Iraq countries in not only Atatürk Dam or Ilisu Dam having 
10 billion m3 of capacity, but the entire Turkish multi-dam project. The volume of the reservoirs 
created by Turkish dams built within GAP project on the sources of the Tigris and Euphrates is 120 
billion cubic meters, while the annual flow of these two rivers is 47 billion cubic meters [127, 129, 
130]. The Ilisu Dam, built upstream from the existing Mosul Dam in Iraq, has drained most of the 
Mosul Dam catchment area. The originally planned Mosul Dam watershed (with area of 54,900 km2) 
has been reduced to about one-fifth of the total area [129, 130]. The negative effect of the Turkish 
dams construction on the vegetation of Syria and Iraq is visible in Figure 11, presenting selected parts 
of the maps from Figure 6 to highlight the details. The vanishing of the vegetation (change in the 
NDVI from the values from the range 0.3-0.6 to NDVI < 0.2) is clearly noticeable in Syria and Iraq 
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south of the Turkish between the 2003 and 2006. To counteract the negative effect of Turkish dams 
built within GAP project, Syria, Iran and Iraq have constructed their dams (e.g. Karun 3 in 2005 and 
Karun 4 in 2010 in Iran with total capacity of 5.1 billion m3 and Darbandikhan Dam in 2013 in Iraq 
with total capacity of 3 billion m3), which resulted in greening of the areas of Syria, Iran and Iraq 
located in Tigris–Euphrates river basin. The water availability for agricultural production were also 
improved as a result of coordinated common policies of neighboring countries, which signed a 
political agreements (Water Laws) concerning important aspects of water management [131]. 

 
Figure 11. Maps of the NDVI for the selected years (2003, 2009, 2013, and 2019) and areas (south-west 
part of Nile Delta in northern Egypt, northern Saudi Arabia, and region surrounding the Atatürk and 
Ilisu dams in southern Turkey) reflecting the progressive impact of anthropopressure. 
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Because water resources are low and the average annual precipitation is below 100 mm, Saudi 
Arabia has become the world's poorest country in terms of water. Groundwater, surface water, 
desalinated seawater, and treated wastewater are the major sources of drinking water [132]. 
However, during 2001–2019, the annual vegetation coverage and maximum and average NDVI 
significantly increased in the country. This is due to the significant amount of farming in the northern 
parts of the country. The farming areas and greenhouses are irrigated using groundwater, and some 
of them are using desalinated seawater [133]. 

UAE is a small country in a large desert. During the study period, the annual coverage of this 
country significantly decreased compared with that of all other countries in the ME; however, the 
average NDVI significantly increased. Therefore, it can be concluded that very sparse vegetation 
vanished during the study period. Almost all remaining vegetation near the inhabited areas has been 
protected and improved, and the average NDVI significantly increased during 2001–2019. 

The increase in the NDVI in the above-mentioned countries can be attributed to 
anthropopressure and is illustrated in Figure 11. A rapid growth in NDVI can be observed in areas 
where government policies regarding the irrigation of agricultural fields were established. These 
policies either include the use of desalinated seawater or groundwater (Nile Delta in northern Egypt 
or northern Saudi Arabia) or water from lakes that were created by dam construction (Atatürk and 
Ilisu dams in southern Turkey, Karun 3 and Karun 4 in Iran, or Darbandikhan Dam in Iraq). 

5. Conclusions 

In this study, the interannual and interseasonal variabilities of the vegetation in the ME were 
analyzed. The results show that climate inconsistency and drought are common phenomena in the 
entire region. Areas with steep precipitation gradients and marginal rain-fed agricultural fields are 
the main areas of interest with respect to the mitigation of drought based on the development of local 
processes to assess, monitor, and evaluate the vegetation dynamics.  

The results reveal that the NDVI in the ME increases from January to late April, indicating that 
~21% of the area is covered by vegetation. Starting in May, the vegetation cover decreases and the 
minimum annual coverage (14%) is reached in the warm season by the end of September. Therefore, 
it can be concluded that the main GS in the ME starts around January 1 and ends within the first ten 
days of May.  

During the study period, the NDVI coverage exhibited a significant positive trend in the study 
area, with a significant increase in all of the assumed NDVI categories above the NDVI 0.3. The 
vegetation coverage shows a positive increasing trend in all months. Spring is the greenest season, 
followed by winter, fall, and summer. Vegetation covers ~19.2% of the whole study area. All of this 
suggests, that the ME is becoming greener in the analyzed period. 

The densest vegetation coverage can be observed in the coastal areas of the Caspian, Black, and 
Mediterranean seas and along the large rivers. The driest countries in the ME are Qatar, Kuwait, the 
UAE, and Saudi Arabia. 

The main factors affecting the vegetation coverage in the ME, except from meteorological 
variables, are government policies. These policies can have a positive and continuous effect on the 
vegetation coverage, as observed in Egypt, Saudi Arabia, Qatar, Kuwait, Iran, and Turkey. However, 
some of these policies can have negative effects on other countries. For example, the construction of 
a dam on a river that originates in a certain country and flows to other countries can have a positive 
effect on the source country and negative effects on the vegetation of countries located downriver. 
The Ilisu Dam, constructed on the Tigris River, harms the vegetation in Syria, Iraq and Iran. 

The results of this study can be used by policymakers in the ME to closely examine the vegetation 
dynamics and their variations in each region and country. Studying the NDVI dynamics and their 
relationship with vegetation growth, and monitoring in this region is very important for ensuring 
agricultural, hydroecological, and environmental sustainability, and food security; it is also necessary 
for formulating effective intergovernmental policies. 

The main limitation of the presented results is the resolution of the Terra-MODIS Vegetation 
Indices MOD13A1 grid (500 x 500 m), which may be too coarse and be a source of error. Further 
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research should be carried out on ME vegetation dynamics, incorporating datasets with higher spatial 
resolution, historical vegetation dynamics, and their correlations with the atmospheric variability and 
land–atmosphere interactions in this environmentally sensitive territory. 
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