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Abstract

Climate change effect on human-living in verities of way such as health and food
security. This study presents predicting crop yields, and production risk in the near future
(2020-2029) in northern Thailand using coupling 1 km resolution of regional climate model
which is downscaled using a conservative remapping method and the Decision Support System
for the Transfer of Agrotechnology (DSSAT) modeling system. The accuracy of the climate
and agricultural model was appropriate compared to the observations with Index of Agreement
(IOA) in ranges of 0.65 - 0.89. The DSSAT modeling system predicts that rice, and maize
production will decrease by 5% and 4% in northern Thailand. In addition, a short-term risk
analysis of rice and maize production has shown that, in the context of climate change, maize
production appears to be at a high risk of low production in the near future, while rice
cultivation might be a low risk.

Keywords: Future rice production, Future maize production, Hybrid dynamical statistical,
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1. Introductions

Climate change involves changes beyond the atmospheric average caused both by
natural factors such as the Earth's orbit, volcanic activities and by artificial factors such as the
increase in greenhouse gas concentration and aerosol. Global climate change, which refers to
the average global temperature increases, has become a megatrend leading to major global
changes in the future. According to the United Nations IPCC 's fourth report in 2007, on
Climate Change, global warming is undoubtedly having a severe impact on the world and the
increase in greenhouse gas emissions from anthropogenic activity has caused global warming
since the mid-20th century. It takes at least five to ten years to assess the impacts and
vulnerability of climate change and to prepare adequate countermeasures. In particular, since
agriculture is climate dependent and therefore, susceptible to climate change, it is very urgent
to prepare climate change adaptation measures. Adequate countermeasures based on scientific
diagnoses and climate change impact assessments on agriculture in Asian countries are
essential to the development of future agricultural vision and administration policies. This will
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also provide valuable information for local governments to develop mid- to long-term
agricultural development plans and to prepare their production plans for farming households.

Agricultural production is done through the selection and implementation of
appropriate methods of agriculture by selecting cultures suitable to the climate of a certain
region. There are, therefore, notable regional characteristics of agriculture as a climate-based
bio-industry. Regional features are based on climate-determined features of the ecosystem of
the region. Climate change disrupts the agricultural ecosystem and causes a change in the
temperatures, precipitation, and sunlight of agricultural climate, while also further influencing
the arable, livestock, and hydrological sectors. Evaluation of the consequences of the recent
climate change complements long-term forecasts and identifies which crops and sites are more
vulnerable. Agricultural productivity in several South-east Asian regions has decreased, due to
the large measure of heat, and water stresses and climate variability that had a threat to food
security in the region. The main influences of agricultural production in South-East Asia are
temperature and precipitation. In many areas of the region, the potential for the production of
important crops like rice and maize has fallen as hot weather and watered stress rates have
increased. A study by Peng et al., 2004 found that in the period from year 1991 to 2003 rice
output decreased by 10% for every level of increase in the minimum temperature. In Thailand,
the increasing temperature, in particular in non-irrigated rice, has been reported to lead to a
decrease in crop yield. This is because dryness in critical growth stages such as the flowering
period is having a negative effect. Rice in all provinces (more than 58 provinces) is cultivated
in Thailand. In the northeast more than 50% of all rice zones. The main rice season lasts
between May and December in north and north-eastern regions, while the main rice crops in
southern regions last from September to May. Upland rice in mountainous areas of the northern
hilly areas, the far northwest and in certain parts of the south, has a relatively small retention
area. Climate change, especially in Thailand, is potentially affecting agriculture. Agriculture
values are substantially determined by both temperature and precipitation. Summer
temperature, early rain, and summer precipitation negatively affect agricultural land values,
while late rainy and winter precipitations improve agricultural land values (Attavanich, 2013).
Rice and maize have been affected by climate change in two, main agricultural productivity in
northern Thailand. Rice and Maize products fell by 12% in 2019 and 6% in comparison to
2018. The main-season crop production is estimated officially at 24.3 million tons, 3% below
the average of five years. Although the planted area has been above average, dry spells and
floods have caused crop losses, leading to a decrease in both the area and output harvested. The
secondary season is projected at 4.1 million tons, more than 30 percent below the five-year
average due to the critically low level of irrigation water supply which, together with lower-
average rainfall from January to March, will prevent and abort seeding operations where most
seeding operations normally take place
(http://www.fao.org/giews/countrybrief/country.jsp?code=THA).

To understand and provide context for national or regional impact studies on food
safety, agriculture and climate change, a coupled regional climate model and crop model are
crucial to understanding the cumulative effects of climate change to the agricultural sectors
across the region. It is difficult and expensive to model locally across such a diverse region.
The methods used in local and regional studies are often identical or similar, and therefore
there are economies of scale in the management of crops, species, and ecosystems in regional
areas. The fine resolution of environmental factors such as temperature, precipitation, and solar
radiation is necessary to combine the regional climate model with the crop model.
Approximately 1 km of grid distance is to be used to increase regional climate model
resolution. Scaling a coarse resolution of regional climate data to a finer resolution, dynamic
statistical downscaling is a way to increase climate data. The dynamic-statistical downscaling
method combines a strategy of both regional and statistical downscaling merits.
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Dynamic downscaling enables the physics underlying the local climate reaction to be
examined and leads to greater credibility. Furthermore, dynamic downscaling can record
significant climate changes that could otherwise not have happened due to physical realism
and the ability to simulate complex local processes (e.g. Caldwell et al., 2009; Salathé et al.,
2008, 2010, Arritt and Rummukainen 2011, Pierce et al., 2013). Regional downscaling efforts
were generally strongly criticized (e.g., Schiermeier 2010; Kerr 2011, 2013). One of the main
critiques is that the GCM input limits low output. Each GCM itself may offer an incorrect
picture of the true state of knowledge of climate change, including in the region of interest.
This single GCM will also be misleading to be downgraded. This perception of accuracy at the
regional level is particularly problematic if the dramatic under-sample of uncertainty reduces
very little GCM. In this situation, the decreased output cannot reflect the most probable climate
outcomes in the region and does not provide information on how regional uncertainty is
manifested in the GCM ensemble. Prior studies usually have only two general downscaled
models (e.g. Hayhoe et al. 2004; Duffy et al. 2006; Cayan et al. 2008; Salathé et al. 2010). This
group is too small to obtain meaningful warming and uncertainty statistics. Instead, details
from a wider band is preferred (Giorgi and Mearns 2002; Kharin and Zwiers, 2002). CMIP3
and CMIP5 sets are generally considered large enough to calculate meaningful sets and to cover
the uncertainty area of climate change (Meehl et al., 2007, Taylor et al., 2012), including ten
sets of members. Although the most likely results are to be determined and the uncertainty in
the downscaling of a large ensemble characterized, this is not possible due to their high
computational costs. Dynamic downscaling is in particular a costly technique and only a few
global models have been used in most of the studies performing it. For example, Duffy et al.'s
(2006) downscaling of PCM and HadCM 2, downscaling GFDL CM2.1, and CCSM3 by Pierce
et al., (2013). The Coordinated Regional Downscaling Experiment (CORDEX; Giorgi et al.
2009) is also an example of dynamic downscaling but these are extremely large companies
requiring coordination between several research groups. Large geographical areas also cover
fewer resolutions (approximately 50 km) than is necessary for this area of interest. Intense
topographical areas and complex coastlines usually require a 10 -15 km model resolution.

While, Statistical downscaling is a method by which high resolution climate or climate
change information from relatively raw global climate models (GCMs) can be obtained. First
statistical downscaling results in statistic relationships between observed small-scale and
larger-scale (GCM) variables, either using analogous methods, regression analyzes or neural
network methods. Future values of the major variables derived from the GCM future climate
projections are then used to drive the statistical connections and thus to estimate the smaller
details of the future climate. The example was found in Los Angeles, there are small mountain
complexes, including Santa Monica Mountain, which play an important role in the
development of local climatic gradients. These mountain complexes are only a few kilometers
long and require even greater resolution and higher computer costs. The dynamical decline is
thus an irremediable answer to the need for multimodel downscaling alone for this study. As
the downscaling statistics are much cheaper for multimodel downscaling (i.e., Giorgi et al.
2001, Tebaldi et al. 2005, Pierce et al. 2013), it is almost always employed. The statistics on
downscaling rely on empirical math from broad predictors to final predictors. These
relationships are often much quicker than dynamic downscaling, making them ideal for
reducing the number of major GCMs over time or scenarios. However, it is stationary to assume
that the relationship between predictors and predictors continues even in a changing climate
(Wilby and Wigley 1997). No complete supplement of variables such as dynamic downscaling
is produced for each statistical model, even though these are essential instruments for
downscaling multimodel assemblies.

The aim of this paper is to predict future rice and maize under the worst-case scenario
of climate change RCP8.5 using a crop model which is embedded in The Decision Support
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System for Agrotechnology Transfer (DSSAT). Environmental inputs such as precipitation ,
temperature and solar radiation have been estimated on the basis of a scaling low-resolution
regional climate model output (10 km) to a higher resolution (1 km). Regional climate data
were based on the Nested Regional Climate Model with 10 km grid spacing (Amnuaylojaroen
and Chanvijit, 2019). The statistical downscaling output was compared to observations such as
ground-based measurement from the Thai Meteorological Department and Highly Resolved
Observational Data Integration Towards Water Resource Evaluation (APHRODITE). While
the output from DSSAT was compared to the farm data set from the Department of Agriculture
in Thailand.

2. Data used and Methodology
2.1 Data used

We used the output from the Nested Regional Climate Model ( NRCM) for the current
(1990-1999) and near-future climate (2020-2029) models under the Representative
Concentration Pathway (RCP) 8.5 for the current (1990-1999) and the near-future climate
(2020-2029). The model uses version 4 of the Community Climate System Model (CCSM) as
initial and boundary conditions (Gen et al., 2011). The NRCM is a regional climate model
based on Weather and Forecasting Model (WRF) (Skamarock et al., 2008) which uses the
Community Climate System Model (CCSM) as the climate data forcing. It similarly uses a
limited area to establish the initial and boundary conditions as a part of the Weather Research
and Forecasting Model. While the PWP model is an oceanic mixing layer model that
consolidates the mixing layer's convection adaptation and shear-instability. In the model
configuration, a number of meteorological factors, i.e. wind, temperature, water vapor, and
cloud hydrometeors were integrated into the Runge-Kutta integration method (skamarock et
al., 2008). In the model, the feedback and evolutions of short- and long-wave atmospheric
aerosol on radiation were calculated using Radiant Transfer Models (RRTMG) (lacono et al.,
2008). At the same time, the model includes aerosol feedback about meteorological processes
such as cloud and precipitation effects calculated by Thompson (Thompson et al., 2004). In the
simulation, the Grell-3 system was responsible for convection of the subgrid-scale. Both land
and air were calculated through the Noah Land Surface Model (Chen and Dudhia 2001). Grid
nudging for all vertical levels was applied in the outer domain in accordance with large-scale
weather ( Stauffer and Seaman, 1990), with nudging coefficients of 00003 s—1 every 6 hours,
for all variables including horizontal wind, temperature, and water vapor.

APHRODITE is a project involving several datasets, i.e. a Global Telecommunication
System (GTS). The pre-compiled information set is a project included in the APHRODITE
project. APHRODITE is also a highly resolved observational data integration to the assessment
of water resources. Two datasets are based on GTS, including a Global Summary of the Day
(GSOD) and the GHCN network. In addition, the pre-compiled dataset contains data from the
GEWEX (Global Energy and Water Cycle Experiment) Asian Monsoon Experiment (GAME).
The data for the project APHRODITE has been collected in Japan, China, Mongolia, Russia,
Taiwan, and Nepal from national meteorological and hydrological services or individuals. The
Dataset includes a resolution of 0.5 x 0.5 ° throughout Asia from 1973 to 2007 (Yasutomi et
al., 2011).

2.2 Methodology
The production of rice and maize has been estimated in Northern Thailand based on the
Crop Environmental Resource Synthesis-Rice (CERES-Rice) ( Ritchie et al., 1986) and the
Crop Environmental Resource Synthesis-MAIZE (CERES-Maize) (Adnan et al., 2017) that are
embedded in Decision for Supporting System for Agriculture Transfer (DSSAT) (Jone, 2003).
The regional climate data from Domain 2 of the Nested Regional Climate Model (NRCM)
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simulation of Thailand, as described in Amnuaylojaroen and Chanvijit, 2019. The output from
NRCM is from the climate-change scenario of the RCP8.5 Climate Change Approach,
Thailand [5 ° N-20,5 ° N, 96 ° E -106 ° E] 10-kilometer grid distance in 1990-1999 and 20 —
2020. The reliability of the NRCM model output in ranges 0.89-0.98 and the Agreement Index
(I0A) was examined in the range of 0.76-0.95. To assess the impact of climate change on
agriculture, we need fine resolutions climate data as input into the crop model. Because of the
high quality of NRCM output, we here used a conservative remapping scheme for increasing
grid spacing from 10 km to 1 km. The key method of conservative restoration is the transition
of data from one grid to another while maintaining the global and local integrations and has
many very promising applications in atmospheric science. Perhaps the most immediate
application would be conservative interpolation for the post-processing of numerical model
data (see Lauritzen and Nair 2008 and the references therein). The equation is described in
equation 1.
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where 0 is latitude, ¢ is longitude, and the three remapping weights are

1

Wink = A_k Ank dA,
_ 1 Wink
Wonk = A_kank 0dA — TfAngdA’
w
Wink = — PcosfdA — —2E | @cosodA
Ak Ank n JAn

The remapping output is compared to ground-based measures from the Department of
Thai Meteorology and Highly Resolved Observational Data Integration for the 1990-99 Water
Resources Assessment (APHRODITE). Statistical analyzes, such as Mean Bias, Standard
Deviations, and Agreement Index were used for the evaluation of model performance.

The Mean Bias is calculated following (2).

Mean Bias = M — 0 )
where M is Mean of Model data, O is Mean of Observation data

The standard deviation of residuals is calculated following (3).

©)
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n
where X,is Observation Data, X,,is Model Data, X,, is Mean of observation Data, X,
is Mean of Model Data and n is the number of model and observation data.
The index of agreement (IOA) is calculated following (4)
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where O is Observation data, M is Model data, O is Mean of Observation data, n is
number of model and observation data

The methods described below have been reproduced in part from
(https://dssat.net/about/). DSSAT is a software application program that covers crop
simulation models for over 42 crops and tools for efficient application. The software
application is the Decision Support System. Tools included in database management
programs soil, weather, crop management, and testing data and tools, and applications
programs. The crop simulation model simulates the growth, development, and output of the
soil/plant/atmosphere dynamic. DSSAT and its crop simulation models have been used for
a broad range of applications at different spatial and temporal scales. This includes
management of the farm and precision, evaluations of regional climate variability and
climate change impact, gene-based modeling and reproductive processes, water use,
greenhouse gas emissions, and long-term sustainability via organic soil and nitrogen
balances. The cultivars used in the study, namely KDML-105 for rice, and short-season for
maize.

"’;Mae Hong Son "
i TR0

.........

Figure 1 Planting area (red circle) in northern Thailand (gistdat.or.th)

We have performed here a Decision Support System (DSSAT) Version 4.7.5 from June
to December 1990-1999 to simulate crop yield production. The output from DSSAT was
compared to on-farm data from the Department of Agriculture in Thailand. The seed period is
defined from June to October, while the harvest period from November to December. The
seasonal growth, development, and yield of crops, together with the change in soil, water,
carbon, and nitrogen balance under the cultivation system, were achieved (Jone et al., 2003).
CERES-RICE, which is an individual sub-module incorporated in a DSSAT, was used for the
calculation to simulate phonology, daily growth, and plant nitrogen and carbon requirements,
plant materials senescence. We have selected eight provinces, including Phrae, Chiang Mai,
Nan, Lamphun, Lampang, Mae Hong Son, Chiang Rai, and Phayao, based on complete
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information on overall crop production. To estimate crop production, we have used plantation
areas as shown in Figure 1 for both rice and maize. Generally, maize is sown after the rice
farming season. Every month, the water demand for rice was set as in Table 1 (Intaboot, 2017).
The fertilizer level of N: 6 kg/ha, P.0O5:7.5 kg/ha, K20:7.5 kg/ha, was used following reports
from the Department of Agriculture in Thailand. The layers of soil analysis was developed at
1,035 g / cm? bulk density, 1,46% organic carbon, 0,60% of total nitrogen, 5,63% pH, 6,5%
pH of water, 5,766 mg / kg phosphorous, 5,766 cm / kg potassium, and 1,46% of the organic
stable. CERES-RICE model yield simulated by the Equation as follows equation 5, (Evan,
1993; Ritchie, et al., 1998).

Y = IH17R Z{V= I(QdPARiRnfiARI) ()

Y = grain yield as dry matter in g2, Iy = harvest index (grain as a fraction of the
abovegroundbiomass), nRthe value of the RUE in g MJ?; Qg par; = average daily total
of incident PAR for a given month (i) in MJm™, f; = fraction of PAR intercepted;, R, =

number of days of radiation interception; Ag; = fraction of the maximum RUE depending
on crop performance, in gMJ2; N is the number of months.

Tablel. Water demand for the grown rice in each month.

Month Water demand (mm/month)
June 274
July 67.8
August 49.3
September 58.5
October 32.2

To predict future rice and maize production, we analyze the change in crop production by
comparing future crop production (2020-2029) with the past (2010-2018) and the crop
production risk. In a production risk analysis to support decisions on rice and maize farming,
this decision applied three decision criteria, namely Expected Value (EV) ( Markowitz, 1989),
Stochastic Dominance Analysis (SD) (Davidson et al., 2000) and Mean-Gini Dominance
Analysis (MGD) ( Tsuji et al., 1998, Kisekka et al . , 2016a, Kisekka et al . , 2016b). The three
criteria are commonly used in agricultural economic analysis.
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3. Results and Discussion
3.1 Model Evaluation

Temperature, Monthly-Mean, 1990-1999
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Fig.2 Monthly mean temperature (°C) and precipitation (mm/day) averaged over 1990-1999
based on 44 station locations of Thai Meteorological Department (TMD), TMD (circle), Asian
Precipitation — Highly Resolved Observational Data Integration Towards Evaluation of Water
Resources (APHRODITE) (triangle), MERRA (diamond), Global Precipitation Climatology
Project (GPCP) (Plus) and Nested Regional Climate Model (square).

The remapping output with 1 km grid spacing was compared to the original NRCM
output with 10 km grid spacing and observation data including APHRODITE and TMD
averaged over 1990-1999 44 TMD station locations are shown in Figure 2. In general, the
remapping output captures well the pattern of monthly and daily temperature and precipitation.
In the case of temperature, the remapping output tends to improve compared to the NRCM. By
comparing the original NRCM, which was cold-biased data, the remapping output was about
0.2 — 2 ° C warmer than the NRCM output. When the remapping output is compared to the
observation, the trend is close to both TMD and APHRODIT. While the precipitation from the
remapping output shows a slight difference from the NRCM. The trend is similar to the NRCM
and slightly higher than the NRCM, approximately 1 mm / day from October to December.
Remapped precipitation remains lower than bot TMD and APHRODIT.
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Averaged Total Rice and Maize Production, 2010-2018
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Figure 3 box plot of simulated rice and maize from DSSAT and on-farm dataset

Since no on-farm crop production data was available in 2019, simulated DSSAT rice
and maize-based on CERES-Rice and CERES-Maize were compared to the on-farm dataset in
2010-2018. The assessment of both rice and maize crop production was shown in the box plot
of modeled rice and maize and on-farm data in Figure 3. We found on-farm data on the
thickness of wire from both rice and maize; while simulated rice and maize were thinner in the
wire. The box plot analysis shows that the modeled crop production is lower than the on-farm
data for both rice and maize. The actual rice production was 3200 — 3800 kg/ha, while the
model rice was 3000 — 3200 kg/ha. While the modeled maize was 4000 — 4100 kg/ha, the real
maize was 3900 — 4400 kg/ha.

Table 1 the statistical between the model and ground-based observations from TMD.

Statisti . Temperature Precipitation Crop Production
atistical analysis - -
NRCM Remapping NRCM Remapping Rice Maize
I0A 0.76 0.78 0.63 0.65 0.89 0.81
Mean-Biased -0.92 1.62 -2.68 -1.88 -245 -176
SDR 1.87 1.21 2.54 2.38 615 226

The statistical calculation of temperature and precipitation between model and
ground-based observation data from the Thai Meteorological Department (TMD) is averaged
over the period 1990-1999 from 44 TMD stations, while on-farm data for rice and maize are
averaged over the period 2010-2018 from the planting area as shown in Table 1. By comparing
NRCM data, the remapping output still has a high ability to capture both temperature and
precipitation, which is indicated by IOA in the range from 0.65 to 0.78. At the same time,
modeled rice and maize have high IOA values of 0.81 and 0.89. Remapped temperatures tend
to be slightly overestimated with a mean bias of 1.62, while remapped precipitation, modeled
rice, and maize is underestimated compared to observations with a mean precipitation bias of
(-1.88), (-245) for rice and (-176) for maize. While the standard deviation of the remapping
output residue ranged from 1.21 to 2.38 for the meteorological factor, crop yields ranged from
615 to 226 for rice and maize.

In summary, the model performance assessment was acceptable for both the re-
mapping of climate output and crop production, both the re-mapping of climate output and
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crop production. The remapping output, including temperature and precipitation, remains at a
high 10A value of 0.78 and 0.64, while the temperature and precipitation change slightly
compared to NRCM by 1.62 and (-1.88). As the concept of a conservative remapping method
preserves the trend of the original data, the quality of the remapping data is similar to that of
the NRCM data. Simulated crop production was also acceptable compared with IOA on-farm
yields of 0.81 and 0.89 for rice and maize, although the model output shows an underestimation
of crop production. It is likely to be based on a number of factors, such as information on
irrigation and fertilization. The demand for water in this work followed Intaboot, 2017, which
is a constant value for the entire simulation, but in reality, the irrigation schedule for planting
was established. Irrigation is severely affected by planting efficiency. For example, it was
identified as key to improving agricultural productivity (Oramah, 1996; Carruthers et al . ,
1997; Huang et al., 2006) and Nonvide, 2018 reported that the percentage increase in rice yield
due to irrigation was between 55% and 60%. However, as reported in Yousaf et al., 2017,
fertilization can enhance crop production. They found that crop yields increased by 19-41
percent (rice) and 61-76 percent (rape) over the two years of NPK fertilization rotation
compared to PK fertilization across the study area.

3.2 Prediction of Rice and Maize

Total Rice Prodution in the future Total Rice Prodution in the past

rice
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Chiang Rai

3500 3500

Phayao

3000 3000

Rice Prodution,Future-Past (%)

Chiang Rai

Mae Hong 0
Son Phayao

Chiang Mai Nan -30

Lampang
Phrae

Figure 4 Averaged total rice production in wet season in the future (2020-2029), in the past
(2010-2018) and difference between future change and the past.
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Total Maize Prodution in the future Total Maize Prodution in the past
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Figure 5 Averaged total maize production in the future (2020-2029), in the past (2010-2018)
and difference between future change and the past.

Rice & Maize Change in 2020-2029
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Figure 6 Percentage change of rice and maize in 2020-2029 compared to 2010-2018.

The future total production of rice and maize during 2020-2027 under the worst
climate change scenario (RCP8.5) was shown in Figures 4 and 5. In general, DSSAT predicts
a decrease in aggregate yields by 5.15 percent and 3.9 percent for rice and maize compared to
last year's simulations. We found that Chiang Rai, Chiang Mai, and Phrae were the most
declining yields in the region by about 7%, while Lampang was the only province that had a
slight effect on climate change of less than 1% (Figure 6). As reported in Amnuaylojaroen and
Chanvijit, 2019, future precipitation tends to decrease by approximately 0.5 mm / day across
Thailand but increases slightly in some areas, near northern Thailand by approximately 0.5 mm
/ day. In contrast, 2 m-temperature tends to rise about 2 — 5 ° C in Thailand. The combined
effect of climate change between increased temperatures and reduced rainfall would have an


https://doi.org/10.20944/preprints202010.0207.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2020 d0i:10.20944/preprints202010.0207.v1

12

impact on agricultural irrigation. The result is very statistically significant. Lower aggregate
yields under climate change conditions compared to previous years may be due to lack of water
for agriculture, especially rice that is irrigated is positively associated with improved rice
productivity (Nonvide, 2018). While temperature increases tend to be sensitive to maize
production.

3.3 Crop Production Risk Analysis

CPF Plot of Harvested vield (ka [dm]hea)
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Wl maize

Cumulative Probabilty
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Figure 7 Cumulative probability distribution of rice and maize production in the future

CPF Plot of Monetary Returns per HA
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Figure 8 Stochastic dominance analysis ($/ha) of rice and maize production in the future

The cumulative probability distribution (CPD) plots at 0,5 show that both rice and
maize have been predicted to have the highest mean yield (Figure 7). Even with the predicted
mean yield variance, which was smaller for maize and maximum for rice, this pattern was
consistent and suggested that maize could be considered as risky among non-risk farmers. With
about the 3000 kg of ha—1 and 4312 kg of ha-1 estimated regarding rice and maize yields to
satisfy of the average in northern Thailand (Office of Agricultural Economics, 2020) the maize
showed the cumulative probability of yield below the minimum acceptable threshold of 50%,
while rice shows an acceptable probability above the minimum of 30%. This suggests that
maize is highly likely to yield below the lowest acceptable yield target. Similarly, stochastic
dominance analysis showed that both rice systems were less hazardous than maize, because
they lied on the right side of rice, with the two rice systems with the lowest monetary return
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variations (Figure 8). The Mean-Gini Dominance (MDG) test showed riced as the most
efficient system of management (Table 2).

Table 2 Dominance analysis of rice and maize in the near future

Treatment E(x) E(x) — F(x) Efficient (yes/no)
Rice -63 -157.4 Yes
Maize -203.7 -253.6 No

Coping with the impact of climate change on agriculture, in particular on agricultural
production mainly rice and maize. Thailand's Government has initiated research on a global
climate mitigation action plan and offers information to raise understanding of climate change,
and many rice farmers have inadequate expertise to effectively maintain their farms in the light
of changing climate conditions. Farmers have historically grown domestic rice through seeds
and seedlings that are resistant primarily to pre-cultivation pests and diseases. The Thai
Government sponsored new GM (deep-water) rice (not reusable) species in the program, which
are typically more than one month in floodwaters of more than 50 cm. Usage of DNA
technology, and distribution of new dried-resistant rice varieties to the areas affected by
dryness — gluten-resistant RD12 and non-glutinous RD33. Nevertheless, as the government
does not supply sufficiently to all farmers, this new variety is also produced by various private
companies. Consequently, farmers who can purchase them showed interest in new rice varieties
that yield more than conventional rice. The most common improvement strategies used for
those who cannot provide new seeds consisted of adjusting crop patterns, and crop schedules
and improving farm management. The government has also developed land to protect rice
farms from flood damage. Furthermore, risk management systems should be incorporated into
national adaptation strategies for households. This may involve crop insurance or more flexible
livelihoods such as integrated aquaculture and farming systems, allowing farmers to rely on
land adequacy and water availability changes. In the short term, integrated agriculture increases
various crop yield types while increasing the sustainability of agricultural systems is a long-
term gain.

4. Conclusion

The purpose of this research is to forecast the future production of rice and maize in
northern Thailand (2020-2029). Climate datasets from the Nested Regional Climate Model
(NRCM) simulation, with an 80-90 percent reliability 10-kilometer spatial resolve
(Amnuaylojaroen et al. 2019) is reduced to 1 km by using the Conservative First and Second-
Order Remapping schemes. This data set was then used as an environmental data collection in
the DSSAT modeling framework for evaluating rice and maize production and in the risk
assessment for development to support decision-making in the near future in the Decision
Support System for the Transfer of Agrotechnology. The model evaluation of climate and
agricultural data kept climate data at the same reliability level as the previous dataset. The data
accuracy was calculated at 0.78 for the temperature and 0.65 for the precipitation according to
the Agreement Index (IOA), while the average Biased was 1.62 for the temperature and (-1.88)
for the precipitation. Simultaneously, the results of the DSSAT model system, including the
production of rice and maize, were found to be close to the on-farm data set with IOA values
of 0.89 and 0.81 for rice and maize. The climate in 2020-2019 was a favorable situation, as
addressed in Amnuaylojaroen and Chanvijit in 2019, with a lack of water with agriculture, with
rising temperatures and decreases in precipitation. Both considerations are consistent with the
findings of rice and maize yield simulations. More temperature-sensitive maize production in
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the upper Northern Region appears to decrease by more than 4%. Although rice is more prone
to precipitation, it also decreases by about 6% for the entire region. Nonetheless, the risk
analysis of rice and maize production in the near future has shown that maize cultivation is
likely in the near term to face a high risk of low production as a result of climate change, while
there can be a low risk of rice cultivation.

Acknowledgment

The study was supported by Biodiversity-Based Economy Development Office
(BEDO) under National Research Council of Thailand (NRCT) project. We are thankful for
the Thai Meteorological Department (TMD) providing their and meteorological (temperature
and precipitation) observation data and Department of Agriculture for rice and maize
production data.

Reference

1. Adnan, A. A, etal. 2017. CERES—Maize model for determining the optimum planting
dates of early maturing maize varieties in Northern Nigeria. Frontiers in plant science
8:1118.

2. Amnuaylojaroen, T. and Chanvichit, P. 2019. Projection of near-future climate change
and agricultural drought in Mainland Southeast Asia under RCP8. 5. Climatic Change
155(2), 175-193.

3. Arritt, R. W. and Rummukainen, M. 2011. Challenges in regional-scale climate
modeling. Bulletin of the American Meteorological Society. 92(3), 365-368.

4. Attavanich, W. 2013. The effect of climate change on Thailand’s agriculture. 7th
International Academic Conference Proceedings. Accessed 2 August 2020.

5. Berry, S. T. et al., 2014. Corn production shocks in 2012 and beyond: Implications for
harvest volatility. The Economics of Food Price Volatility, University of Chicago
Press, 59-81.

6. Caldwell, P. et al., 2009. Evaluation of a WRF dynamical downscaling simulation over
California. Climatic Change, 95(3-4), 499-521.

7. Carruthers, 1., et al. 1997. Irrigation and food security in the 21st century.” Irrigation
and Drainage Systems, 11(2), 83-101.

8. Cayan, D.R., etal. 2008. Climate change scenarios for the California region.” Climatic
Change 87(1), 21-42.

9. Chen, F. and Dudhia, J. 2001. Coupling an advanced land surface—hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and
sensitivity. Monthly Weather Review, 129(4), 569-585.


https://doi.org/10.20944/preprints202010.0207.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2020 d0i:10.20944/preprints202010.0207.v1

15

10. Davidson, R. and Duclos, J. Y. 2000. Statistical inference for stochastic dominance
and for the measurement of poverty and inequality. Econometrica 68(6), 1435-1464.

11. Duffy, P., et al. 2006. Simulations of present and future climates in the western United
States with four nested regional climate models. Journal of climate, 19(6), 873-895.

12. Evans, J. R. (1993). Photosynthetic acclimation and nitrogen partitioning within a
lucerne canopy. Il. Stability through time and comparison with a theoretical optimum.
Functional Plant Biology, 20(1), 69-82.

13. Gent, P. R,, et al. 2011. The community climate system model version 4. Journal of
climate, 24(19), 4973-4991.

14. Giorgi, F., et al. 2001. Regional climate information—evaluation and projections.”

15. Giorgi, F., et al. 2009. Addressing climate information needs at the regional level: the
CORDEX framework. World Meteorological Organization (WMO) Bulletin 58(3),
175.

16. Giorgi, F. and Mearns, L. O. 1991. Approaches to the simulation of regional climate
change: a review. Reviews of Geophysics, 29(2), 191-216.

17. Hayhoe, K., et al. 2004. Emissions pathways, climate change, and impacts on
California. Proceedings of the national academy of sciences 101(34), 12422-12427.

18. Huang, Q., et al. 2006. Irrigation, agricultural performance and poverty reduction in
China.Food policy, 31(1), 30-52.

19. lacono, M. J., et al. (2008). Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models. Journal of Geophysical Research:
Atmospheres, 113(D13).

20. Intaboot, N (2017) The study of water demand to grow rice in Thailand. 6th
International Symposium on the Fusion of Science and Technologies (ISFT2017) Jeju,
S. Korea 17th - 21st July.
http://www.rdi.rmutsb.ac.th/2011/digipro/isft2017/CA/11.%5BCA003%5D_F.pdf.
Accessed 2 August 2020.

21. Jones, J. W., et al. (2003). "The DSSAT cropping system model." European journal of
agronomy, 18(3-4), 235-265.


http://www.rdi.rmutsb.ac.th/2011/digipro/isft2017/CA/11.%5BCA003%5D_F.pdf
https://doi.org/10.20944/preprints202010.0207.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2020 d0i:10.20944/preprints202010.0207.v1

16

22. Kerr, R. A. 2011. Vital details of global warming are eluding forecasters, American
Association for the Advancement of Science.

23. Kharin, V. V. and Zwiers, F. W. 2002. Climate predictions with multimodel ensembles.
Journal of climate, 15(7), 793-799.

24. Kisekka, 1., et al. 2016. Assessing deficit irrigation strategies for corn using simulation.
Transactions of the ASABE, 59(1), 303-317.

25. Kisekka, 1., et al. 2016. Mobile drip irrigation evaluation in corn.” Kansas Agricultural
Experiment Station Research Reports, 2(7), 8.

26. Markowitz, H.M. 1989. Mean—Variance Analysis. In: Eatwell J, Milgate M, Newman
P (ed) Finance. The New Palgrave. Palgrave Macmillan, London.

27. Meehl, G. A, etal. 2007. The WCRP CMIP3 multimodel dataset: A new era in climate
change research. Bulletin of the American Meteorological Society, 88(9), 1383-1394.

28. Nonvide, G. M. A. 2018. A re-examination of the impact of irrigation on rice
production in Benin: An application of the endogenous switching model. Kasetsart
Journal of Social Sciences.

29. Oramah, B. 1996. The direct private benefits of participation in a publicly provided
surface irrigation scheme in the high rainfall area of Nigeria. African Development
Review 8(1), 146-172.

30. Pierce, D. W., et al. (2013). Probabilistic estimates of future changes in California
temperature and precipitation using statistical and dynamical downscaling. Climate
Dynamics, 40(3-4), 839-856.

31. Ritchie, J. 1986. IBSNAT/CERES rice model" Agrotechnology Transfer, 3, 1-5.

32. Ritchie, J., et al. 1998. Cereal growth, development and yield. Understanding options
for agricultural production, Springer, 79-98.

33. Salathé, E. P., et al. 2010. Regional climate model projections for the State of
Washington. Climatic Change, 102(1-2), 51-75.

34. Salathe Jr, E. P., et al. 2008. A high-resolution climate model for the US Pacific
Northwest: Mesoscale feedbacks and local responses to climate change. Journal of
climate, 21(21), 5708-5726.

35. Schmidt, G. 2010. THE REAL HOLES IN CLIMATE SCIENCE. Nature 463: 21.


https://doi.org/10.20944/preprints202010.0207.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2020 d0i:10.20944/preprints202010.0207.v1

17

36. Skamarock, W. C., et al. 2008. A description of the Advanced Research WRF version
3. NCAR Tech. Note NCAR/TN-475+ STR, Citeseer.

37. Stauffer, D. R. and Seaman, N. L. 1990. "Use of four-dimensional data assimilation in
a limited-area mesoscale model. Part I: Experiments with synoptic-scale data.” Monthly
Weather Review 118(6), 1250-1277.

38. Taylor, K. E., et al. 2012. An overview of CMIP5 and the experiment design. Bulletin
of the American Meteorological Society, 93(4), 485-498.

39. Tebaldi, C., et al. 2005. Quantifying uncertainty in projections of regional climate
change: A Bayesian approach to the analysis of multimodel ensembles. Journal of
climate, 18(10), 1524-1540.

40. Thompson, G., et al. 2004. Explicit forecasts of winter precipitation using an improved
bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly
Weather Review, 132(2), 519-542.

41. Tsuji, G. Y., et al. 1998. Understanding options for agricultural production, Springer
Science & Business Media.

42. Wilby, R. L. and Wigley, T. M. 1997. Downscaling general circulation model output:
a review of methods and limitations. Progress in physical geography, 21(4), 530-548.

43. Yasutomi, N., et al. (2011). Development of a long-term daily gridded temperature
dataset and its application to rain/snow discrimination of daily precipitation. Global
Environmental Research, 15(2), 165-172.

44. Yousaf, M., et al. 2017. Effects of fertilization on crop production and nutrient-
supplying capacity under rice-oilseed rape rotation system. Scientific reports, 7(1), 1-9


https://doi.org/10.20944/preprints202010.0207.v1

