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Abstract: The role of insurance in financial inclusion as well as in economic growth is immense.
However, low uptake seems to impede the growth of the sector hence the need for a model that
robustly predicts uptake of insurance among potential clients. In this research, we compared the
performances of eight (8) machine learning models in predicting the uptake of insurance. The
classifiers considered were Logistic Regression, Gaussian Naive Bayes, Support Vector Machines,
K Nearest Neighbors, Decision Tree, Random Forest, Gradient Boosting Machines and Extreme
Gradient boosting. The data used in the classification was from the 2016 Kenya FinAccess Household
Survey. Comparison of performance was done for both upsampled and downsampled data due to
data imbalance. For upsampled data, Random Forest classifier showed the highest accuracy and
precision compared to other classifiers but for downsampled data, Extreme Gradient boosting was
optimal. It is noteworthy that for both upsampled and downsampled data, tree-based classifiers
were more robust than others in insurance uptake prediction. However, in spite of hyper-parameter
optimization, the Area under Receiver Operating Characteristic curve (AUC) remained highest for
Random Forest as compared to other tree-based models. Also, the confusion matrix for Random
Forest showed the least false positives, and the highest true positives hence could be construed as
the most robust model for predicting the insurance uptake. Finally, the most important feature in
predicting uptake was having a bank product hence bancassurance could be said to be a plausible
channel of distribution of insurance products.
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1. Introduction

1.1. Background of the Study

The role of insurance in financial inclusion as well as in sustainable economic growth is immense.
Insurance is not only important for its risk pooling and transfer roles but also for capital accumulation
for investment. Nevertheless, less discussion had been canvassed about its importance. Much of the
discussion has been on the banking sector but less on the insurance sector [14]. Since African Union
Agenda 2063 envisions inclusive sustainable development in Africa, insurance could contribute a great
deal to achieving this. This is more so due to the tendency of financial risks to increase over time.
Therefore, sustainability of the growth could be cushioned by hedging the risks and in this, insurers
are better placed for their ability to indemnify their clients in case of a peril operation [7,12].

Despite its role in financial inclusion and sustainable economic growth, low insurance uptake and
low penetration have seemed to impede growth of the insurance sector. Insurance uptake has been low
in Kenya. This was regardless of various programs developed and implemented by the Association of
Kenya Insurers (AKI) to increase the uptake and consequently the penetration. Moreover, life insurance
penetration in the Kenyan market had worsened for the third year in a row, dipping to 2.79% in 2015
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from 2.94% in 2014. This was notwithstanding the fact that the gross domestic product (GDP) grew
to 5.6% in 2015 in comparison to 5.3% in 2014. The low uptake has spanned most lines of insurance.
Uptake of insurance has been one of the impediments to growth and expansion of insurance. This
is possibly because low uptake directly affects financial performance since the lower the uptake the
lower the penetration and consequently the lower the financial performance [1].

The uptake could be investigated from the demand side of insurance in terms of the count of
people who take up policies, while penetration could be thought of as premiums as a ratio of gross
domestic product. Nevertheless, both ways of looking at insurance growth had shown low statistics.
The problem of low insurance uptake could be alleviated by targeted uptake promotion, hence the need
for a model that robustly predicts uptake. Finding an optimal and robust way of predicting insurance
policy uptake can help determine whether a customer or a potential one will take up insurance. Such a
model would be valuable from the insurers point of view, especially in putting in place a distribution
strategy for insurance. This will help in targeted marketing and product improvement. [20]. Previous
studies related to this paper focused on a particular line of insurance and none made use of the machine
learning approach. For instance, the uptake of private health insurance, community based kinds of
health insurance, remote sensing insurance, flood insurance and agricultural insurance. Whereas these
are vital in ensuring in-depth knowledge of these particular lines, there is a need to have a look at the
overall picture of insurance as a whole Lambregts and Schut [12]. This study attempted to fill this gap
by having a peep into the insurance uptake prediction from an overall perspective by considering all
the lines of insurance. The labels are therefore related to insurance uptake on all the lines: life, non-life
and health insurance.

The use of machine learning is motivated not only by its predictive capabilities but also by the
documented possibility of yielding new insights. Moreover, machine learning takes advantage of the
available data to glean the insights and make the predictions hence the possibility of new insights
hitherto unforeseen [19]. The target variable had a label which was binary, hence the supervised
learning problem was classification in nature. Therefore, this paper attempts to address a classification
problem that compared machine learning models that classify an insurance potential client as either
taking up a policy or otherwise based on features of the potential customer, mostly social-demographic
in nature. Whereas machine learning may not have been applied in insurance uptake prediction, it has
had applications in other areas of insurance ranging from application to modelling of life insurance
companies Krah et al. [11], as well as in export credit finance claims prediction [3].

2. Description of the Selected Machine Learning Models

For a sequence set of label Y and sequence domain set X , we sought an optimal classifier h,
that predicts new customer as taking up insurance or not such that the loss Ls(h), in the test set is
minimized. h : X → Y . WhereH is the hypothesis class that h is expected to fall [18].

hS ∈ argmin
h∈H

LS(h) (1)

2.1. Logistic Regression Classifier

Logistic regression classifier is derived from linear regression but modified by a logistic function.
For the outcome Y, which is an uptake of insurance or non-uptake for the current study, the outcome
may be 1 or 0 otherwise.

Y =

{
1, =uptake

0, = non uptake
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For X = x1 + .... + xn where x1 + .... + xn are features under consideration. The probability that a
customer or potential customer will take up insurance will be given by:

π(x) = E(Y|x1....xn) =
exp{β0 + β1x1 + .... + βn}

1 + exp{β0 + β1x1 + .... + βn}
(2)

.
The cost function will then be given by:

cost( f (x), uptake) =

{
−log f (x), i f uptake = 1

−log(1− f (x), otherwise
(3)

[18]

2.2. Support Vector machines (SVM)

SVM is a frontier hyperplane that optimally segregates two classes by seeking the largest margin
between the nearest points of the training set of any class (referred to as support vectors). With the
kernel trick, finite dimensional space features could be mapped into higher dimensional space hence
making it possible to linearly separate despite the dimensional space [18]. SVM has been applied in
diverse areas and has been found to have high accuracy in many instances including cancer diagnosis
[10]. In this paper, the support vectors gave the largest margin between the insurance clients (and
potential ones) who would uptake cover and those who would not uptake, based on the features.

2.3. Gaussian Naive Bayes (GNB)

GNB determines the posterior probability of taking up insurance of either the uptake or the
non-uptake given the features. Given the value of the label, y, the algorithm takes Bayes’s theorem but
with the assumption of conditional independence between every pair of covariates.

P(y | x1, . . . , xn) =
P(y)P(x1, . . . xn | y)

P(x1, . . . , xn)
(4)

The y is the class label, x1, . . . , xn are the features. The equation 4 gives how the posterior distribution
which is the hypothesis class label given the data is arrived at. Moreover, the equation 5 below gives
the assumption of the Gaussian distribution of the covariates.

P(xi | y) =
1√

2πσ2
y

exp

(
−
(xi − µy)2

2σ2
y

)
(5)

The class label in this research was the uptake while the covariates were the features. The classifier
therefore works by comparing the posterior distribution of each of the two classes (which may either
be uptake or non-uptake) and takes the higher.

2.4. K Nearest Neighbour (KNN)

The classifier in KNN is such that for a training set S and for every point x inX , it outputs the
highest of the label among (yπi(x) : 1 ≤ k), where π1(x.....πm(x) is the reordered set S, ordered as per
their distance to x. The distance in this case is Euclidean distance. The classifier finds the Euclidean
distance between new data points for each training example. It then selects the K entries closest to the
new data point. The label with the highest frequency in K entries will be the class label of the new data
point. So if the most common is non-uptake, the new data point will be classified as non-uptake and
vice versa [18].
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2.5. Decision Trees (DT)

These are classifiers, h : X −→ Y, that predict the label associated with an instance of, say variables,
by moving from root node to a leaf. DT are built as branch-like fragments. The decision tree consists
of root nodes, leaf nodes signifying the class labels, whereas the intermediate nodes denote non-leaf
nodes. The data attribute with the highest priority in decision-making is selected as the root node.
The splitting process of a decision tree is decided upon the data values of the respective nodes. The
decision tree learns during the training phase and its effectiveness is evaluated during the testing
phase. The depth and the distribution of training and test information of DT dynamically impact the
performance and efficiency of the classifier [13]. In this research, DT were applied to predict insurance
uptake; leaf nodes represented classification labels which may be either uptake or non-uptake.

2.6. Random Forest (RF)

RF is a tree based algorithm whose trees are assembled by bagging. The trees are independently
trained. RF classifier use an ensemble of decision trees to predict insurance uptake based on features.
The prediction is the outcome of sequential, binary decisions that are orthogonal splitting in the
multivariate space of variables. In this case therefore, the RF classifier is taken as the classifying
algorithm, that is a meta learner of several trees built independent of each other. RF has compared
favourably with other ensemble decision tree-based models in previous studies. In some cases, it
performs better than other learners [4] but in others like the case of [8] boosting performed better.

2.7. Gradient Boosting Machine and Extreme Gradient Boosting

Gradient boosting machines (GBM) and extreme gradient boosting (XGB) are tree based
supervised learning models. Their ensemble method of learning is by boosting. The classification
trees are sequentially trained to improve the performance of the next tree from the previous one. As
a result, every new tree attempts to correct errors of the preceding tree. GBM and XGB only differ
from the point that XGB use a more formalized regularization than GBM. These makes controlling for
over-fitting better and gives better model performance. Gradient boosting methods have been found
to perform well, yielding state of the earth results in most classification and regression tasks compared
to other models [8].

3. Methodology

3.1. Data

The study used 2016 Kenya FinAccess household survey data. Among the main objectives of the
survey is to measure access to and demand for financial services among adults. The sample of the
survey was representative of the whole country and based on KNBS NASSEP V national household
sampling frame. The survey undertook 10,008 interviews from 834 clusters across the country, with
14 households being targeted in each cluster. A KISH grid was then used to select respondents at the
household level. The sample drawn was representative downwards to 13 sub-regions in the country
which were clusters. These were: North Rift region, Central Rift region, South Rift region, Nyanza
region, Western region, Eastern region, Coastal region, North Eastern region, Nairobi and Mombasa.
The survey was intended to measure access to and demand for financial services among Kenyans aged
16 years and above. A nationally representative cross-sectional survey used a multi-stage stratified
cluster sampling design. About 834 clusters were initially selected as primary sampling units (PSU),
using probability proportional to size (PPS), from a national sampling frame. The Fifth National
Sample Survey and Evaluation Program (NASSEPV) was designed by the Kenya National Bureau of
Statistics, according to Kenya’s previous population census (2009 population census). Furthermore,
there was stratification according to urban and rural areas together with the country’s 47 counties
hence resulted in 92 strata. The second stage involved selecting 14 households in each cluster. In



5 of 13

the final stage, one individual aged 16 years old and above, was randomly selected per household
using the KISH grid. 8,665 interviews in 820 clusters were conducted. One person was interviewed
per household. Data was collected on socio demographic characteristics, access, and use of financial
services including mobile money, and social health insurance enrolment [6].

3.2. Features Selection

The aim of the supervised learning adopted in this paper was to find a learner that classifies an
insurance customer, or potential one in an optimal and robust manner. The data set contained over
100 variables but only 30 social demographic features were selected. Those that were highly co-varied
and those with the least correlation were picked. This reduced the dimensionality hence reduced
likely-hood of overfitting. From the 30 features, 18 features were selected based on univariate selection
where features with the strongest relationship with the label were taken. The univariate compares
each feature with the label to check if there is a significant relationship. This feature selection method
mechanism is such that it selects the best features based on univariate statistical tests. It compared
each feature to the label variable, which was uptake in the case of this research, to check whether there
was any statistically significant relationship between them. When comparing the relationship between
one feature and the target variable, we ignored the other features. Each feature therefore had a test
score. Lastly, the test scores from each feature were compared, and the features with top scores were
selected. This method was chosen for its flexibility for the given kind of data.

The label set was uptake, while the instances in the domain set considered included vector
features: gender, marital status, age group, education, numeracy, pace of residence, internet access,
own phone, electricity as the main light source, smartphone, youth, wealth quintile, having a bank
product, top trusted provider, second top trusted provider, residence, household size, and having some
fund set aside for emergency and the sub-region that one lives within the country that the respondent
resided. One hot encoding was performed on the categorical features to enable better prediction as
factors. The uptake in this study implies the uptake of insurance regardless of the line or class of
insurance. Those included in this label are those who had any kind of insurance cover; whether life,
non-life or medical.

3.3. Handling Class Imbalance

Class imbalance problem arises when the data has a proportion of one class (majority class)
being significantly higher in ratio than another (minority class). This could be alleviated by various
techniques including oversampling of the minority class or undersampling of the majority class to
balance both classes [2]. The data set used in the study, as is commonly the case in real-world settings,
was imbalanced to an extent proportionally. Figure 1 shows the data balance proportion for the data
used. The proportion of those who did not have insurance to those who had was 6807:1858 which
is 3.66: 1 hence the data was unbalanced with the minority class being 21% of the data while the
majority class is 79%. The 1 demonstrates class to some level imbalance between uptake (the minority
class), and non-uptake (the majority class). When the event of interest is underrepresented uptake
(the minority class), the majority class (non-uptake), there is a tendency to hinder the classification
accuracy. Data imbalanced was handled by both up-sampling and down-sampling.

3.4. Model Performance Measures

Precision scores refer to the number of true positives divided by all positive predictions. Precision
is also called Positive Predictive. Value is a measure of a classifier’s exactness. Low precision indicates
a high number of false positives. Recall score refers to the number of true positives divided by the
number of positive values in the test data. Low recall indicates a high number of false negatives.
Sensitivity or the True Positive Rate is a measure of a classifier’s completeness. F1-score is the weighted
average of precision and recall.
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Figure 1. Data Imbalance

Confusion Matrix is a table showing correct predictions and types of incorrect predictions. True
positives (TP) refers to the number of cases correctly identified as having taken insurance False
positives (FP) are the number of cases incorrectly identified as having taken insurance True negatives
(TN) are the number of cases correctly identified as not having insurance False negatives (FN) are the
number of cases incorrectly identified as not having insurance.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(6)

Sensitivity =
TP

(TP + FN)
(7)

Speci f icity =
TN

(TN + FP)
(8)

3.5. Hyper-parameter optimization

Grid searches were conducted to find hyper-parameters that would yield optimal model
performance. A 5-fold cross-validation technique was used based on accuracy as an evaluation
metric. Table 1 shows the hyper-parameters tuned in RF. Hyper-parameters for the RF that were

Table 1. Hyper-parameter Optimization for RF

Parameter Range Optimal Value
n_estimators [80 to 150, interval of 10] 110
max_features [auto, sqrt, log2] auto
min_samples_split [2,4,6,8] 2
Bootstrap [True, False] True

tuned were: n_estimators, max_features, min_samples _split and bootstrap. The n_estimators which
represent the number of trees in the forest were optimized between 80 and 150 with a range of 10.
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Usually, the higher the n_estimators, the better the accuracy, but on optimizing an optimum of 110 was
found. The max_features is the maximum number of features that the model considers when splitting
a node. The search was among auto, sqrt and log2. The grid search for max_features was optimized
at auto. The min_samples _split represents the minimum number of data points, from the total, that
should be placed in a node before the node is split. The search was between 2,4,6 and 8 and it was
optimized at 2. Finally, on bootstrap which represents the method used by the model to sample the
data points; whether with replacement or without. In this case it is optimized at true implying with
replacement.

Table 2. Hyper-parameter Optimization for GBM

Parameter Range Optimal Value
n_estimators [100,200,300] 100
min_samples learning_rate [0.01, 0.02, 0.05, 0.1] 0.05

Table 2 shows the hyper-parameters tuned in GBM. For the GBM, n_estimators were tuned among
100,200 and 300 and it optimized at 200. The parameter learning_rate was to control the weighting of
new trees added to the model. The parameter was tuned between 0.01, 0.02, 0.05 and 0.1. The optimal
learning_rate was found to be 0.05.

Table 3. Hyper-parameter Optimization for XGB.

Parameter Range Optimal Value
n_estimators [500 to 1500] 1000
max_depth [auto, sqrt, log2] auto
max_features [0.2 to 1] 0.9
gamma [0.1 to 1] 0.1

Table 3 shows the hyper-parameter tuning on XGB. The parameters that were optimized were:
n_estimators, max_depth, max_features and gamma. On n_estimators, they were tuned between 500
and 1500 and the optimal was found at 1000. For max_depth, it was tuned among auto, sqrt and log2
and the optimal arrived at was auto. On the other hand, max_features were tuned between 0.2 and 1
and optimal arrived at was 0.9. Finally, gamma tuned in at 0.1.

4. Results and Discussion

Python version 3.6.1 was used as a tool for analysis. Python was used because it is malleable.
Moreover, the various libraries that python has made the analysis easier. Jupyter notebook was the
environment of choice for its simple interface. The results shown are for test sample in each case.
After data cleaning and selection of relevant features data was split into three sets: training, validation
and test sets in the ratio of 0.75:0.15:0.10. For the training set 75% of the data were used to train
the algorithms. For validation set 15% of the data were held back from training of the model and
were used to give an unbiased sagacity of model efficiency. The validation set was used to evaluate
performance on data which were unseen when test data was locked away. For the test set 10% of the
data were held back from training of the model and were used to give an unbiased sagacity of a final
model efficiency. The test set was locked away till fine-tuning of the model was complete thereafter
an unbiased evaluation of the final models were obtained. Pawluszek-Filipiak and Borkowski [15]
observed that performance metrics of the models, F1 score and Overall Accuracy, decreased as the
train-test ratio decreased. This implies that as the training sample decreases the performance metrics
tend to decrease. In line with models’ need substantial data to train upon, Poria et al. [17] used 80% of
the data as set training and the remaining 20% was partitioned equally between validation and test.
As a result there was the need to choose a train-validation-test split ratio that not only optimized the
accuracy but also adequately measured the extent to which the model would perform in “unseen”
data. These considerations informed the choice of the train-validation-test split ratio that was used.
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4.1. Comparison on Unbalanced data

Table 4. Machine learning model Performance for the unbalanced data.

Number Model Precision Recall F1_scores Accuracy
0 Logistic 0.6855 0.5430 0.6060 0.8485
1 GNB 0.4576 0.7258 0.5613 0.7565
2 RF 0.6301 0.3907 0.4823 0.8200
3 DT 0.4339 0.4821 0.4567 0.7538
4 SVM 0.7265 0.4857 0.5822 0.8504
5 KNN 0.5781 0.4910 0.5310 0.8138
6 GBM 0.7054 0.5108 0.5925 0.8492
7 XGB 0.7204 0.5126 0.5990 0.8527

Table 4 shows machine learning models and their respective precision scores, recall scores,
F1_scores and accuracy on the real unbalanced data. The XGB, SVM, GBM and Logistic Regression
classifiers have the highest accuracy (0.85) followed by RF (0.82), KNN (0.81), GNB (0.76) and the
lowest DT (0.75). For F1_scores, logistic regression shows highest (0.61), then XGB (0.60), GBM (0.59),
SVM (0.58), GNB (0.56), KNN (0.53), RF (0.48), and DT has the lowest (0.46). Despite all the accuracy
scores of each of these being at least 0.75, their respective precision, recall and F1_scores are all below
0.75. This may be an indicator of some skew in the data hence the need for data balancing before
training.

The machine learning models improved their skill on unseen data upon the cross validation. All
the models improved their respective precision scores. For logistic regression from 0.69 to 0.77, GNB
from 0.46 to 0.69, RF from 0.63 to 0.76, DT from 0.43 to 0.65, SVM from 0.73 to 0.77, KNN from 0.58 to
0.75, GBM from 0.71 to 0.7720, and XGB from 0.72 to 0.76. Similarly, there was improvement in all recall
scores. For logistic from 0.54 to 0.72, GNB from 0.73 to 0.75, RF from 0.39 to 0.6748, DT from 0.4821 to
0.6493, SVM from 0.49 to 0.68, KNN from 0.49 to 0.72, GBM from 0.51 to 0.71 and XGB from 0.51 to
0.69. The f1-score improvements were: logistic regression from 0.61 to 0.74, GNB from 0.56 to 0.71,
RF from 0.48 to 0.70, DT from 0.46 to 0.65, SVM from 0.58 to 0.71, KNN from 0.53 to 0.73, GBM from
0.59 to 0.73 and XGB from 0.60 to 0.72. There was a slight improvement in accuracy for most of the
machine learning models except for logistic regression and SVM. The respective changes in accuracy
after the cross validation were: logistic regression from 0.85 to 0.84 GNB from 0.76 to 0.77, RF from
0.82 to 0.83, DT from 0.75 to 0.77, SVM from 0.85 to 0.84, KNN from 0.81 to 0.83, GBM from 0.85 to 0.84,
and XGB from 0.85 to 0.84. There were not many improvements in the respective accuracy because
the data was still unbalanced. This implies with cross validation the accuracy generally remained the
same but the f1-scores generally rose with the k-fold cross-validation.

4.2. Comparison on Balanced data

Table 5. Machine learning models Performance unbalanced data with cross validation.

Number Model Precision Recall F1_scores Accuracy
0 Logistic 0.7726 0.7228 0.7423 0.8442
1 GNB 0.6912 0.7507 0.7059 0.7712
2 RF 0.7456 0.6748 0.6977 0.8269
3 DT 0.6474 0.6493 0.6483 0.7654
4 SVM 0.7704 0.6809 0.7080 0.8365
5 KNN 0.7495 0.7155 0.7297 0.8327
6 GBM 0.7720 0.7115 0.7338 0.8423
7 XGB 0.7630 0.6944 0.7182 0.8366

Table 5 shows machine learning models and their respective precision scores, recall scores,
F1_scores and accuracy on the real unbalanced data but with cross validation test_size=0.1,
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validation_score = 0.15. Stratification was with respect to y which is uptake in the case, with a
set the random_for reproducibility. This stratifies the parameter making a split so that the proportion
of values in the sample produced will be the same as the proportion of values provided to the parameter
stratify; it ensures that the in cross validation, the skews within the folds are similar. High accuracy is
observed among logistic, GBM, XGB and SVM (0.84) then KNN and RF (0.83) and finally GNB and DT
(0.77). On the other hand for F1_scores logistic had highest (0.74), GBM and KNN (0.73), XGBM (0.72),
SVM and GNB (0.71), RF (0.70) and finally DT (0.65).

Table 6. Machine learning model Performance for the upsampled data.

Number Model Precision Recall F1_scores Accuracy
0 Logistic 0.7775 0.7776 0.7775 0.7775
1 GNB 0.7440 0.7436 0.7432 0.7433
2 RF 0.9493 0.9467 0.9462 0.9462
3 DT 0.9311 0.9250 0.9240 0.9242
4 SVM 0.8193 0.8192 0.8191 0.8191
5 KNN 0.8328 0.8250 0.8231 0.8240
6 GBM 0.7921 0.7922 0.7922 0.7922
7 XGB 0.7874 0.7874 0.7873 0.7873

Table 6 shows machine learning models and their respective precision scores, recall scores,
F1_scores and accuracy on the upsampled data. RF leads with the highest accuracy of 0.95 followed by
DT(0.92), KNN (0.82), SVM (0.82), GBM, XGB (0.79), logistic regression (0.78) and lastly GNB (0.74).
However, upon hyper-parameter tuning, GBM and XGB raise their respective accuracy. Nevertheless,
RF showed the highest precision score, recall score, F1_score and accuracy hence can be taken as the
optimal model in this instance. Here, RF are more robust than other classifiers. This could be explained
by its being an ensemble algorithm. The findings are in corroboration with Han et al. [9] who assert
that ensemble algorithms tend to perform better than stand-alone algorithms. However, GBM and
XGB gave lower accuracy than the DT classifier unlike expectation. Hence, we could conclude that for
this kind of upsampled data, ensemble trees by bagging tends to perform better than by boosting for
the kind of data under this study.

Table 7 shows machine learning models and their respective precision scores, recall scores,
F1_scores and accuracy on the real down sampled data. The highest accuracy score was observed in
XGB (0.87), then GBM (0.86), logistic regression (0.83), KNN, GNB and RF (0.82) and Finally decision
tree (0.72). For F1_scores, XGB has (0.87), then GBM (0.86), logistic (0.83), KNN, GNB and RF (0.82) and
Finally decision tree (0.72). In the case of downsampled data XGB and GBM showed higher accuracy
than other models (0.87 and 0.86 respectively). Both of them are tree based ensemble learners which are
assembled by boosting. This allows us to construe that for the kind of data used, tree-based learners
ensemble by boosting are more robust than others. This corroborates with Golden et al. [8] who have
found GBM to perform better than other algorithms.

Despite being the same data source, the learners had different metrics for upsampled and
downsampled data. The accuracy for the learners when the data was upsampled, vis a vi when

Table 7. Machine learning model Performance for the down sampled data.

Number Model Precision Recall F1_scores Accuracy
0 Logistic 0.8292 0.8314 0.8297 0.8303
1 GNB 0.8200 0.8216 0.8205 0.8214
2 RF 0.8207 0.8232 0.8219 0.8214
3 DT 0.7210 0.7202 0.7205 0.7232
4 SVM 0.8125 0.8150 0.8121 0.8125
5 KNN 0.8207 0.8232 0.8209 0.8214
6 GBM 0.8558 0.8576 0.8564 0.8571
7 XGB 0.8649 0.8674 0.8655 0.8661
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downsampled were: logistic (0.78, 0.83), GNB (0.74, 0.82), RF (0.95, 0.82), DT (0.92, 0,72), SVM (0.82,
0.81), KNN (0.82, 0.82), GBM (0.79, 0.86), XGB (0.78, 0.87). This could imply that when the data is
downsampled learners presume different distributions from when upsampled, despite being the same
data. However, SVM and KNN do not seem to show remarkable differences in accuracy when the data
is either downsampled or upsampled.

4.3. Area under Receiver Operating Characteristic Curves (AUCs) and Confusion Matrices

Table 8. Confusion Matrices

Number Model TP TN FP FN
0 Logistic 164 154 40 51
1 GNB 159 191 45 14
2 RF 190 201 14 4
3 DT 170 204 34 1
4 SVM 158 191 46 14
5 KNN 159 191 45 14
6 GBM 169 166 35 37
7 XGB 179 190 25 15

Figure 2. Areas under receiver operating characteristics curves (AUCs)

Upon imputing the optimized hyper-parameters, the models were retrained and AUCs and
confusion matrices for the various models were drawn. Table 8 shows values of true positives TP, TN,
FP and FN that were extracted from the confusion matrices for various models. In giving TP, RF leads
(190), then XGB (179), DT (170), GBM (169), Logistic regression (164), GNB (159) and KNN gives the
least (150). This means that it is more likely for a RF model to predict that one would take up insurance
cover and that person does take up cover compared to other models. In TN, DT has the highest (204),
then RF (201), GNB, KNN (191), XGB (190), GBM (168) and lastly (154). In giving FN, DT has the
lowest (1), then RF (4), KNN (14), GNB (14), XGB (15), GBM (37) and logistic regression (51). On FP,
RF had the lowest (14), followed by XGB (25), decision tree (34), GBM (35), logistic regression (40)
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lastly KNN and GNB (both 45). This implies that RF are least likely to make type II errors in predicting
uptake compared with other classifiers. RF seems to be the most robust since it has the highest true
positives and the least false positives. Nevertheless, other tree based classifiers seem to do well in the
data.

Moreover, Figure 2 shows areas under receiver operating characteristics curves (AUCs) for the
various models. The AUCs under the various models were: 0.8481 for logistic regression, 0.8914 for
K Nearest Neighbors classifier, 0.8220 for GNB, 0.8940 for SVM, 0.8962 for decision tree,0.9866 for
RF, 0.9300 for XGB (referred to as XGBOOST on the figure), and 0.8823 for GBM. Based on AUCs, RF
performed best compared to all other models since it gave the highest area under receiver operating
characteristics curve, followed by XGB classifier. This corroborates Blanco et al. [4] who found RF to
be a stronger model in prediction of the efficiency of the fullerene derivatives-based kind of ternary
organic solar cells. This also implies that tree-based models tend to perform better than others for this
kind of data, since both RF and XGB are tree-based models.

4.4. Feature importance

Feature importance in this study has been employed to get an understanding into how the
features contribute to model predictions. As previously proposed by Casalicchio et al. [5], the effect
of features, their respective contributions as well as their respective attributions; describe how and,
to some level, the extent to which each feature contributes to the prediction of the model. Further, as
Pesantez-Narvaez et al. [16] adds, the contribution of each feature to the final outcome as given by
the feature importance is based on Gini impurity. Feature importance was taken in order to identify
important features that contribute to the greatest extent to the prediction of uptake. This enabled
analysis and comparison of the feature importance across various observations in the sampled dataset.
The feature importance was obtained from the RF model and since RF is a tree based model, it gives
the extent to which each feature contributes to reducing the weighted Gini impurity.

Table 9. Feature importance.

Rank Feature Importance
1 Having a bank product 0.191
2 Wealth Quintile 0.111
3 Sub Region 0.109
4 Education 0.088
5 Age Group 0.068
6 Most Trusted provider 0.051
7 Nature of residence 0.050
8 Numeracy 0.048
9 Household size 0.047
10 Marital status 0.041
11 2nd Most Trusted provider 0.039
12 Ownership of a phone 0.038
13 Having a set Emergency fund 0.033
14 Having electricity as a light source 0.031
15 Gender 0.030
16 Urban vs Rural 0.026
17 Being a youth 0.026
18 Having a smartphone 0.023

Based on the AUCs and Confusion Matrices, tree-based models seemed to be more robust in
uptake prediction. Moreover, RF showed the highest AUC and hence this model was used to extract
the importance of each feature in the uptake prediction. Table 9 shows the feature importance from the
RF model in predicting the insurance uptake. All the features show non-zero importance but their rank
from the most important to the least important is having a bank product, wealth quintile, subregion,
level of education, age, group, most trusted provider, nature of residence, numeracy, household size,
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marital status, second most trusted provider, ownership of a phone, having a set emergency fund,
having electricity as a light source, gender, nature of residential area whether it is urban or rural, being
a youth, and having a smartphone.

The result suggests that the most important factor is whether one has a bank product or not. This
implies that individuals who have a bank product tend to have higher uptake of insurance compared
to those who do not. This could also imply that many individuals who had a bank product also had an
insurance product. The second most important feature is wealth quintile. This implies that the material
wealth of an individual plays critical role since the wealthier and individual the higher would be the
ability to pay for the insurance premiums. The ability to pay is a great factor in determining uptake.
The subregion being the third factor could be construed to imply that the insurance products are not
evenly distributed nationally. Interestingly, being a youth and having a smartphone did not show
much importance in determining uptake. This is despite much of the population being young. This
could imply that the insurance products in the market are not appealing to the youths, or they could
be too expensive for them. More could be done on product engineering to make insurance products
more affordable and more appealing so that more of the young populace could benefit from insurance.

5. Conclusions and Recommendations

It could be construed that with the unbalanced data, performance was lower compared to
performance in the balanced data. This could mean that the data imbalance problem is a significant
contributor to poor model performance in insurance uptake prediction. Moreover, the learning metrics
improved when the data was balanced by either upsampling the minority class (uptake of insurance
for the case of data used) or downsampling majority class (non-uptake of insurance for the case of
data used). Therefore, alleviating data imbalance results in a more robust model in insurance uptake
prediction.

In the study, ensemble learners mostly tended to perform better than stand-alone algorithms. For
upsampled data, RF, which is assembled by bagging, performed better than other machine learning
classifiers that were considered. RF had the highest accuracy of 0.95. But for downsampled data GBM
and XGB, which are assembled by boosting, did better than the others. GBM and XGB had accuracy of
0.87 and 0.86 respectively. Therefore, ensemble learners could be said to be the most robust for this
kind of data. Moreover, RF, GBM and XGB are all tree based models, therefore tree based ensemble
machine learning models could be said to be robust for insurance uptake prediction.

Despite being the same data source, the learners had different metrics for upsampled and
downsampled data. It could therefore be concluded that when the data was downsampled learners
presume that they were drawn to different distributions from when they were upsampled, despite
being the same data. However, SVM and KNN did not seem to show remarkable differences in
accuracy when the data is either downsampled or upsampled. Further study could be done to find
out if this lack of remarkable difference came by chance or if it stems from the nature of the classifiers.
The most important feature in predicting uptake is having a bank product. This could imply that
bancassurance is a viable channel or distribution of insurance products since the banked population
are more likely to take up insurance. The wealth quintile was the second most important factor in the
rank of feature importance. This therefore calls for insurance providers to come up with innovative
products that would be affordable to the majority of the population. Spatial characteristics were the
third most important factor. This could imply the distribution of insurance is not even in the nation. A
further look at this could be done with multilevel modelling to establish the extent of the different
levels of variation in the data.

In recommending improvement from here, we suggest studies be done on specific lines of
insurance with machine learning models that we have herein found to be most robust, particularly
Random Forests.
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