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Abstract: Biological systems are highly regulated. They are also highly resistant to sudden 

perturbations enabling them to maintain the dynamic equilibrium essential for sustenance of life.  This 

robustness is conferred by regulatory mechanisms that influence the activity of enzymes/proteins within 

their cellular context, to adapt to changing environmental conditions. However, the initial rules 

governing the study of enzyme kinetics were tested and implemented for mostly cytosolic enzyme 

systems that were easy to isolate and/or recombinantly express. Moreover, these enzymes lacked 

complex regulatory modalities. Now, with academic labs and pharmaceutical companies turning their 

attention to more complex systems (for instance, multi-protein complexes, oligomeric assemblies, 

membrane proteins and post-translationally modified proteins), the initial axioms defined by Michaelis-

Menten (MM) kinetics are rendered inadequate and the development of a new kind of kinetic analysis 

to study these systems is required. The current review strives to present an overview of enzyme kinetic 

mechanisms that are atypical and, oftentimes, do not conform to the classical MM kinetics. Further, it 

presents initial ideas on the design and analysis of experiments in early drug-discovery for such systems, 

to enable effective screening and characterisation of small-molecule inhibitors with desirable 

physiological outcomes.  

 

Abbreviations: MM-Michaelis-Menten; HTS-High-throughput screening; CRC-concentration 

response curves; MoA- Mechanism of Action; MWC- Monod-Wyman-Changeux; SAR-structure 

activity relationship; PAINS-Pan assay interfering compounds; MSS: Multiple stationary states; DRE-

Deterministic rate equations; CME-Chemical master equation; QSSA- Quasi steady state assumption; 

CYP- Cytochrome p450; FLA- Free ligand approximation; RSA- Reactant stationary assumption;  

 

Keywords: Non Michaelis-Menten Kinetics; High-throughput screening; allostery; cooperativity; 
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1. Introduction: 

Mechanistic enzymology plays a pivotal 

role in rational drug discovery efforts by 

providing critical insights into the nature of the 

target enzyme that is inhibited. Understanding 

the course of an enzyme-catalysed reaction in 

terms of the order of substrate binding, 

generation of intermediates and the release of 

products can help to conceptualise different 

types of inhibitor and to inform the design of 

screens to identify desired mechanisms. 

Furthermore, an enzyme molecule is an 

ensemble of dynamic conformations that can 

get locked into unique conformational 

subspaces when interacting with substrates, 

cofactors or inhibitors. Information on these 

conformational subpopulations, provided by 

mechanistic enzymological studies, will further 

guide the design principles for early drug 

discovery screening and characterization   

efforts, increasing the potential for success in 

identifying efficacious molecules with clearly 

differentiated mechanisms of action.   

Traditional kinetic studies carried out on 

enzymes have relied on the availability of the 

protein in substantial amounts. Before the 

advent of recombinant DNA (rDNA) 

technology, enzymes were purified from native 

sources like animal tissues, plant extracts or 

microbes. This resulted in purification of 

predominantly cytosolic proteins in miniscule 

quantities with significant batch-to-batch 

variation in both the yields and the behavior of 

enzymes. rDNA technology was introduced in 

1973 ushering in an era of heterologous 

protein/enzyme production1. Though rDNA 

technology helped solve the problems 

associated with the yield and behavioral 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2020                   doi:10.20944/preprints202010.0179.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202010.0179.v1
http://creativecommons.org/licenses/by/4.0/


variability of proteins purified across batches, it 

took a couple more decades to perfect the  

methodology for expressing complex 

macromolecular assemblies, post-

translationally modified variants, and 

membrane proteins. It was only in the 21st 

century that the latter classes of proteins, which 

are close mimics of the physiological form of 

an enzyme/protein in the reductionist sense, 

were successfully expressed and saw some 

success with purification (Figure 1).  

In parallel, there were only a limited 

number of substrate-to-product transitions that 

could be assayed in the early 20th century. 

rDNA technology also contributed towards 

overcoming this bottleneck by speeding-up the 

institution of coupled assays. Furthermore, 

aspects of labelling and derivatization, enabling 

the detection of product formation or substrate 

consumption in an enzymatic reaction, 

accelerated in the last two decades of the 20th 

century facilitating the assaying of a broader 

subset of enzymes. 

However, the principles that govern the 

understanding of enzyme kinetics were 

developed in the early 20th century based on 

studies performed predominantly with 

monomeric/dimeric enzymes that could be 

easily isolated and purified at the time. The 

researchers were also limited in studying only 

those enzymes for which a substrate to product 

transition could be assayed. These enzymes 

lacked complex regulatory behavior leading to 

the institution of enzyme kinetic methodologies 

with overly simplified assumptions and 

approximations guiding the initial axioms. As 

the 21st century progressed and researchers 

were successful in recombinantly expressing, 

purifying and studying complex oligomeric 

assemblies of post-translationally modified 

proteins widely, they repeatedly found that the 

traditional treatment of enzyme kinetics was 

inadequate to model the observed behavior of 

these enzyme systems (Figure 1). Even an old 

survey of enzymes studied during the period 

1965–1976 showed that more than 800 

enzymes displayed highly complex curves not 

compatible with the traditional Michaelis-

Menten (MM) hyperbola2. Although no recent 

survey exists, it is expected that the number of 

such enzymes would have increased with the 

ability to study more complicated enzyme 

systems3–7. Furthermore, traditionally ingrained 

beliefs such as enzyme catalysis decoupled  

Figure 1. Timescale of protein purification and the resultant elucidation of kinetic behaviour. Late 19th century and most of 
20th century signified a period where predominantly monomeric/dimeric soluble proteins were studied and the axioms of MM 
kinetics was perfected. However, it was only in the 21st century that complex macromolecular assemblies were studied and 
instances of non-MM behaviour became more common. The curves were simulated with the respective equations representing 
the models. The Km and Vmax were arbitrarily fixed at 2 µM and 10 µM min-1, respectively.  
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from protein dynamics and diffusion of 

reactants in solution are challenged by new 

findings8. This has led to a resurgence of 

interest in orthogonal approaches like full time-

course analysis using simulations and 

molecular dynamics to gain a complete 

understanding of enzyme kinetics9,10.  

The current review summarizes the basic 

Michaelis-Menten (MM) assumptions, 

scenarios where they break down and suggests 

initial approaches that would allow the 

assessment of such non-Michaelis-Menten 

(non-MM) behavior. This will serve to guide 

and inform approaches for effective high-

throughput screening (HTS) and subsequent 

characterization of the hits in early drug 

discovery.  

 

2. Michaelis-Menten assumptions and 

instances where they break-down:    

Leonor Michaelis and Maud Menten, 

expanding on the quantitative methods 

pioneered by Victor Henri, are credited with 

instituting the principles that govern our 

understanding of enzyme kinetics11. To extract 

kinetic parameters from time-course 

measurements, Michaelis and Menten derived 

the rate of product formation from initial 

velocity data (where less than 5% of substrate 

is converted to product). Although they had 

performed full time-course analysis of substrate 

to product conversion in their work on 

invertase12, they are extensively known for their 

analysis of the initial velocity data. They plotted 

the rate (extracted from initial velocity phase) 

as a function of substrate concentration, fitted 

that to a single-site binding hyperbola and 

extracted the kinetic parameters kcat and Ks (k-

1/k1), respectively. Derivation of the equation 

for the single site binding hyperbola, popularly 

known as the MM equation (Equation 1 below), 

was undertaken for multiple turnover enzymes 

and involved several approximations and 

assumptions13,14. Differential equations for the 

four species (E, S, P and ES), in the simple 

kinetic scheme shown below, were solved using 

analytical methods and quasi steady state (QSS) 

approximation to obtain equation 1  

 

 

 

 

𝑣 =
𝑉𝑚𝑎𝑥 × [𝑆]

𝐾𝑚 + [𝑆]
… … … … . . (1) 

 

The assumptions involved in deriving the 

above equations are: (1) Enzyme is a catalyst 

and is not consumed in the reaction, (2) enzyme 

and substrate react rapidly to form the enzyme-

substrate complex, (3) only a single substrate 

and a single enzyme-substrate complex are 

involved and the enzyme-substrate complex 

breaks down directly to form free enzyme and 

product, and (4) enzyme, substrate and enzyme-

substrate complex are at equilibrium, i.e., the 

rate at which ES dissociates to E and S is much 

faster than the rate at which ES breaks down to 

form E + P (This was revised by George 

Edward Briggs and John Burdon 

Sanderson Haldane, who treated the system as 

“quasi-steady state” where the ES complex 

accumulates to a constant concentration under 

initial velocity conditions. Under such 

conditions, the Ks (k-1/k1) term changes to   Km  

(k-1+k2/k1), the latter being a pseudo 

equilibrium constant).  To achieve the above 

specified conditions, it was essential to 

maintain the substrate in far excess of the 

enzyme employed in an assay so that the free 

substrate concentration is equal to the total 

substrate concentration (in a typical assay 

setup, the enzyme is in nanomolar range while 

the substrate is in micromolar range). This 

assumption is called free ligand approximation 

(FLA) (also known as reactant stationary 

assumption). Additionally, this condition 

ensures that the QSS approximation is met, 

whereby the concentration of the ES complex 

reaches a steady state. This is usually achieved 

under conditions when s0/e0>100 15 or e0/s0 << 

1 16 or e0/Km <<1 17,18, where s0 and e0 are initial 

substrate and initial enzyme concentrations, 

respectively. Schnell19 has beautifully argued 

that the reactant stationary assumption (RSA) is 

distinct from the steady state assumption (SSA) 

and the former is the necessary condition for the 

validity of the MM equation. He defines RSA 

as the implicit assumption in-built in the SSA 

that there is an initial transient during which the 

substrate concentration remains unchanged and 

is equal to the initial substrate concentration, as 

the concentration of the ES complex 

increases19. An outcome of the assumptions, 

which restrict the observations to the initial 

transient, is that the product formed as a 
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function of time and enzyme concentration is 

usually linear.  

In many instances the MM assumption 

breaks down, especially with increasing 

complexity of the system under study20,21. In 

this review, non-Michaelis Menten kinetics is 

an umbrella term used to denote enzyme 

systems whose kinetics do not lend themselves 

to analysis within MM assumptions elaborated 

above22–25. In other words, the term non-MM is 

exclusively used  

 

BOX1: Enzymological terms 

 

Rapid-equilibrium Assumption: This assumption implies that the rates of complex formation 

(E+S=ES) and complex dissociation (ES=E+S) are faster than the rate at which ES  breaks down to 

form product/s (ES=E+P).  Thus E+S and ES are treated as being in a thermodynamic equilibrium. 

Quasi Steady-state Assumption: The concentration of the Enzyme-Substrate complex (ES) remains 

constant under initial velocity conditions. Stated slightly differently, the ES intermediate is consumed ( 

ES=E+P; ES=E+S) as quickly as it is generated (E+S=ES) in an Uni-Uni enzyme reaction. 

Initial velocity conditions: The rate of an enzymatic reaction at its inception at well-defined 

concentration of substrates and products. Practically, initial velocity conditions represent velocity 

measured at less than 5 % substrate to product conversion.  

Free ligand approximation/ Reactant stationary assumption: The free substrate concentration is close 

to the total substrate concentration in the reaction vial. This assumption is valid only if the total enzyme 

concentration is significantly below the Km of the enzyme for its substrate. 

Uni-Uni/Bi-Uni/Bi-Bi: The notation/s are used to show enzyme-catalysed reactions that involve a 

single or more than one kinetically significant substrate and product species (reactancy), respectively. 

Uni signifies one and Bi signifies two with the first term signifying the substrate species and the second 

term signifying the product species.  

Positive/Negative homotropic cooperativity: A prior ligand association event altering the affinity of a 

subsequent binding event for the same ligand, either positively or negatively, in a, predominantly, 

multimeric organization.   

Distributive mechanism: This refers to an enzyme catalyzed reaction where, for a substrate with 

multiple modification sites or multiple consecutive chemical alterations, every catalytic cycle results in 

dissociation and reassociation of the substrate/s and intermediate/s.  

 Processive mechanism: In an enzyme catalyzed reaction where multiple rounds of catalysis happens 

on a substrate without releasing it at each intermediate stage. Processivity is quantified by the number 

of cycles of catalysis that happens prior to complex dissociation.  

Tight binding conditions: Conditions that signify significant depletion of the free inhibitor whereby the 

total inhibitor concentration cannot be approximated as being equal to the free inhibitor concentration. 

This is seen when the dissociation constant of the inhibitor is very close to (either equal or less than) 

the total concentration of enzyme in the assay.  

 

to represent enzyme kinetic systems that are 

complex and require increased mathematics 

than that used to model the reaction of, for 

example, invertase in the early days of classical 

MM theory. A few examples of systems that 

can be modelled as non-MM are enumerated 

here. Some of them will be elaborated below 

under individual headings. (1) Self-catalyzing 

enzymes are a prominent instance where the 

MM assumption breaks down because the 

substrate cannot be maintained in far excess of 

the enzyme (enzyme is the substrate) apart from 

the fact that enzyme is consumed in the 

reaction. (2) Enzymes displaying complex 

regulatory modalities such heterotropic 

allosteric regulation (activation and inhibition) 

and homotropic positive or negative 

cooperativity usually do not follow MM 
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kinetics because of linked equilibria (some 

exceptions to this exist). (3) Free-ligand 

approximation usually breaks down in cases 

where the Km of the substrate is less than the 

total enzyme employed in an assay. This also 

holds true for tight-binding inhibitors whose Ki 

is less than the enzyme concentration used in 

the assay. (4) Covalent irreversible inhibitors, 

where inhibition is time-dependent, and the 

fraction of active enzyme is depleted 

subsequent to each catalytic cycle. (5) 

Intracellular kinetics and interfacial enzyme 

catalysis are constrained by crowding effects 

(former) and diffusion in 2-dimensions (latter). 

(6) Single molecule kinetics because of its non-

deterministic stochastic nature. (7) Enzymes 

with processive mechanism with more than one 

intermediary complex. (8) Enzymes with 

distributive mechanism that have equal 

likelihood of accepting the initial substrate or 

the altered substrate depending on their 

respective affinities and the law of mass action. 

(9) Enzymes showing substrate inhibition 

because of the likelihood of more than one 

unique enzyme-substrate complex. (10) Multi-

substrate enzyme mechanisms, especially ones 

that follow ordered mechanism. (11) Single-

turnover enzyme because of enzyme depletion.  

Finally, as an important case pertinent to drug 

discovery, (12) cytochrome P450 family of 

enzymes that are involved in oxidation and 

clearance of xenobiotics.  

 

3. MM kinetics and its limitations in early 

drug discovery  

Early drug discovery involves hit 

identification, hit-validation and an iterative 

process of chemical optimization as a function 

of desired biochemical and/or physiological 

outcome. HTS, which is often the first step in 

the process, is a multidisciplinary exercise 

involving the screening of a large library of 

chemical molecules to identify 

pharmacophores/leads for an appropriate drug 

target. A strong biochemical design for HTS 

and subsequent hit validation/characterization 

exercise is important for identifying  hits that 

could be subsequently optimized in a Design 

Make Test Analyse (DMTA) Cycle26. It is well 

documented that effective HTS experimental 

design can enable the selective enrichment of 

small-molecules with a particular mode of 

action26–29 (Figure 2 A). Post HTS, 

concentration-response curves (CRC) are 

commonly used to validate the hits to assess and 

rank compound potency. The parameter IC50, 

obtained from a CRC and indicating the 

concentration of an inhibitor where the activity 

of the target protein is reduced by 50 %, is 

dependent on the concentration of substrate 

used in the assay and the affinity of the substrate 

for the enzyme (Km) in the case of linear 

inhibition. This relationship is well-known as 

the Cheng-Prusoff relationship and is different 

depending on the mechanism of inhibition30–32 

(Equation 2,3,4,5). 

 

Competitive 

              𝐼𝐶50 = 𝐾𝑖 (1 +
[𝑆]

𝐾𝑚
) … (2) 

 

If S=Km, IC50=2Ki; If S<< Km, IC50~ Ki; If S>> 

Km, IC50>> Ki 

 

Uncompetitive 

                   𝐼𝐶50 = 𝐾𝑖 (1 +
𝐾𝑚

[𝑆]
) … (3) 

 

If S=Km, IC50=2Ki; If S<< Km, IC50 >> Ki; If S>> 

Km, IC50~ Ki 

 

Pure non-competitive 

           𝐼𝐶50 = 𝐾𝑖 … (4) 

 

Unlike in equation (2) and (3), the 

relationship in (4) remains the same for [S]=Km 

or [S]>>Km or [S]<<Km. Further, in the above 

equations, it is assumed that the inhibitor 

dissociation constants to the free enzyme (Kia) 

or enzyme-substrate complex (Kib) are equal. In 

mixed-type inhibition, the Cheng-Prusoff 

relationship is as shown below 

 

Mixed-type 

         𝐼𝐶50 =
[𝑆] + 𝐾𝑚

[𝑆]
𝛼𝐾𝑖

+
𝐾𝑚
𝐾𝑖

… (5) 

Kia < Kib  or  Kia > Kib is determined by 

the magnitude of α. α is the factor that 
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modulates the affinity of the enzyme for the 

inhibitor as a function of substrate binding or 

vice versa. A large α value signifies that 

substrate and inhibitor binding are mutually 

exclusive events resembling competitive 

inhibition. On the other hand, an infinitesimally 

small α value signifies that substrate binding is 

conditional upon inhibitor binding or vice-versa 

resembling uncompetitive inhibition.  

In Figure 2 B, the Cheng-Prusoff 

relationship is plotted graphically for an 

inhibitor with Ki value of 10 nM at a 

hypothetically low enzyme concentration ( << 

10 nM). It would have to be appreciated that the 

relationship of IC50 values with [S]/Km remains 

qualitatively the same irrespective of the 

absolute value of Ki. Further, uncompetitive 

inhibitors are highly sensitive to minor 

perturbations in [S] concentrations below the 

Km of the enzyme, gaining in apparent potency 

as [S] approaches the Km. On the contrary, 

competitive inhibitors are highly sensitive to 

minor perturbations in [S] concentrations above 

the Km of the enzyme, losing apparent effective 

potency linearly for [S] concentration increase 

above Km. For non-competitive inhibitors, the 

potency remains unchanged as a function of 

substrate concentration change for α=1, while it 

increases or decreases non-linearly for α<1 or 

α>1, respectively 33. 

The Cheng-Prusoff relationship 

changes when the inhibitor Ki value is equal to 

or less than half the enzyme concentration used 

in the assay. Here, IC50 becomes dependent on 

the enzyme concentration too31–34 (equation 

6,7,8). This is commonly known as the tight-

binding limit (TBL) and is discussed 

extensively in section 4.3 as a special case of 

non-MM kinetics.  

 

Competitive 

 𝐼𝐶50 = 𝐾𝑖
𝑎𝑝𝑝

+
[𝐸𝑡]

2
;      𝐾𝑖

𝑎𝑝𝑝

= 𝐾𝑖 (1 +
[𝑆]

𝐾𝑚
) … (6) 

  

Uncompetitive 

   𝐼𝐶50 = 𝐾𝑖
𝑎𝑝𝑝

+
[𝐸𝑡]

2
;          𝐾𝑖

𝑎𝑝𝑝

= 𝐾𝑖 (1 +
𝐾𝑚

[𝑆]
) … (7) 

Pure non-competitive 

𝐼𝐶50 = 𝐾𝑖
𝑎𝑝𝑝

+
[𝐸𝑡]

2
;     𝐾𝑖

𝑎𝑝𝑝
= 𝐾𝑖 … (8) 

    

In the above equations, it is assumed 

that the inhibitor dissociation constants to free 

enzyme (Kia) or enzyme-substrate complex 

(Kib) are of the same magnitude. Mixed 

inhibition, where Kia < Kib  or  Kia > Kib, is not 

considered here. 

  Hence, depending on the mechanism of 

action of the inhibitor, the apparent potency can 

Figure 2: Biochemical design of High-throughput screening leads to enrichment of compounds with different modalities of 

inhibition.  (A) At saturating substrate, competitive inhibitors would be underrepresented in the hits obtained, whereas 

uncompetitive and non-competitive inhibitors could be enriched. At subsaturating substrate, inhibitors with competitive, 

uncompetitive and non-competitive inhibition modalities would be equally likely to get enriched. (B) IC50 values as a function of 

substrate concentration for different modalities of inhibition. The plot is generated for an arbitrary Ki value of 10 and a 

representation of x-axis two log units about the Km ,where IC50 and Ki values are related by Cheng-Prusoff equation30. 
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vary considerably depending on how a HTS 

assay is designed. For monosubstrate reactions, 

a screening exercise carried out at the Km of the 

substrate for the enzyme would lead to the 

enrichment of small-molecule binders that 

could be either competitive, non-competitive, 

uncompetitive or mixed (Figure 2 A and B). 

However, the same exercise carried out at a 

substrate concentration that is 10 times the Km 

would preferentially enrich uncompetitive and 

non-competitive inhibitors (Figure 2 A and B). 

Choosing the right substrate concentration and 

experimental design becomes more 

complicated when bisubstrate enzymes are 

involved35.  However, HTS exercises and 

subsequent characterization stop short of efforts 

to determine balanced conditions when faced 

with enzymes that show complex regulations 

and non-MM kinetics. That is because 

searching for optimal conditions may be non-

trivial given the current state of knowledge on 

the non-MM kinetics vis-à-vis early drug 

discovery. There are no well-defined guidelines 

for defining the order of binding of inhibitors 

vis-à-vis substrate for these systems and this 

review does not aspire to serve as a step-by-step 

guide to address those lacunae. However, it is 

an attempt at presenting a select set of kinetic 

behaviours that could be classed as non-MM, 

and provide some initial considerations for 

design of a HTS exercise and subsequent 

mechanism of action (MoA) studies in such 

situations.   

 

4. Selective examples of enzymes showing 

non-MM kinetics 

 

4.1. Self-catalyzing or auto-modifying 

enzymes:  

4.1.1. Introduction: Self-catalyzing enzymes 

are those that act on themselves. Self-catalyzing 

enzymes can operate in either a positive 

feedback loop or a negative feedback loop 

(Figure 3). In positive feedback, self-catalysis 

leads to activation as is demonstrated for 

zymogen36 and certain kinases37,38. In negative 

feedback loops, the enzymes show inactivation 

as a result of self-catalysis (Figure 3). The latter 

is commonly seen in a few kinases that self-

phosphorylate39 and poly ADP-ribosylating 

enzymes such as PARP1 and PARP240. In the 

case of self-catalyzing enzymes, the catalyst 

binds a cofactor and transfers a group from the 

latter onto itself. In the case of kinases, the 

cofactor is ATP and for PARP1/2, it is NAD+. 

The transfer could be in cis- (unimolecular or 

intramolecular) or in trans- (bimolecular or 

intermolecular) or a combination of both, 

though in trans mechanisms have been more 

extensively characterized. An exception to this 

generalization is PARP1, where the 

unimolecular versus bimolecular self-catalysis 

debate is still unresolved with proof for and 

against both40. Self-modification can lead to 

changes in stability of protein tertiary or 

quaternary structure or can affect the 

conformational isomerism of the protein41. All 

self-catalyzing enzymes fall under the category 

of non-MM enzymes since the enzyme acts as 

the substrate and hence, cannot be at a 

concentration lower than that of substrate in the 

assay mix. Furthermore, with each round of 

catalysis, the concentration of a unique 

unaltered enzyme species also decreases as is 

usually the case with substrate. Depending on 

several parameters such as rates and 

equilibrium constants for the various 

intermediates, the time courses would become 

non-linear even within conditions of initial 

velocity. This can be quickly assessed by 

employing a Selwyn’s test42. The non-linear 

progress curves would lead to difficulty in 

estimating kinetic parameters because of 

constantly changing enzyme (a.k.a. substrate) 

concentration, the possibility of undesirable 

interactions and population of several 

intermediates apart from and in addition to the 

naïve ES complex. Deterministic curves 

usually have  sigmoidal shapes that are 

indicative of non-MM kinetics43. Further, an 

autocatalysis-induced activated or inhibited 

state gives rise to heterogeneous population of 

protein subspecies, with variable catalytic 

fitness. This complicates the landscape for 

estimation of association and dissociation rate 

constants and usually results in ensemble 

averaged estimates that are grossly inaccurate.  

4.1.2. Self-catalyzing enzymes and approaches 

in drug discovery: Carrying out HTS and MoA 

studies with self-catalysing enzymes is a 

complicated and nontrivial exercise  (Table 1). 

Heterogeneity in protein population arising due 

to self-modification is hardly treated explicitly, 

and appropriate kinetic framework for analysis 

is lacking44. Further, there is paucity of 

literature correlating protein modifications with 

enzyme activity loss (inhibition) or gain 

(activation) that are quantified by Tsau plots41.  
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Often, the non-linearity in the initial time 

course measurement is either ignored or is 

approximated to linearity to make analysis 

simpler. However, this might lead to erroneous 

interpretation of the HTS, downstream 

validation and MoA outcomes for such 

enzymes. The first approach when dealing with 

auto-modifying enzymes, if there is a unique 

modification, is to establish that the protein 

modification (dependent variable) is a linear 

function of time (independent variable). This 

could be achieved by starting the reaction at 

several different protein concentrations and 

looking for possible differences in the overall 

 

Figure 3. Auto-catalysing enzymes (A) Auto inhibition of 
the enzyme PARP1/2 as a function of self PARylation and 
the resultant time-course behaviour resembling an initial 
burst and constant reduction in activity. (B) Auto-
activation is often seen in kinases and the time-courses 
look like an initial lag followed by continuous increasing 
slope.  

behaviour of the enzyme (apart from magnitude 

effects)41. Another approach is to perform a full 

time-course simulation with appropriately 

defined models to understand the reaction and 

approximate it to experimental outcome (Table 

1). Additionally, due to constant change in the 

concentration of catalytically competent 

enzyme as a result of self-activation or self-

inhibition, rate of catalysis, or its lack thereof, 

should be treated as an acceleration or 

deceleration term rather than as 

velocity45(Table 1). However, from a practical 

perspective, the most appropriate approach in 

treating non-MM self-catalysing enzymes is to 

ensure that under the conditions of analysis, the 

non-MM behaviour is  suppressed as best as can 

be realistically achieved and conditions should 

be optimized for them to behave as apparent 

MM enzymes. Auto-catalytic enzymes, apart 

from being involved in modifying themselves, 

in most cases have other accessory substrates 

on which they act to bring about their 

physiological outcome. This aspect must be 

integrated in designing the HTS and MoA 

studies for optimal outcome. For instance, 

although PARP1 is itself a major acceptor of 

PAR (poly ADP ribose) chains, other substrates 

for PARylation include core histones46,47.  It 

would have to be ensured that the HTS effort 

and subsequent MoA studies starts with a 

homogenous population of enzymes with 

identical modification status. For self-

activating enzymes, this could be achieved by 

pre-incubating the cofactor with the enzyme for 

a substantially long period before starting the 

HTS with the non-self-substrate. For self-

inhibitory enzymes, the assay should be 

initiated with cofactor under an excess of non-

self-substrate to prevent any self-catalysis 

mediated inactivation. However, the HTS 

initiative should be aware that this approach 

will decrease the probability of obtaining 

competitive inhibitors of the enzyme because of 

the unique HTS design with excess non-self 

substrate. Having said that, these steps will help 

to achieve the necessary resolution vis-à-vis 

inhibition of self catalysis versus non-self-

substrate catalysis. Furthermore, the affinity or 

potency term would be the apparent value of 

differential kon and koff for the 

activated/inhibited versus the unmodified 

enzyme. i.e., the inhibitor might have 

differential affinity (affecting Ki) and potency 

(affecting kcat of the enzyme for its cognate 

substrate normalized for differential activity) 

for the modified enzyme vis-à-vis the 

unmodified variant. Hence, if there is a time-

dependent element in the progress-curves of 

self-activating or inhibiting enzymes (i.e. burst 

or lag), it would have to be factored into the 

experimental design. Another approach, which 

could be exclusively employed for enzyme 

systems where the trans-model of self catalysis 

has been established, is to create an enzyme 

variant with active site mutant. This variant 

could be used as substrate with catalytic amount 

of the non-mutated enzyme to return the system 

to MM conditions (Table 1). The above 

suggested solutions are tailored to ensure that 

self-modifying enzymes behave analogously to 

those that follow MM kinetics, enabling the 

investigator to extract as much information as 
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possible, given the complexity (Table 1). In 

parallel, biophysical methods could be 

employed to assess inhibitor affinity for both 

the unmodified and modified form of the 

enzyme and light scattering based approaches 

used to ensure that the sample is homogenous 

as a function of modification. 

4.2. Allosteric regulation and homotropic 

cooperativity.  

4.2.1. Introduction: Biological systems have 

evolved to maintain network robustness to 

overcome random disruptions of metabolic 

gradients48. Allosteric regulation of protein 

molecules constitutes one of the many factors 

that confer this robustness to biological 

networks. Allosteric control is a mode of 

regulation whereby a ligand, which is either 

similar (homotropic) or dissimilar 

(heterotropic) vis-a-vis the substrate, binds to a 

site distal from the active site and modulates the 

activity at the latter (Figure 4 A). As we will see 

below, the distal site could be another active 

site on an oligomer. Further, allosteric sites can 

either be explicit or cryptic depending on 

whether they are visible in the apo-enzyme or 

are only revealed in the holo-enzyme co-

crystallized with the allosteric regulator49. Two 

distinct attributes define the interaction of an 

allosteric modulator with its receptor. The first 

one is the inherent affinity of the binding site on 

the receptor for the allosteric ligand and the 

second one is the way the binding gets 

transduced to another pocket and modulates the 

binding at the orthosteric site29.    

Traditionally, allosteric sites have not been 

typical targets of rational drug discovery efforts 

because of the perception that shallow or 

transient allosteric pockets can lead to low 

affinities of inhibitor interaction at that site 

versus active site binders. However, recently 

there has been a resurgence of interest in 

targeting allosteric pockets because of potential 

disadvantages in targeting orthosteric sites. For 

instance, targeting of orthosteric pockets could 

result in issues of selectivity in a family of 

homologous enzymes sharing high structural 

similarity in the binding pocket50. Further, the 

high intracellular concentration of substrate, 

which goes up in the vicinity of the enzyme in 

the event of inhibition, can make the task of 

targeting the substrate binding pockets quite 

daunting due to law of mass action and one 

would require inhibitors of extremely high 

potency. However, a prominent exception to 

this are allosteric inhibitors which are 

nevertheless competitive vis-à-vis substrate33. 

Thus, targeting allosteric sites is becoming 

increasingly attractive by helping achieve 

higher selectivity and lower toxicity. It can also 

serve to help in modulating the target rather 

than completely shutting it down as is the case 

with active site binding molecules (i.e. partial 

allosteric regulation can offer control with 

respect to efficacy in addition to potency)51. 

Several allosteric modulators have been 

successfully identified employing HTS52. A 

few examples include sulphonamide inhibitors 

of LIM2 kinases, urea based selective allosteric 

modulators for p38α MEP, dibenzodiazepine 

inhibitors for PAK1, urea and acrylodan based-

modulator of A172C p38alpha and so forth. 

Additionally, common drugs such as valium 

and benzodiazepines act by allosteric 

modulation of ionotropic GABA receptors52.  

Cooperativity is a special case of allostery 

that is seen frequently in homooligomeric 

organization of protein molecules (Figure 4 

B)29. It has been hypothesized that 

approximately 25% of protein with oligomeric 

organization show cooperativity 2,53–59(Figure 

5). Moreover, from the symmetry perspective, 

it has been demonstrated that most enzymes 

displaying cooperativity are packed into space 

groups with dihedral symmetry (Figure 4 C) 

Figure 4. (A) Heterotropic allostery in a monomeric 

enzyme. Binding of allosteric modulator renders the 

enzyme receptive to substrate molecules. Dark blue 

square and triangle: Substrate binding pocket in the 

absence of allosteric modulator and allosteric modulator 

binding pocket, respectively. Dark blue pentagon: 

Substrate binding pocket in the presence of allosteric 

modulator; red triangle: allosteric modulator; Green 

pentagon: substrate. (B) homotropic cooperativity in a 

tetrameric enzyme.  Cooperativity is a special case of 

allostery and is found both in monomeric and oligomeric 

enzymes. (C) Cooperativity is mostly seen in enzymes with 

dihedral symmetry (rather than circular symmetry unlike 

the way it is depicted in panel B for simplicity’s sake). The 

dimer symmetry axes are shown in dotted blue lines and 

the subunit interactions are shown in dotted red lines 
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(rather than circular symmetry as depicted in 

the schematic of Figure 4 B for simplicity’s 

sake). This is attributed to the network of 

subunit cross-talk in dihedral symmetry that is 

absent in organisations with circular 

symmetry60. However, it has been argued that 

some monomeric enzymes may also show non-

MM cooperativity61 resulting from substrate-

induced slow structural transition in enzymes 

resulting in non-attainment of equilibrium 

between E and ES on the timescale of 

catalysis61. Additionally, ligand-mediated 

subunit association/dissociation could also 

reveal itself as cooperative deterministic curves 

especially for enzymes with interfacial active 

site pockets56. Predominantly, cooperative  

Figure 5. Oligomeric enzymes showing cooperativity (A) 
Deoxy haemoglobin tetramer from Homo sapiens (B) 
Saccharomyces cerevisiae pyruvate kinase complexed 
with fructose-1,6-bisphosphate (C) Escherichia coli 
aspartate transcarbamoylase with CTP (D) rabbit muscle 
glyceraldehyde-3-phosphate dehydrogenase. The protein 
is shown in cartoon representation with the individual 
monomers coloured differently. The ligand moieties are 
shown as ball representation.  The figures were rendered 
using Open source PyMOL 

effects arise because of binding of similar 

ligands (homotropic) across a homooligomeric 

organization of protein subunits. Cooperativity 

in oligomeric systems is classified as either 

positive or negative. In positive cooperativity, 

binding of the first ligand increases the binding 

affinity of the second ligand and so on and so 

forth depending on the number of subunits that 

the homooligomeric assembly has (KD-initial>KD-

final). On the other hand, negative cooperativity 

leads to high-affinity of first ligand binding 

followed by sequential decreasing affinity for 

subsequent binding events (KD-initial<KD-final).  

Positive cooperative binding results in 

sigmoidal MM and Klotz curves (Figure 6 A & 

B) and non-linear Lineweaver-Burk (LB) plots 

bending upwards (Figure 6 C)62. On the other 

hand, negative cooperative effect could give 

rise to biphasic primary curves (Figure 6 A) and 

non-linear LB plots bending downwards58,63–65 

(Figure 6 C). Data fit to Equation 9 with Hill 

coefficient (n) greater than or less than 1 is 

indicative of positive cooperative effects or 

negative cooperative effects, respectively. 

Secondary replots such as Hill plot of log 

v/(Vmax-v) on the y-axis and log [S] on the x-

axis (Figure 6 D), Eadie-Scatchard plot of v/[S] 

on the y-axis and v on the x-axis (Figure 6 E), 

Hoffstee-Augustinsson plot of v on the y-axis 

and v/[S] on the x-axis and Hanes plot of [S]/v 

on the y-axis and [S] on the x-axis (Figure 6 F) 

all have diagnostic patterns indicative of either 

positive or negative cooperativity66. Despite 

having their own set of limitations67–69, 

diagnostic plots have proven quite useful in 

assessing cooperative effects (Figure 6). This is 

especially true for understanding the 

mechanism of inhibition of the inhibitor vis-à-

vis cooperative substrate/s (Figure S1) (Table 

1). 

𝑣 =  
𝑉𝑚𝑎𝑥 ×  [𝑆]𝑛

(𝐾0.5
𝑛 + [𝑆]𝑛)

… … … (9) 

where, K0.5, also referred to as Khalf, is the 

substrate concentration that results in reaction 

velocity that is 50% of Vmax. n is unitless and is 

known as the Hill coefficient. If n = 1, there is 

no cooperativity and the Hill equation is 

reduced to the MM equation. 

Cooperativity was originally detected 

and modelled for oxygen binding by 

haemoglobin70 (Figure 5 A). Subsequently, 

many enzymes and receptor molecules have 

been shown to be cooperative70. A few 

prominent examples of metabolic enzymes 

displaying cooperative binding (both positive 

and negative) for a substrate or cofactor include 

yeast pyruvate kinase71 (Figure 5 B), aspartate 

transcarbamoylase from Escherichia 

coli72(Figure 5 C), liver glucokinase, bovine 5’ 

nucleotidase, porcine fumarase and rabbit 

glyceraldehyde 3-phosphate dehydrogenase70 

(Figure 5 D). However, caution should be 

exercised in modelling cooperativity since it 

can be a consequence of artefactual enzyme 

activation by solvents/buffer components 

and/or entropy-driven non-specific interaction 
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of substrates with proteins73. A strong 

biological rationale should be presented for 

suspecting cooperativity. Increasing the 

parametric space without adequate rationale for 

doing so could result in overfitting the model. 

As John von Neumann has famously stated 

“With four parameters I can fit an elephant, 

and with five I can make him wiggle his 

trunk”74. However, once cooperativity is 

suspected and validated, the regulatory 

potential is very important to model since all 

cooperative effects have been shown to possess 

physiological significance. For instance, it has 

been traditionally believed that positive 

cooperativity gives rise to a multimeric 

receptor’s sharp response to ligand gradient 

changes while negative cooperativity gives a far 

more graded response. Further, recent literature 

suggests that under excess receptor 

concentration and high affinity of the first 

ligand binding event (K1), negative 

cooperativity can function as a ligand sink 

depleting the ligand. This can result in binary 

sensitivities to changes in ligand concentration 

by filtering out small stimuli while acting 

sharply at high concentration of the ligand 

beyond a threshold.  This is akin to the hook 

effect or the prozone effect seen in the case of 

antibody(Ab)-antigen (Ag) interactions, where, 

at either high concentration of the antibody 

(Ab) or the antigen (Ag), there will be no 

detection of the Ab-Ag complex formation. 

This can lead to complex system-level behavior 

with decisive bimodal switches that can give 

rise to bistability and oscillations75.  

4.2.2. Cooperative enzymes and approaches in 

drug discovery: Once an allosteric or 

cooperative modulator is identified, 

interpreting their mechanism of action can 

oftentimes be complicated by behaviours that 

do not conform to MM kinetics76. This is 

because of the following reasons that were not 

so well formulated at the time of derivation of 

Figure 6: Assessment of non-MM cooperative behaviour by secondary replots of the primary data. Each panel shows a 
schematic representation of the diagnostic plot for positive, negative and non-cooperative enzyme system. In each plot, the 
conventional MM behaviour is shown in olive-green line, the positive cooperative behaviour in blue line and the negative 
cooperative behaviour in black line, respectively. Note that heterogenous binding sites on the enzyme would behave the same 
as negative cooperative systems and would yield the same diagnostic plots. (A) Classical Michaelis-Menten plot, (B) MM plot 
with the X-axis shown in log scale (Klotz plot) (C) Lineweaver-Burk plot (D) Hill’s plot (E) Eadie-Scatchard plot and (F) Hanes 
plot. The plots were generated from the respective models and their transformations with Vmax kept invariable arbitrarily at 
10 µM. min-1 and Km at 2 µM.  
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the original MM assumptions (1) The enzyme 

molecule is an ensemble of different 

conformations and, as per the model put forth 

by Monod-Wyman-Changeux (MWC)77 and 

Koshland-Nemethy-Filmer (KNF)78, a 

conformational selection or induced fit event 

could be at play when allosteric interactions are 

involved77. This aspect becomes even more 

pertinent for allosteric enzymes as compared to 

non-allosteric ones because of the cross-talk 

inherent in the former that can modulate 

affinities and rates (linked equilibria). This ties 

the timescales of conformational fluctuations 

with the catalytic cycle79–84. (2) There are more 

than one unique intermediate in the catalytic 

pathway and the pathway can adopt different 

trajectories depending on the order of ligand 

interaction with the enzyme and ligand-

independent receptor conformational 

isomerism85. (3) Aspects like catalysis-

mediated bursts of superdiffusive enzyme 

motion that enhances their diffusivity over 

longer timescales8 can have important 

implications for modelling a system that has 

multiple interacting partners and intra-protein 

signal propagation events. This will result in 

non-equilibrium models that deviate 

substantially from the behaviour of a 

conventional MM enzyme. Additionally, it is 

important to appreciate the scaling in 

cooperative enzymes as compared to MM 

enzymes. It is customary to come across terms 

like binary and ternary to signify enzyme-

substrate/s complex for uni-uni enzymes and bi-

uni/bi-bi enzymes, respectively. However, the 

rate equations for any complex that are higher 

than ternary become increasingly complex and 

are hardly treated in conventional enzyme 

kinetics textbooks or literature86. For a 

tetrameric enzyme (the most common form of 

homooligomeric organization encountered), the 

least complex complexation in cooperative 

systems would be quinary complex for uni-uni 

reactions! This necessitates a completely 

different treatment of such systems21. 

There are multiple challenges associated 

with instituting a HTS and carrying out 

downstream validation that exclusively strives 

to identify cooperative compounds87,88. Apart 

from the traditional focus on potency, 

cooperativity could be useful in drug discovery 

from two different perspectives. Small-

molecules that show positive cooperativity will 

ensure that the receptor activity follows a two-

state model, i.e., the receptor is either active or 

inactive and the transition from the inactive to 

active state is sharp (sigmoidal primary curves). 

An analogy would be the on and off state of an 

electric switch that represents binary state. This 

prevents leaky activity and ensures complete 

inhibition with a sharp transition as a function 

of inhibitor concentration. Likewise, negative 

cooperative system ensures an extremely 

shallow gradient before inhibition takes effect 

(biphasic primary curves). Both these scenarios 

are optimum depending on whether one wants 

to effect complete shutdown or mild 

modulation of the receptor. Additionally, 

inhibitor binding can increase the positive or 

negative cooperativity of substrate binding to 

the receptor making the landscape of regulation 

rich and prone to exploitation vis-à-vis drug 

discovery. From the HTS and subsequent hit 

validation perspective, if cooperativity is the 

desired trait that needs selection, looking for 

non-tight binding inhibitors with Hill slope of 

more than one in the CRC curves from initial 

round of screening is the way forward89. 

However, care should be exercised since 

nuisance inhibitors can also show steep Hill 

slopes and overreliance on Hill slopes alone 

might lead to misleading interpretation of the 

data. Once it is ensured that the steep Hill slope 

is exclusively because of cooperativity, SAR-

mediated optimization could be used to 

improve their potency in the subsequent rounds. 

Another approach would be the simultaneous 

application of a selection criterion that weighs 

both potency and cooperativity90(Table 1). 

However, a distinction would have to be drawn 

between quantification of inhibitor binding to 

the protein target and the resulting response 

(inhibition) indicated by potency. Unlike in 

cases with MM kinetics, the Cheng-Prusoff 

relationship translating affinity of inhibitor 

binding (Ki) to potency (IC50) is not a simple 

relationship and is modulated by the 

cooperativity coefficient and slope factor, 

among other things91,92. A general equation that 

relates IC50 and Ki for competitive inhibition 

with cooperativity index K  (slope parameter of 

the agonist response curve) and n (slope 

parameter of the inhibitor curve) less than, 

equal to, or greater than unity is given by the 

following Equation 1092 
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𝐾𝑖 =
(𝐼𝐶50)𝑛

(1 +
[𝑆]𝐾

𝐾𝑚
)

=  
(𝐼𝐶50)𝑛

[1 + (
[𝑆]

𝐸𝐶50
)

𝐾

]

… … … . (10) 

where [S] is the concentration of the 

agonist against which the IC50 is 

determined, Km is the apparent equilibrium 

dissociation constant of the agonist  and Ki is 

the equilibrium dissociation constant of the 

antagonist for the receptor. 

On similar lines, for gradual 

modulation of a receptor, optimizing for 

inhibitors yielding shallow CRC curves with 

Hill slope of less than 0.7 is desirable89. Though 

selecting for this Hill coefficient will not be 

able to discriminate between differential 

affinity of the inhibitors for the different sites 

(“preexisting heterogeneity of binding sites”)66 

versus negative cooperativity, it is worthwhile 

to treat this explicitly. An extreme case of 

negative cooperativity is half-site reactivity. 

Inhibitors that can bind to one protomer of an 

oligomeric target molecule with half-site 

reactivity can shut down the other site 

preventing complete inhibition. This could 

potentially get revealed as partial inhibition51,93 

and is an important aspect to explore during 

inhibitor characterization (Table 1). If the 

cooperative behaviour is a result of oligomeric 

equilibration between different oligomeric 

forms as a result of either dilution or 

concentration of the stabilizing substrate, 

caution should be exercised in the way the 

enzyme is diluted into the final assay mix and 

on the way a constant substrate concentration is 

maintained. Experimental methods would have 

to be kept invariable for consistency of results 

and their eventual interpretation. Several 

studies have tried characterizing cooperativity 

in the same enzyme as a function of different 

substrates or cofactors. As a specific example, 

inhibitors of P2X7 receptors show positive 

cooperative binding to the target protein while 

metabolites like ATP and vanadate (phosphate 

mimic) show negative cooperative binding94. 

A detailed treatment of HTS 

considerations for identifying and treating 

allosteric ligands is presented in90,95. For MoA 

studies, Table 1 lists some guidelines in 

characterizing cooperative enzyme systems. 

Appreciating the regulatory landscape that 

could be exploited in cooperative systems and 

incorporating them up in HTS and subsequent 

characterization can pay rich dividends in drug 

discovery.   

4.3. Tight-binding and the free-ligand 

approximation: 

4.3.1. Substrate and Inhibitor tight-binding, 

an introduction: Tight binding behaviour is a 

special case of atypical kinetics with aspects 

resembling non Michaelis-Menten behaviour 

though it is most often not thought of in those 

terms. It occurs when the FLA, an important 

assumption in deriving the MM equation, 

becomes invalid and the total substrate is no 

longer equal to the free substrate. This can arise 

when the Km of the substrate is less than the total 

enzyme [ET] that can be employed in an assay 

to achieve effective signal to noise ratio. For 

such cases, the kinetic equation is derived 

without resorting to the FLA, is quadratic in 

nature96 and is commonly known as the 

Morrison equation (Equation 11).  

𝑣 =

𝑉𝑚𝑎𝑥
([𝐸𝑇]+[𝑆𝑇]+𝐾𝑚 )−√([𝐸𝑇]+[𝑆𝑇]+𝐾𝑚 )

2−4[𝐸𝑇][𝑆𝑇]

2[𝐸𝑇]
… (11)  

Where, v is the velocity, Vmax is the maximum 

velocity, ET is the total enzyme concentration, 

ST is the total substrate concentration and Km is 

the Michaelis-Menten constant assuming 

multiple-turnover steady-state conditions.   

The equation becomes the hyperbola 

described by Michaelis and Menten when the 

Km is larger than total enzyme. However, as the 

Km reduces vis-à-vis the total enzyme 

concentration, the curve edge becomes sharper 

and sharper (Figure 7 A). The higher the 

affinity with respect to the total enzyme 

concentration, the sharper the inflection when 

transitioning from the first order phase to the 

zero-order phase (vis-à-vis substrate) of the 

curve (Figure 7 A). When tight-binding is 

suspected, it is advisable to collect highly 

confluent data points around the point of 

inflection to fit the equation and obtain 

statistically reliable parameters. As a 

representative general case, the tight binding 

equation can always be employed irrespective 

of whether one suspects tight binding of 

substrate or otherwise because it avoids the 

assumption that the free ligand concentration is 

equal to the total ligand concentration. This will 
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also help estimate reasonably accurate Km 

values within the limitations of the errors 

introduced by the “double fitting approach”. 

The double fitting approach refers to linear 

regression (or non-linear regression) of 

progress curve data to extract initial velocity 

slopes and, subsequently, fitting the slope 

versus substrate concentration to MM or tight-

binding equation to extract kinetic parameters. 

From an HTS or MoA perspective, an accurate 

estimate of Km is critical to ensure that the IC50 

estimations for lead compounds are reliable and 

can shed light on the mechanism of inhibition 

when assessed as a function of substrate 

concentration (Figure 2 B). However, it would 

have to be appreciated that most enzymes have 

evolved for catalytic perfection over millions of 

years of evolutionary timescale and do not 

show tight-binding behaviour vis-à-vis their 

substrate because that would not be conducive 

for effective catalysis27.  

The term Tight-binding, especially in 

drug-discovery settings, is most often used in 

the context of inhibitors. Tight binding inhibitor 

behaviour, where the affinity of the hits 

approach the least feasible enzyme 

concentration that can be used for effective 

signal to noise in the assay, is usually seen in 

late stages of drug discovery. When the affinity 

of the inhibitor is higher (lower Ki value) than 

the total enzyme employed in an assay, the total 

inhibitor concentration is not the same as the 

free inhibitor concentration. The enzyme 

binding site acts as a ligand sink and titrates the 

latter. A typical trait displayed by such 

inhibitors are steep Hill slopes of a CRC curve 

due to stoichiometric binding. This means that 

the inhibition increases sharply over less than a 

10-fold concentration range of the inhibitor97. 

Note that, usually for classical inhibitors, the 

inhibition increases from 10% to 90% over an 

81-fold concentration range. However, one 

should exercise restraint in differentiating steep 

CRC arising out of tight binding from those that 

are the result of cooperative interactions or 

protein aggregators (See section above). 

Another method to assess tight-binding is by 

employing Ackermann-Potter plots ( plotting 

velocity as a function of ET, at various 

concentrations of I) that is used to distinguish 

reversible linear inhibition from  stoichiometric 

tight-binding inhibitor (under conditions where 

ET>>> Ki)34,98. For reversible inhibition, the 

slopes would decrease as a function of inhibitor 

concentration intersecting at the origin (Figure 

S2 A). However, for tight-binding inhibitors, 

the curves would appear parallel but would be 

Figure 7. Tight binding inhibition (A) Schematic representation of the shape of the substrate versus velocity plot as a function 
of relative value of enzyme concentration and affinity of the enzyme for the substrate. The family of curves were simulated 
using the Morrison’s equation at various dissociation constant of the substrate for the enzyme. (B) Schematic representation 
of the Strauss and Goldstein zone at various enzyme concentrations vis-à-vis inhibitor Ki. The zones are shown in different 
coloured hues. I is total molar concentration of inhibitor, i is fraction of total enzyme combined with inhibitor(EI/E or 1-v/Vmax) 
( Range, i will vary from 0 to 1 as v will vary from Vmax to 0), I’ is specific concentration of inhibitor expressed as I/K (where, K 
is the equilibrium constant), Δi is maximum acceptable error in I, E’ is specific concentration of the enzyme expressed as E/K. 
The panel was redrawn  from 99 
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non-linear curving to intersect at the origin 

(Figure S2 C). 

4.3.2 Tight-binding and approaches in drug 

discovery: Often, the term tight-binding is 

interchangeably used with high-affinity 

inhibitors. Care should be exercised in doing 

that since “tight-binding” behaviour can be 

shown by low affinity inhibitors at high protein 

concentration that is employed in an assay for 

obtaining effective signal/noise. Having said 

that, most often the enzyme concentration used 

in an assay is in the low nanomolar or 

picomolar range and hence, the terms can be 

used interchangeably after exercising proper 

caution. Estimation of IC50 values, which often 

forms the backbone of SAR-mediated 

medicinal chemistry efforts, must be carefully 

undertaken in circumstances where the Ki
 is 

lower than the total enzyme employed in an 

assay. This is because the IC50 value is a 

function of Ki
app and [ET]. The equation that 

defines the relationship between IC50 and Ki
app 

for all ratios of Ki
app/[ET] is shown in Equation 

6, 7, and 8 for different mechanisms of 

inhibition. Morrison’s quadratic equation, 

similar to the one employed for substrate, could 

also be employed here to get an exact estimate 

of Ki
app (Equation 12) (Table 1) 

𝑣𝑖 =

𝑣0

−([𝐼𝑇]−[𝐸𝑇]+𝐾𝑖
𝑎𝑝𝑝

)+√([𝐼𝑇]−[𝐸𝑇]+𝐾
𝑖
𝑎𝑝𝑝

)
2

−4[𝐸𝑇]𝐾
𝑖
𝑎𝑝𝑝

2[𝐸𝑇]
… (12)  

Where, vi is the inhibited rate, v0 is the 

uninhibited rate, [IT] is the total inhibitor 

concentration, [ET] is the total enzyme 

concentration and Ki
app is the apparent 

equilibrium dissociation constant of the 

inhibitor for the enzyme.  

Strauss and Goldstein define three 

distinct zones depending on the ratios of 

Ki
app/[ET] (Figure 7 B ). A value of Ki

app/[ET] > 

10 (Zone A) indicates that the 1/2 [ET] term 

becomes insignificant and, for all practical 

purposes, it is safe to assume that IC50 = Ki
app. 

A value of Ki
app/[ET] between 0.01 and 10 (Zone 

B) shows that both the Ki
app and [ET] terms in 

equations (5,6 and 7) contributes to the IC50 

estimation. Zone C represents values of 

Ki
app/[ET] <0.01 and the principal term that 

determines (and limits) the estimation of IC50 is 

the total enzyme concentration since the 

inhibitor is essentially titrating the enzyme in 

the absence of EI dissociation27,99. Researchers 

would have to incorporate this knowledge in 

their routine interpretation of IC50 values. 

Further, an enzyme concentration dependent 

IC50 estimation would be an essential exercise 

to undertake with tight binding inhibitors 

(Table 1). More accurately, researchers are 

encouraged to move “beyond” IC50 analysis and 

define parameters such as Ki
app, wherever 

possible (Table 1).  

The take home messages for HTS and 

MoA studies is to employ quadratic equation 

for substrate/inhibitor affinity estimations, 

understand the zonation defined by Strauss and 

Goldstein to weigh the parameters shown in 

equation (9) appropriately for IC50 estimations 

and to be aware that steep dose response curves 

could be possibly indicative of tight binding 

conditions (Table 1).  

4.4. Time-dependent covalent irreversible 

inhibitors: 

4.4.1. Introduction: Several marketed drugs 

are covalent irreversible inhibitors of their 

respective enzyme targets100. These inhibitors 

do not equilibrate with the enzyme rapidly on 

the timescale of the reaction (Figure S3 A). 

Thus, it is very difficult to use steady-state 

kinetic approaches to understand the MoA of 

such compounds. Hence, time-dependent 

covalent irreversible inhibition represents 

another unique case of atypical kinetics since: 

(1) full time-course measurements will be 

necessary to capture the time-dependence of 

inhibition (not the initial velocity alone), (2) ES 

or EI complex may not be the only unique 

intermediate but additional species such as E*-

I (where the hyphen represents covalent bond 

formation between E and I and asterisk 

represents inactivated enzyme, respectively) 

may be present and (3) active [E] will be 

depleted as a function of time not because of 

complexation but permanent inactivation. 

Covalent inhibitors are broadly classified as: (1) 

affinity labels that modify a functional group 

based on their activity or reactivity (activity 

refers to specific binding interactions followed 

by modification while reactivity refers to 

modification alone) (2) quiescent affinity 

labels, which are similar to affinity labels but 

bind and modify the enzyme in a two-step 

process and use off-pathway mechanism for 

activation or (3) mechanism-based inhibitors, 

which are modified by the enzyme using its 

catalytic mechanism to produce a reactive 
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species, resulting in covalent bond formation 

and enzyme inactivation27,101.  

4.4.2. Covalent inhibitors and approaches in 

drug discovery: Covalent inhibitors are either 

rationally designed or are identified by running 

an IC50 estimation exercise with and without 

preincubation of the inhibitor with the enzyme. 

A preincubation-dependent increase in potency 

is a strong indication of either reversible slow-

binding or irreversible covalent inhibition. 

Covalent irreversible inhibition can be 

understood graphically by seeing parallel lines 

on an Ackermann-Potter plot (Figure S2 B)34,98. 

As explained above, specific covalent 

inhibition involves two distinct steps, binding 

and inactivation. The binding event is implicit 

in the term KI (with uppercase I subscript) that 

should not be confused with Ki (with lowercase 

i subscript). Ki represents the reversible 

equilibrium constant between E and I while KI 

represents inhibitor concentration at half 

maximum rate of covalent bond formation. The 

inactivation step is the first order rate constant 

kinact, representing the rate constant at maximum 

rate of covalent bond formation between 

inhibitor and enzyme once all the enzyme is 

complexed to the inhibitor reversibly. KI can 

approximate to Ki when the first order rate 

constant for inactivation (kinact) <<< koff. 

However, care should be taken with such an 

interpretation because enzyme depletion occurs 

as a function of inactivation, however small the 

rate constant is. The overall enzyme 

inactivation, brought about by a covalent 

inhibitor, is thus expressed by a second order 

inactivation constant kinact/KI (akin to the 

specificity constant kcat/Km with the sole 

difference that the ET remains constant in the 

latter case). kinact/KI  can be estimated by the 

slope of the linear fit for one-step inhibition ( 

Figure S3B). However, individual kinact and KI 

values can be estimated from the fit of kobs 

versus [inhibitor] data to the two step model 

(Figure S3C) (equation 13). 

 

𝑘𝑜𝑏𝑠 =
𝑘𝑖𝑛𝑎𝑐𝑡 × [𝐼]

𝐾𝐼 + [𝐼]
… … … … . . (13) 

 

It is a common mispractice to employ IC50 

values as a metric to rank order covalent 

compounds. Given the variability of IC50 for 

covalent inhibitors (depending on time and 

other factors), it is important to use kinact/KI as a 

metric for covalent potency102,103 (Figure S3 B 

& C) (Table1). This metric is estimated by 

plotting the rate of transition of initial velocity 

to steady-state velocity (kobs) as a function of 

inhibitor concentration for both one step and 

two-step models (Figure S3 B and C)27. The 

magnitude of the implicit binding aspect in KI 

will be important in guiding SAR by providing 

a relative measure of on-target and off-target 

interaction strengths. Furthermore, a potent KI 

can help in driving lower, less frequent dosing, 

depending on the half-life of the target protein. 

This is because the strength of interaction, in 

most instances, correlates with potency (median 

effective concentration/dose) and efficacy (the 

ability of the small-molecule to elicit the 

desired pharmacological outcome)104. 

A HTS program instituted to detect and, 

later, rank covalent compounds must strive to 

estimate kinact/KI as a metric rather than relying 

on IC50. Where possible, complete dissection of 

the parameters like kinact, KI and Ki should be 

undertaken, including through the use of pre-

steady kinetic methods such as stopped-flow 

spectrophotometry105. These values for key 

compounds is critical for providing maximal 

information to aid molecular design, and also 

dose prediction. Explicit treatment of the 

above-mentioned non-MM behavioural aspects 

are essential for appropriate characterization of 

covalent inhibitors in a drug discovery program 

(Table 1). 

 

4.5. Interfacial enzyme catalysis: 

4.5.1. Introduction: With increasing 

complexity of the enzyme behavior, obtaining 

systems level understanding is essential to 

complement the output of reductionist in vitro 

studies106. Cellular enzyme kinetics is a special 

case of non-MM kinetics where the behavior of 

the enzyme is modulated, to a large extent, by 

compartmentalization, crowding and diffusion 

limited substrate-enzyme interactions107,108. 

These result in behaviors such as multiple 

stationary states (MSS), interfacial effects, 

threshold effects and temporal patterns, 

homeostatic regulation, amplification, and 

irreversible differentiation107–110. It has been 

demonstrated that, because of the cumulative 

effect of all the above discussed attributes, the 

kcat of the enzyme can be slower and the Km can 

be higher than what is obtained with in solution 

studies111,112. Further, Thiele modulus, which is 

the relationship that equates particle size with 

catalytic activity in heterogenous catalysis, 

starts influencing the behaviour of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2020                   doi:10.20944/preprints202010.0179.v1

https://doi.org/10.20944/preprints202010.0179.v1


compartmentalized or interfacial enzymes109.  

When the Thiele modulus (also represented by 

the Damköhler number) is large, internal 

diffusion usually limits the overall rate of 

reaction; when it is small, the surface reaction 

is usually rate-limiting.  Since most of the 

enzyme kinetic studies in the field of drug 

discovery are undertaken with the aim of 

understanding cellular and organismal effects 

of small-molecule inhibitors, the kinetics of the 

enzymes within the cellular milieu is equally 

relevant as their in vitro behaviour. A special 

case of intracellular enzymes are the interfacial 

enzymes, which are discussed in detail below.  

Enzymes that function at interfaces are 

involved in diverse biological functions such as 

inflammation, membrane modeling, 

endocytosis and signal transduction113. They 

are ubiquitous in vivo, and it has been 

speculated that almost half of all the proteins 

that are intracellular are interfacial in nature. 

They function within the two-dimensional 

matrix that they are embedded in rather than 

three-dimensional bulk solvents (Figure 8 A). 

Most interfacial enzymes undergo activation 

upon membrane binding. The extent of 

activation is determined by the strength of 

binding and mode of interaction (angular 

orientation and membrane insertion) of the 

enzyme with the interface114. Many of these 

interfacial enzymes/proteins that are activated 

upon membrane anchorage are important drug-

targets. A few examples include secreted 

phospholipase A2 (PLA2)114, 

lipoxygenase (LO)114, catechol-O-

methyltransferase115  and G-protein coupled 

receptors (GPCR)116.  

4.5.2. Interfacial enzyme kinetics and 

approaches in drug discovery: Despite their 

importance in drug discovery, analysis of their 

kinetic behaviour is not straightforward. This is 

mainly because the bulk-concentration of 

substrate or inhibitor concentration is just one 

of the parameter that influences the behaviour 

of interfacial enzyme. Rather than absolute 

concentrations, the fraction of the concentration 

that interacts with the lipid anchored interfacial 

enzyme system to form the Michaelis complex 

becomes more relevant. The reason interfacial 

systems behave in non-MM manner are two-

fold. The enzyme interacts with the bulk 

concentration of substrate to partition into the 

interface and, subsequently, the partitioned 

enzyme interacts with substrate that has partial 

mobility by virtue of being immobilised. This 

necessitates modelling several parameters for a 

complete description of the fraction of active 

enzyme in the interface, its residence time vis-

à-vis bulk solvent and the concentration of 

ligands the enzyme is capable of 

interacting117,118. Prominent examples include 

the kinetics of PLA2 and hydrolysis of insoluble 

cellulose119. However, there are several 

approaches espoused to understand their 

kinetics. It has been demonstrated that the 

enzyme, depending on its affinity for the 

vesicle, can either adopt a scooting mode of 

catalysis or a hopping mode of catalysis. The 

former indicates persistent anchoring at the 

interface of a vesicle for multiple rounds of 

catalysis while the latter indicates frequent 

exchange across aqueous media onto multiple 

vesicles.  It is recommended and argued that 

condition should be optimized to minimize 

hopping and constrain the system in the 

scooting mode for effective interpretation of 

catalysis118. Additionally, fluorescence-based 

equilibrium-binding methods have also been 

shown to assist in interpreting the kinetics of 

interfacial enzymes in scooting method120–122. 

Another approach, that has been pioneered by 

Edward Dennis, is called surface dilution 

kinetics and involves the dilution of the surface 

phospholipid concentration (in the case of 

PLA2) with an inert detergent and assess for 

linear decrease in the activity as a function of 

reduced interfacial concentration123. Recently, 

an inverse-MM approach is also suggested to 

readily model the kinetics of interfacial system. 

The inverse-MM approach is defined as the 

validity of QSS approximation when the 

concentration of the enzyme is far greater than 

the molar concentration of the substrate sites119.  

Any HTS effort that aims to discover 

hits against these interfacial enzymes would 

have to make sure that they are anchored to their 

interfaces mimicking their physiologically 

active state.  Attempts to truncate them for 

solubilization, with an eye on carrying out HTS 

and subsequent validation, may represent a 

form that is not relevant for the diseased state. 

Further, for effective interpretation of the 

potency of small molecules, the approaches 

espoused above should be used and efforts 

should be invested in running the assay at 

saturating enzyme and sub-saturating substrate 

concentrations in line with inverse-MM 

approach.  

Having presented cellular enzyme kinetics 

and interfacial enzyme kinetics as a 
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complementary approach enriching 

conventional reductionist approaches, it would 

have to be appreciated that implementation in 

routine drug discovery is lagging in spite of the 

technology and the theoretical framework 

guiding data analysis. A viable alternative, 

which has emerged and is proving to be a 

powerful approach towards the realization of 

the above stated objective, is the use of cell-

based assays as a system level reporter on 

inhibition of a target. This technique is gaining 

in popularity because of its ability to reflect on 

the ex-vivo system level behavior of inhibitor 

action on the target of interest coupled to the 

ease of its adaptation in the high-throughput 

plate-based format. Cell-based assay is an 

umbrella term coined for assay formats that 

measure outcomes as diverse as cell 

proliferation, toxicity, marker expression, 

signalling pathway activation, motility and 

morphological changes as a function of 

inhibitor administration124,125. Thus, the output 

from cell-based assays likely reports on the 

non-MM behaviour of intracellular or 

interfacial enzymes.  

 

4.6. Single molecule kinetics:  

4.6.1. Introduction: Enzyme molecules are 

highly dynamic. Bulk measurement studies, by 

virtue of reporting average effects, ignore the 

distributions in molecular properties that are 

pivotal to understanding the effect of drug 

interaction with enzymes. Until recently, the 

only technique to visualize this dynamic nature 

was by means of molecular dynamic (MD) 

simulation126. However, the principal limitation 

of MD simulation is that they are restricted to 

timescales shorter than many biologically 

meaningful conformational changes127. 

Accelerated developments with patch clamp 

techniques, atomic force microscopy, optical 

tweezers, and fluorescence microscopy have 

allowed observation of single-molecule events 

at the millisecond to second timescale128. These 

techniques have shed light on the 

conformational changes that are slow and hence 

are potentially masked in ensemble averaged 

studies. Furthermore, enzyme turnover 

transformations can be monitored at the level of 

a single-molecule, as has been  reported for a 

few motor proteins, a nuclease, a 

flavoenzyme126, to mention a few examples. As 

we have seen above, for close to a century, 

deterministic rate equations (DRE) have aided 

in the estimation of rate constants and 

mechanisms from reaction kinetic experiments 

carried out on a population of molecules. The 

deterministic equation derived from the rate 

Figure 8. Other specific examples of enzymes displaying non Michaelis-Menten kinetics. (A) Interfacial enzymes embedded in 
the lipid matrix are constrained in 2-dimensional space unlike enzymes in solution (B) Single molecule enzymology, protein 
dynamics and stochasticity of substrate to product conversion. The figure shows the zoom of a highly dynamic enzyme that 
catalyses stochastic product formation as a function of time (left panel). Probability estimates for the time duration between 
successive substrate turnovers is an additional parameter that can be obtained by CME (right panel). The figure has been 
partly redrawn from 148 (C) Human drug metabolizing Cytochrome P450 3A4 (PDB ID: 6OOA)  that displays atypical non-MM 
kinetics. 
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perspective by Michaelis and Menten have 

dominated the discourse in modelling enzyme 

kinetics. However, the interpretation and 

analysis of single molecule data requires 

stochastic methods utilizing the time-

perspective since it deviates substantially from 

the common Markovian description employed 

in traditional kinetic analysis129 (Figure 8 B) 

using DRE. The latter implicitly assumed a 

macroscopically large number of enzyme and 

substrate molecules.  This is in contrast with 

intracellular concentrations which, in some 

instances, could be as few as 10s of molecules 

with large in-built variability and noise130. The 

noise arises because of several different reasons 

including stochastic fluctuations such as the 

Brownian motion of substrate and enzyme 

molecules. However, the noise becomes 

irrelevant in bulk situations since it scales as the 

inverse square root of the total number of 

molecules present. Single molecule enzyme 

kinetics is handled with the chemical master 

equation (CME) while DRE is used in 

traditional enzyme kinetics analysis. CME 

provides an accurate estimate for both the mean 

concentration of the various species involved 

and noise (or fluctuation about the mean). It 

also gives probability estimates for the time 

duration between successive substrate 

turnovers, the latter being highly useful in 

assessing enzyme mechanism131 (Figure 8 B). 

Prediction of the mean substrate, enzyme and 

enzyme-substrate complex concentration as a 

function of time could be different when 

employing either CME or DRE to model the 

kinetics. The differences are usually small for 

enzymes displaying MM kinetics while they 

can get considerably larger when substrate 

inflows, especially in bursts, is a feature of the 

system131.   

Enzymes are dynamic entities. Their 

fluctuations (in terms of catalysis and 

conformational diversity) are relatively fast 

enabling the MM assumption to hold. However, 

in scenarios where the fluctuations become 

extremely slow, as revealed by single molecule 

experiments for some enzymes, it has been 

questioned whether the MM assumptions 

would still be relevant84. Min et al have 

analysed three distinct conditions namely (1) 

when the ES complex has slower 

conformational sampling vis-à-vis the free 

enzyme and the catalytic rate (quasi-state 

conditions), (2) when the rate of substrate 

dissociation is faster than the rate of catalysis 

independent of the speed of conformational 

sampling (quasi equilibrium conditions) and (3) 

when substrate dissociation and catalytic rate is 

dependent on the rate of conformational 

sampling (conformational equilibrium 

conditions)84.  They conclude that these are all 

scenarios where the enzyme does not follow 

MM kinetics, though they acknowledge that it 

is difficult to assess this experimentally 

especially if one is sampling a large parameter 

space84.  

4.6.2. Single-molecule kinetics and 

approaches in drug discovery: Though there 

are no explicit specifications that have been 

either outlined or optimized for HTS or 

validation studies for single molecule 

enzymology, there are a few papers that 

elaborate on this concept. An exemplary 

overview of inhibition at single molecule level 

is presented by Robin et al132. Additionally, a 

few studies describe the use of double-stranded 

DNA linkers133 and single molecule force 

spectroscopy134 for single molecule enzyme-

drug interaction assessments. Another study135 

describes a high-throughput single-

molecule/single cell imaging screen that was 

used to identify and validate small molecules 

that alter transcription kinetics.  However, it 

would have to be appreciated that 

implementation of single molecule enzyme 

kinetics has not come to realization in early 

drug discovery, except in the area of bespoke 

experimentation, and will take substantial time 

to be a regular part of the pipeline.   

 

4.7. Other examples of enzymes showing 

atypical and non-Michaelis-Menten kinetics: 

 

4.7.1. Processive enzymes: Processive enzymes 

are those that perform sequential catalysis of 

substrates without dissociating from them. The 

substrates for processive enzymes are usually 

polymeric in nature, e.g. cellulose, polypeptides 

or DNA, and the enzyme undertakes sliding, 

hopping, or intersegmental transfer as a means 

of carrying out the reaction136. However, 

sequential catalysis on the same substrate locus 

is also treated as a special case of processive 

mechanism, as in the case for arginine 

methyltransferases that carry out symmetric or 

asymmetric dimethylation on the same 

arginine. Another special case of processivity is 

the multisite phosphorylation and 

dephosphorylation of proteins by kinases and 

phosphatases, respectively137. A distinct 
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characteristic of enzymes showing a processive 

mechanism is that the concentration of any 

intermediate substrate/product species is 

undetectable and can be never greater than the 

enzyme concentration employed. Though 

attempts have been made to formulate kinetic 

principles based on deterministic kinetic 

models with QSS assumption for modelling 

processive enzymes, parameters like ‘kinetic 

processivity coefficient’, must be built in to 

mirror the experimental outcome. ‘kinetic 

processivity coefficient’ is a probability term 

for dissociation of enzyme from the substrate 

before the completion of n sequential catalytic 

steps (n is the mean processivity number 

assessed experimentally)138. Additionally, 

simplifying assumptions that the catalysis and 

dissociation rate constants are independent of 

the length of the substrate chain are in-built into 

the derivation.  However, as has been clearly 

indicated by the authors examining the 

enzymology of Cellulase, such a treatment has 

significant limitations and in-built assumptions 

that can complicate the interpretation of 

applying deterministic MM kinetics to 

processive enzymes. A few of the limitations of 

the treatment include (1) A deterministic 

treatment of the kinetic model with QSS 

assumption is an overly simplified treatment 

since there are several steps like association, 

diffusion and acquisition of the substrate in 

kinetically competent mode that are either 

ignored or treated implicitly. This results in the 

parameters being composite rate constants 

rather than stringent ones. (2) In a deterministic 

model, the kon for the substrate and the enzyme 

is treated based on law of mass action despite 

the implicit case that the substrate could be 

essentially treated as solid and non-diffusible, 

especially for polymeric substrates. This makes 

the specification of initial substrate 

concentration inaccurate and hence, unreliable 

for modelling purposes. (3) As a direct 

extension of the discussion above, because of 

inaccurate estimates for the initial substrate, it 

might not be always possible to assess whether 

the substrate is in excess of the enzyme. (4) 

Further, processive enzymes are known to 

display non-linear kinetics (constant reduction 

in the rate of reaction) even in the absence of 

substrate depletion and product inhibition. This 

prevents treating the system as a true steady 

state where the rate of the reaction remains 

constant or the amount of product formed is 

linear as a function of time. Early drug 

discovery efforts need to treat processivity in 

enzyme catalysis explicitly to understand the 

enzyme form that is targeted by inhibitor 

molecules. This may not be a straightforward 

exercise and needs extensive basic 

characterization of the system before initiating 

inhibitor discovery. 

 

4.7.2. Distributive enzymes: A related system is 

known as distributive enzyme mechanism. A 

distributive enzyme is one that releases the 

substrate in solution and the substrate would 

have to compete with a heterogenous pool of 

variably modified substrate molecules for the 

enzyme active site again. This entails that both 

the kon and koff values are important 

determinants of the kinetic behavior. It has been 

posited in literature that though the role of kon 

has been explored extensively in conventional 

MM kinetics, the role of koff  has largely been 

assumed as being inversely related to kcat
139. 

This has been recently contradicted in 

literature139. Additionally, this kind of catalysis 

has distinct aspects of non-MM behavior as 

enumerated below (1) There is a heterogenous 

mix of substrates and hence a unique ES is not 

the only intermediate present in the reaction 

vial and (2) the initial concentration of a unique 

substrate/intermediate species among the 

heterogenous mix of substrate/intermediate 

molecules could be equal to or marginally 

greater than the enzyme concentration used in 

the assay. However, the maximum 

concentration formed of the heterogenous mix 

of substrate/s is not limited by the amount of 

enzyme. The above scenarios are contradictory 

of the MM assumptions reinforcing that 

enzymes displaying distributive mechanisms 

would have to be treated distinctly and 

explicitly in early drug discovery initiatives.  

 

4.7.3. Multisubstrate enzymes:  Certain 

categories of multi-substrate reaction 

mechanisms such as sequential ones where a 

ternary or higher complex is formed can result 

in complex rate equations that would have to be 

treated appropriately for effective 

characterization of enzyme-inhibitor 

interactions. This is a non-trivial exercise as has 

been demonstrated in literature35. This scenario 

becomes yet more complex when there is linked 

equilibria as is seen in ordered mechanisms 

where binding of one substrate facilitates the 

binding of the next substrate in a sequential 

reaction. Additionally, formation of multiple 
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products in a reaction can also result in potential 

hurdles for unambiguous assignment of 

inhibitor mode of binding depending on the 

differential binding affinity, if any, of the 

various products. Furthermore, in multi-

substrate reactions, specificity, defined as the 

preference of an enzyme for a particular 

substrate, and selectivity, defined as the 

preference of the enzyme for one substrate over 

another in a mixture of substrates, become 

important determining factors in assessing 

inhibitor interaction vis-à-vis its affinity and 

potency140 

 

4.7.4. Single-turnover catalysis: Single-

turnover enzymes are yet another special case 

of non-MM systems where the enzyme is 

inactivated after one round of catalysis. The 

inactivation could be the result of interaction 

with the substrate141, in which case it is called 

suicide substrate, or an inherent property of the 

enzyme whereby it binds to the products tightly. 

Though the system could be approximated by 

steady state kinetics, time-dependent loss of 

enzyme activity makes this uniquely non-MM 

kinetics.  A prominent example is 

Streptococcus pyogenes CRISPR-Cas9. spCas9 

is a single-turnover enzyme that interacts with 

substrate DNA reversibly and, subsequent to 

catalysis, binds to the DNA cleavage products 

tightly142.  

 

4.7.5. Substrate inhibition: Yet another case of 

atypical kinetics are enzymes showing substrate 

inhibition143,144, where the enzyme achieves 

maximum rate of catalysis until a particular 

substrate concentration threshold is reached, 

beyond which substrate starts inhibiting the 

enzyme. Presence of substrate inhibition 

necessitates the determination of equilibrium 

dissociation constant of the substrate for the 

inhibitory site and the catalytic dissociation 

constant of the substrate for the active site both 

in the presence and absence of the substrate 

binding at the inhibitory site. Further, the kcat of 

the ES and  the ESS complexes would be 

different and would have to be treated explicitly 

if the inhibitor interaction with the enzyme 

would need to be quantified under catalytic 

conditions. However, it should be noted that the 

substrate Ki values tend to be significantly 

higher than their respective Km values. Hence, 

under most HTS conditions that utilise substrate 

at its Km value, this will not be a major issue. 

However, this behaviour would have to be 

explicitly treated when carrying out bespoke 

work or when the substrate is saturating.  

 

4.7.6. Cytochrome p450 kinetics: Deviating 

from the norm of clustering examples under a 

non-MM behavioral category, below we 

present an example of an enzyme family with 

atypical kinetics that has an extensive role in 

drug metabolism and clearance. Cytochrome 

p450s (CYPs) are enzymes that bring about this 

transformation of metabolizing the drugs and 

clearing it from the system (Figure 8 C). 

However, it is well known  that these enzymes 

show non-MM kinetics145,146,147. Several CYP 

isoforms such as 3A4, 1A2, 2E1, 2D6, and 2C9, 

show non-MM kinetics if assessed in vitro. 

Since non-MM behaviour is usually associated 

with oligomeric organization, it is noteworthy 

that both monomeric CYP, and CYP as a 

heterooligomer with reductases or Cyt b5 

shows atypical kinetics. Moreover, the fact that 

multiple ligands can bind to the CYP active site 

further complicates the landscape of CYP-

mediated kinetics of drug metabolism and 

clearance.  CYP, in catalysing the oxidation of 

its substrates, shows hyperbolic, sigmoidal, 

biphasic and substrate-inhibition patterns in 

various forms of  substrate versus velocity 

plots145.  Modelling of in vivo hepatic clearance 

for drug molecules based on in vitro data 

obtained by MM treatment of CYP kinetics 

needs to be carefully analysed in order to avoid 

the generation of misleading outcomes. For 

example, it has been posited that inaccurate 

application of MM kinetic model to enzyme 

systems showing substrate inhibition will result 

in gross underestimation of the Km and Vmax. On 

the other hand, MM kinetics applied to 

sigmoidal model will overestimate Km and Vmax 

especially at therapeutically relevant lower 

substrate concentrations73.  

What emerges clearly from the above 

specified examples is that a significant number 

of non-MM kinetics displaying enzymes, which 

are classified under distinct subheadings, show 

overlapping behavior. For example, there are 

aspects of overlap in the non-MM treatment of 

interfacial enzymes, processive enzymes and 

self-modifying enzymes. Most of these 

enzymes show non-linear progress curves and 

deviate from  hyperbolic substrate versus 

velocity plots. It would have to be appreciated 

that the above classification was exclusively 

instituted in order to facilitate the appreciation 

of different non-MM behavior displaying 
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systems and is not meant to convey that they are 

exclusive domains of behavioral uniqueness 

that do not share common aspects with other 

enzyme systems. 

 

5. Conclusions and perspectives 

The purpose of a drug discovery initiative 

is to obtain as many specific hits as possible 

with diverse mechanism of action and with the 

potential for pre-clinical optimization leading 

to desirable outcome in the clinic.  This goal can 

remain unrealized if the HTS and the 

downstream validation steps do not incorporate 

the atypical kinetics of an enzyme’s behavior in 

the design of the screen or the downstream 

validation of the hits. Although, one would 

obtain hits that might show high affinity, they 

may fail later because of their optimization on 

potency criterion alone rather than on a non-

MM parameter such as, say, Hill coefficient or 

processivity coefficient. With increasing 

complexity of the enzyme systems under study, 

it would be prudent to incorporate key aspects 

of non-MM behavior displayed by enzymes 

when selecting compounds with the desirable 

mode(s) of action. Early, detailed 

understanding of the target enzymes’ behavior, 

and appropriate analysis of their interactions 

with ligands, will aid translation into a cellular 

context with more definition. This will, in the 

long run, help to reduce the attrition rate that is 

a reality of current drug discovery pipeline.  
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Table 1. HTS and MoA guidelines and role of equilibrium binding studies in characterizing representative non-MM behaviour. 

Non-MM 

behaviour 

HTS characterization and MoA guidelines Opportunity for equilibrium binding studies 

Self-catalysis • Employ excess of catalytic mutant of the enzyme as substrate to mimic MM conditions (for 

trans). 

• Treat rate as an acceleration or deceleration term. 

• Use non-self substrate to mimic MM conditions. 

• Non-linearity in progress curves should be explicitly modeled by full-time course simulation. 

• Account for protein heterogeneity leading to activity loss or gain. 

• Assess the relationship between protein modification and time. 

• Assess inhibitor affinity (KD) for both unmodified and 

modified form of the enzyme. 

• Factor linked equilibria between substrate/cofactor and 

[I] binding by the relative magnitudes of KD and 

Ki
app(Ki

app < KD indicates ordered binding). 

• Light-scattering based approaches to assess sample 

homogeneity as a function of modification. 

Cooperativity • Rank compounds for both potency and Hill coefficient. 

• While using LB plot, raise the power of the substrate to the Hill term to get linearity and assess 

MoA. 

• For negative cooperativity, exclude pre-existing heterogeneity and explore half-site reactivity & 

oligomeric equilibration. 

• Tease apart substrate binding cooperativity from inhibitor 

binding cooperativity. 

• Factor linked equilibria between [S] and [I] binding by 

the relative magnitudes of KD and Ki
app. 

Tight-binding 

inhibition 
• Use Morrison’s quadratic equations to estimate the Km and Ki

app
 for substrate and inhibitor, 

respectively. 

• Non-linearity in LB plots at high [S] should be considered before assigning MoA. Competitive 

inhibition can be mistaken for non-competitive inhibition. 

• Treat non-linearity in progress curve (possible slow-onset) explicitly. 

• Try reducing the [Enzyme] taking into account S/N of the assay. 

• Look for stoichiometric binding and high Hill slopes. 

• Employ the modified Cheng-Prusoff relationship for IC50-Ki conversions and be aware of 

Strauss-Goldstein zonation.*  

• Estimate IC50 as a function of enzyme concentration.*  

• Overcome tight-binding for competitive inhibitors by increasing [S]. 

• Use of techniques like SPR to estimate the KD, kon and koff 

of the inhibitor binding to the target. This will indicate 

how slow is the association rate. 

Covalent 

irreversible 

inhibition 

• Estimate kinact/KI rather than IC50 to rank order the hits. 

• Where possible, estimate parameters like  kinact, KI and Ki, including through the use of pre-

steady kinetic methods. 

• Model the non-linearity in progress curves explicitly. 

• Carry out substrate-mediated inhibition protection for understanding site of binding.  

• Be aware of PAINS that inhibit by reactive affinity groups. 

• Estimating KI by a biophysical direct binding method 

(i.e. ITC, DSC or SPR or a combination of these 

methods) 

• Trapping the covalent intermediate using mass-

spectrometry 

• Determining KD of first reversible binding step 

employing site-directed mutants. 

*[E]- Enzyme concentration, [S]-substrate, HTS- High-throughput screening, MM-Michaelis-Menten, IC50- Concentration of inhibitor required for 50 % inhibition, kinact/KI- A second 

order parameter representing maximum rate of inactivation normalized by concentration of inhibitor at half maximum rate of covalent bond formation, KD- equilibrium constant for 

dissociation, S/N- signal to noise, PAINS- Pan-assay interfering compounds, ITC- isothermal titration calorimetry, DSC- Differential scanning fluorimetry, SPR- Surface plasmon 

resonance, MoA-Mechanism of Action, kon-association rate constant, koff-dissociation rate constant. *Morrison’s Ki estimation is preferable. 
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