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Abstract: The commercial popularity of Virtual Reality attracted educators’ interest and brought 

new opportunities to the educational landscape. At the same time, Learning Analytics emerged with 

the promise to revolutionise the traditional practices by introducing ways to systematically assess 

and improve the effectiveness of instruction. However, the collection of ‘big’ educational data is 

mostly associated with web-based platforms as they offer direct access to learners’ activities with 

minimal effort. On the antipode, the nature of VR limits the opportunities for such data collection. 

Hence, in the context of this work, we present a four-dimensional theoretical framework, that 

accounts the information that can be gathered from VR-supported instruction, and propose a set of 

structural elements which can be utilised for the development of a Learning Analytics prototype 

system. The outcomes of this work are expected to support practitioners to maximise the potential 

of their interventions and provide inspiration for new ones. 
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1. Introduction 

As newly statistical data shows STEM (Science, Technology, Engineering, and Mathematics) 

education is expanding rapidly in most developed countries and thus, the necessity to provide 

learners with well-designed instructional contexts becomes even more imperative [1]. This is aligned 

to the outcomes of studies [2] which stress on the importance of assisting learners to cultivate the 

acquired knowledge in-depth but the difficulties that instructional designers face when preparing 

laboratory exercises (including experiments and practice-based tasks) pertinent to the STEM fields 

cannot be disregarded either. For instance, field-based experiments require complex transportation 

to different locations whereas some of the laboratory-based tasks may be too dangerous (e.g. an 

electric shock caused due to the incorrect wiring of electrical wires in an electrical engineering course) 

or too expensive to perform in the real world (e.g. use of hard-to-acquire specialised equipment). In 

addition, the limited training, or the lack of awareness that students may have on matters related to 

lab safety and security further increase the risks for injuries or even fatalities [2,3]. 

Hence, in order to prevent such issues from occurring, the presence of the instructor is essential 

but, even then, the limited attention that individuals receive—e.g. due to the time-management 

constraints—has been reported as a factor which causes negative emotions and behaviour (e.g. 

frustration, dissatisfaction) [3,4]. Such shortcomings are linked to serious complications towards the 

theoretical knowledge development or the conceptual experience advancement—especially when 

abstract topics are under consideration—and may hinder students’ confidence to apply such practices 

in the future [5]. 

A proposed solution to eliminate the impact of such drawbacks considers the adoption and 

integration of interactive technologies which can make the educational processes more efficient and 

effective [2,6]. This is also aligned to the belief that wants employees to be undertaking frequent 

training in simulated environments [7,8]. Nevertheless, the utilisation of digital solutions solves only 

the health and safety issues but does not guarantee the knowledge development or advancement [9]. 
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As a result, the need to analyse the potential and the shortcomings of the computer-supported 

instructional strategy becomes also crucial. 

However, understanding how to maximise the effectiveness of the instructional design strategy, 

based on the theory that each STEM subject imposes, is a complicated and demanding process. The 

solution to this matter is identified on the potential of the technological tools per se as they offer 

opportunities for the collection of large datasets which can provide information related to the 

educational context, the utilised instructional strategy and the behavior of the learners. Hence, by 

collecting and interpreting such information, content, and instructional designers as well as 

researchers and educators can increase the effectiveness of the learning strategy, facilitate the learning 

process, and prevent the development of misconceptions [10,11]. 

2. Background 

2.1 Virtual Reality in STEM Education  

Heim [12] argued over the potential of Virtual Reality (VR) by attributing its added value to 

three fundamental elements: interactivity, immersiveness and information intensity. Despite the 

passing of time since this claim was made, the empirical studies that have been performed ever since 

not only confirmed its validity but, also, revealed the additional benefits of such ‘tools’ can bring to 

the educational scenery [3,13]. Therein, in the context of this work, we adopt the definition that 

Gigante [14] coined, which defines VR as the computer-supported setting that enhances the real-

world experience through the provision of multi-aesthetic stimuli (e.g. visual, audio, motion). In 

addition, we expand the notion of this definition by providing a brief overview of the VR-supported 

(educational) settings that are available to date (e.g. room-scale VR such as CAVE, standalone-VR such 

as Oculus Rift, HTC Vive, and mobile-VR such as Samsung Gear VR, Google Cardboard). 

The aforementioned setups promote different levels of embodiment (immersion) and offer 

variable opportunities for knowledge acquisition and construction (information intensity) whereas, 

the inclusion of haptic sensors, brings additional opportunities for interactivity and thus, 

engagement. In a sense, this is what differentiates VR from other educational technology tools—i.e. 

the opportunity offered to learners to undertake both passive learning (e.g. observation of natural 

phenomena) and active learning activities (e.g. laboratory-related experiments) without 

spatiotemporal or time constraints. However, none of the above would have been possible without 

the rapid technological advancement of computing devices and the vast evolution of the VR [15].  

The integration of VR in the educational landscape is already playing a significant role as it has 

facilitated the application of contemporary instructional methods which enable learners to immerse 

themselves in the subject under investigation and thus, develop the cognitive strategies (e.g. problem-

solving, critical thinking, creativity) that are essential in the 21st century [10,3]. Aligned to the notion 

of this claim, a common observation across the STEM education disciplines can be made with regard 

to the nature of the programs and the respective interventions which follow primarily the principles 

of the experiential learning model. It, therefore, comes with no surprise why such tremendous efforts 

have been made to integrate immersive technologies to every education level which involves matters 

related to the STEM disciplines. This is also in line with the conclusions that Pellas et al. [11] have 

drawn which attribute the successful integration of such technologies to the high degree of 

embodiment that users develop when interacting with the (digital) objects that have been customised 

in accordance to their personal needs and demands. 

2.2 Instructional Design in Virtual Reality 

Instructional design methods are comprised of strategies (e.g. instructor-guided, self-directed) 

and techniques (e.g. collaborative) which aim at helping educators to contextualise the learning 

process and learners to link the concepts under investigation with their prior knowledge and 

experiences [16,17]. In other words, instructional design helps learners to understand what kind of 

information is provided within a specific context, how this information can be translated into 

knowledge acquisition, and how the constructed knowledge can be applied more effectively into 
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practice [18,19]. The aforementioned processes are directly linked to the learning performance, which 

concerns the range of fluctuations in learners’ knowledge development or behavior during the 

different stages of the intervention, and the learning outcomes (e.g. satisfaction, achievements, 

acquired knowledge/skills, competencies) that learners are expected to achieve at the end of the 

intervention [20]. 

The findings from the VR-supported educational studies are well-documented in the literature 

and so are the benefits that this technology brings to the learning process. Below, we provide a brief 

summary of the most important elements that influence the respective educational practices: 

• Student-centered learning: Aligned to the principles of (Social) Constructivism and 

Constructionism, the visually rich environment and the experimental nature of VR enable 

students to develop strong mental representations of the information sources through hands-on 

and collaborative activities [21,22]. 

• Self-directed learning: By exploiting the affordances that the 3-Dimensional (3D) element offers, 

learners can investigate hypothetical and abstract concepts—which are difficult or even 

impossible to examine in the real-world—without spatial, time, and/or geographical boundaries 

[13,23,24]. 

• Self-regulated learning: By immersing learners in situations similar to the real-life context enables 

them to self-regulate the learning process in accordance with the challenges and difficulties they 

are facing [25,26]. 

2.3 Learning Analytics 

Educational practitioners and scholars have attempted to define Learning Analytics (LA) from 

different perspectives and viewpoints. For instance, a portion of researchers [27-29] account them as 

an alternative method to gather student-generated data which can be utilised to provide personalised 

learning experiences. Others  [30,31] set the focus on the patterns that can be developed from the 

students’ learning behaviours so as to inform the future instructional design decisions. Long and 

Siemens [32] have proposed a definition which considers and rounds up the aforementioned 

perspectives by suggesting that LA is a method to collect longitudinal educational data and a process 

that utilises the collected data to optimise learning and the environment in which it occurs. 

Regardless of the chosen definition, researchers from different disciplines and fields (e.g. 

Applied Statistics, Artificial Intelligence, Data Science) are working in collaboration so as to identify 

the diverse learning needs that students have and improve the present educational practices [32]. To 

achieve this goal, large sets of heterogeneous data—from different educational levels and sources—

are collected, explored, and analysed using Machine Learning (ML) models. The outcomes of this 

process provide diverse, but equally useful, feedback to the educational stakeholders with regard to 

learners’ performance, the shortcomings of the utilised instructional approach and the inadequacies 

of the course under investigation [33,34]. 

The added value of LA can be examined from different perspectives and points of view. Below 

we present the key-areas that LA influence, after considering the interests and the needs that the 

various stakeholders (e.g. learners, educators, instructional designers, policy makers) have: 

• Learners: Alter the learning habits by identifying patterns and paths that can support the 

attainment of the learning objectives and ensure the achievement of the predefined goals. 

• Educators: Improve the quality of teaching based on real-time and summative data that mirror 

learners’ performance, involvement, and engagement over the course of the time. 

• Instructional designers: Increase the quality of instruction based on the analysis of the elements 

that have been utilised the most, the feedback from the students on the provided interventions 

and the comments of the teachers. 

• Policy makers: Develop clear and accurate awareness of the current and future tendencies so as 

to inform the subsequent decisions and policy making. 
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2.4 Rationale and Purpose 

Accounting the above, the desirable outcome of this work is the provision of a conceptual 

framework that will offer educators and instructional designers suggestions related to the data that 

can be collected from different VR-supported teaching interventions and recommendations on the 

connections that may exist amongst them. Aligned to the end-goal of this project the main objectives 

of this work are split into three consecutive stages. In the context of this manuscript, we elaborate on 

and discuss the perquisites that characterise the requirements of the first stage as presented below: 

1. Development of a theoretical framework which accounts the research gaps that have been 

identified from the examination of the relevant literature. 

2. Proposition of an approach that can determine un/-trained students and trainee practitioners 

from different STEM fields while uncovering the most relevant variables related to this 

classification. 

3. Identification of the most efficient ML models for the analysis of the error-related behaviors and 

the determination of the patterns that will improve the provided instruction. 

In the second stage, we plan on using the proposed framework to design a functional prototype 

of a VR learning tool which will be applied in various iterations within the STEM education fields for 

evaluation purposes. Finally, in the third stage, it is expected that a complete training and assessment 

session will be provided by utilising solely the recommendations of the LA measurements. 

To achieve the abovementioned objectives, we will use different quantitative approaches on the 

basis of which the student models will be shaped from the information that can be retrieved from the 

VR application and the companion Learning Management System (LMS). 

The proposed methodology is also comprised of three parts which are: 

1. Use of statistical analysis models to classify trained and untrained students after collecting data 

from several VR-supported training sessions. The initial dataset will include information related 

to the course design, the learners’ profile, and the interactions that the students had during the 

training task. For the construction of the final model it is expected that several statistical models 

will be considered so as to increase the prediction accuracy and reliability of the results. 

2. Use of different Feature Importance Analysis (FIA) methods to identify the most effective 

classifiers per task, the relevant variables, and their impact on determining students’ success or 

failure for the task under consideration. 

3. Use of an Exploratory Data Analysis (EDA) tool to identify the relationships between the 

recorded errors. To this end, the clustered information will be exported visually so as to develop 

different hypotheses related to the underlying reasons that drive these relations. For the visual 

representation we are planning to apply the LA guidelines that Baker and Yacef [35] have 

proposed. 

The use of ML techniques will benefit all the research and development stages as it will enable 

us to answer the questions that educators usually raise and the concerns that instructional designers 

usually have. A few indicative examples of such matters are provided below: 

• How to assess the skill cultivation between novice and expert students in VR-supported STEM 

training scenarios? 

• How to select the most appropriate design elements and instructional concepts, so as to increase 

the efficacy and efficiency of the VR-based application, in accordance to the difficulty level of 

the topic and the abilities of the learners? 

• How to aggregate the best practices, so as to perform error diagnosis, when an LMS is used in 

conjunction? 

• How to provide timely support to low-performing or additional opportunities for development 

to high-performing students?  
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3. The Theoretical Framework  

3.1 Framework Analysis  

According to Hevner et al. [36] the Design Science research methodology is amongst the most 

appropriate methods for the development of an Information Technology or Information System 

artifact which, in this case, is a framework. The main principle of this approach suggests the 

deconstruction of important problems on the basis of which sound (technical) solutions can be 

developed. Therein, during the extensive literature review that has been conducted in the context of 

this work, we identified a set of issues that have not been addressed and therefore, provided the 

foundation to design the main requirements of this framework as presented below: 

1. LA models are applied primarily to data that originate from LMS without considering 

alternative or supplementary tools. 

2. The main sources for data collection take into account the information that derive either from 

the technological or the pedagogical perspective of the tool/intervention but disregard partially 

or even completely the psychological one. 

3. Relevant studies examine the correlations that may exist between a finite set of dependent 

variables (e.g. demographics, credits, grades) against non-classified parameters which are 

relevant to specific contexts and fields. This endangers the essence and further evolution of LA 

as it prevents the collection and sharing of large and homogenous datasets. 

4. By cross-examining the latest (systematic) literature reviews it became apparent that there is still 

lack of a universally accepted comprehensive framework and/or system capable of providing 

the involved stakeholders with suggestions on what kind of data should collect or 

recommendations on how to interpret such data so as to evaluate specific elements and improve 

their practices. 

Hence, the proposed framework (Figure 1) blends the aforementioned points by integrating the 

use of LA models for the processing and cross-examination of the information related to: the technical 

affordances of the utilised tools, the instructional design choices that practitioners make, the 

psychological elements that influence the learning process. 

 

Figure 1. The four-dimensional framework for VR-based Learning Analytics. 

3.2 Design Decisions 

The information that can be collected from each category are illustrated in Figure 2 (abstract 

level) and elaborated further in the following sections. 

In the first category (Technology) we consider matters related to the design and development of 

the VR-supported interventions, such as: 

• the software toolkits utilised for the development of the VR application (e.g. Unity, Vuforia, Maya, 

.Net, Photoshop) 
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• the specifications of the hardware equipment utilised for the conduct of the interventions (e.g. 

smartphone, tablet, laptop, desktop PC, Head-Mounted Display) 

• the type of the VR approach (e.g. HMD-based, CAVE, 360°) and the companion equipment (e.g. 

QR code sheets, VR-enabled laboratory handbooks or discipline-related specialized equipment) 

• the supplementary resources that may be required for the conduct of the intervention (e.g. 

multimedia resources, web-based educational platforms, 3D models) 

In the second category (Pedagogy), we contemplate the potential connection across the 

instructional decisions that practitioners make when designing the educational activities, such as: 

• the learning theories on the basis of which the design of the intervention will rely on (e.g. 

Constructionism, Cognitivism, (Social) Constructivism or Embodied cognition), 

• the instructional strategies (learning models) that gravitate the didactic essence of the respective 

theories (e.g., activity-based, experiential, collaborative, situated, problem-based, game-based, 

agent-based learning) and instructional techniques utilised for the conduct of the intervention 

(e.g. lecture, demonstration, seminar, tutorial, case study) [16], and 

• the evaluation focus points related to the effectiveness and efficiency of the application, the 

intervention, and the instructional approach (e.g. learners’ performance, learning outcomes, 

learning gains). 

 

Figure 2. Classification parameters for each dimension. 

In the third category (Psychology), we consider the psychological dimensions that are connected 

to the pedagogical dimensions, engagement, and influence the learning process, such as: 

• the behavioral elements (e.g. the impact/effect of reinforcement), 

• the cognitive elements (e.g. attention and memory span, problem-solving ability), 

• the affective elements (e.g. interest, attachment, satisfaction, emotional investment, degree of 

arousal), and 

• the motivational elements (e.g. self-belief, self-regulation, self-efficacy, self-goals, self-concept, 

self-esteem, situational interest) 

In the fourth category (Learning Analytics), we consider the steps that are related to the data 

gathering and analysis process, such as: 

• the information that can be collected from the different stakeholders (e.g. administrators, 

educators, students, assessment tools), 

• the data collection approach which includes information related to the research method (e.g. 

experimental, quasi-experimental, non-experimental) and the research methods utilised (e.g. 

qualitative, quantitative, mixed), 

• the data analysis approach which includes the use and combination of different methods (e.g. Item 

Response Theory, Cognitive Diagnosis, Evolutionary Algorithms) and Educational Data Mining 

models (e.g. Decision Tree, Naive Bayes Classifier, k-Nearest Neighbor), and 

• the data visualisation models for the dissemination of the processed data (e.g. graphs/charts, 

scatterplots, sociograms, tag clouds, signal lights). 
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3.3. Tools overview 

Aligned to the intended goal, in this section, we provide an overview of the functional 

requirements and specifications of the proposed system (Figure 3). 

 
Figure 3. Overview of the system data processing approach. 

To facilitate the data collection, analysis and interpretation process, we classify the information 

that can be retrieved from the different stakeholders (Table 1) and further associate them with a set 

of dimensions (i.e. academic, cognitive, and psychological) and metrics (i.e. progression, 

performance, and compliance) (Figure 3). Moreover, we provide a set of examples related to the 

proposed dimensions and their respective interrelations. 

Table 1. Indicative examples of the data that can be gathered from the stakeholders. 

Stakeholder Data Examples 

Administrators 

Demographics 

Educational 

Academic 

gender, age, family status 

history, pathway, study field, level 

enrollments, dropouts, credits 

Educators 
Curriculum 

Activity 

materials, learning objectives/outcomes 

tasks, assignments, assessments 

Learners 
Personal info 

Deliverables 

interests, motivation, expectations 

coursework, crafts 

VR / LMS 
Sensory 

Traces 

motion, visual, auditory, haptic 

attendance, engagement, resources’ use 

For instance, to measure matters related to the academic dimension, the primary data collection 

will include information related to students’ management skills (e.g. use of resources), their prior 

knowledge with the scientific subject (STEM) and experience with the digital learning tools (e.g. VR, 

LMS) as well as their attitude towards the learning process (e.g. attendance, participation, interaction 

with the peers) and their learning competence (i.e. time to develop and integrate the acquired 

knowledge and skills). The primary data sources will include information originating from the 

students’ interaction with the VR application and the LMS as well as self-reported cues related to 

their short- and long-term plans or goals (e.g. academic, personal, professional, monetary). 

As regards the measurement of matters related to the cognitive dimension, self-reported data 

related to the ways that students regulate their efforts (e.g. strategies, tactics, habits) will be collected 

using validated instruments and further correlated with their learning outcomes (including the 

identification of misconceptions and knowledge gaps) using Artificial Intelligence techniques and 

ML models. 

Finally, for the measurement of matters related to the psychological dimension, the focus will 

be set on learners’ behavioral patterns which will be recorded from the onboard sensors of the devices 
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that will be utilised for the conduct of the interventions (e.g. smartphones, tablets) and other 

wearables (e.g. HMDs). Such data will include information related to learners’ interactions (e.g. app 

use log, visual attention span, emotion recognition, textual communication records) and mobility 

patterns (e.g. frequency and duration of time spent at various locations while interacting with the 

learning tool). 

Table 2. The analytics stages as described by Howson et al. [37] 

Analytics Description Outcome 

Descriptive What happened? 
Insights into historical patterns of 

behavior/performance. 

Diagnostic Why did it happen? In-depth evaluation of the examined data. 

Predictive 
What could happen in 

the future? 
Identify trends in data and predict future behavior. 

Prescriptive 

How should we 

respond in future 

events? 

Generate recommendations and make decisions based 

on the computational findings of algorithmic models 

For the interpretation of the collected data, we will use the model that Howson et al. [37] propose 

(Table 2), along with the literature recommendations related to the implementation of ML models in 

LA practices (Table 3). 

Table 3. Examples of the ML models to address main issues concerning relevant educational topics. 

Goals ML models References 

Feedback to educators’ & instructional 

designers’ scenarios. 
Decision Trees, Random Forest [38,39] 

Investigation of learners’ behavior during & 

after the VR-supported intervention. 
Naïve Bayes [40] 

Course adaptation & learning 

recommendations based on learners’ behavior. 
Decision Trees, Random Forest [41,42] 

Assessment of the VR-supported learning 

material & content. 

Decision Trees, Random Forest, 

Naïve Bayes 
[43,44] 

Prediction of student’s learning performance. 

Decision Trees, Logistic 

Regression, Support Vector 

Machines 

[45,46] 

4. Contribution and implications 

4.1. Conceptual implications  

The current study also contributes to the existing body of literature by providing a range of 

parameters which stream from the proposed theoretical framework and could improve the teaching 

and learning practices. These parameters are: 

1. Orchestration of instruction by teachers and reflection on the utilised strategies from the 

originals available to them. 

2. Evaluation methods to assess not only the students’ performance but, also, that of teachers with 

regard to the mode of operation and practices followed in both formal and informal contexts. 

3. Provision of personalised suggestions and appropriate structures to support the implementation 

of similar scenarios in the future. 

4. Development of deep understanding on the core elements that influence the educational process 

and adaptation of the educational resources based on the needs and interests of the students. 

5. Assessment of the course curriculum with particular focus on the parameters that affect the 

success and the effectiveness of the interventions in STEM training tasks. 
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6. Support from the administration for the reshaping of the educational units and allocation of 

financial resources for the development of VR applications in formal teaching conditions. 

4.2. Theoretical implications  

We provide a number of theoretical implications with regard to the development of a universal 

LA system tailored to the VR configuration setups. The following points are expected to guide our 

future decisions but, also, provide instructions to those researchers, educators, and instructional 

designers who are willing to contribute towards this effort: 

1. The decisions related to the data collection should be driven by the principles of the applied 

instructional design method. Hence, the involved stakeholders are encouraged to provide 

detailed information about the utilised instructional approaches, the educational subjects that 

were under investigation, and the analysis methods that have been followed for the examination 

of the correlations. In doing so, the repetition of the intervention to similar contexts will be 

facilitated and that will support the future research efforts to validate (collectively) the gathered 

information so as to develop well-grounded generalisations. 

2. The potential of interactions should be examined holistically and not just unilaterally (i.e. both 

between the users and the VR system and among the users themselves). Under this 

consideration, we recommend the cross-examination and correlation clustering of different 

pedagogical and psychological elements using ML models so as to aid the development of 

prototype profiles and allow the systematic mapping of the factors that influence students’ 

outcomes and performance.  

3. The classification of the gathered information should be done in accordance to the areas of 

interest of the different beneficiaries (i.e. administrators, instructional designers, teachers, 

students) and the outcomes should be disseminated in accordance to the data analytics maturity 

scale that Howson et al. [37] proposed (i.e. descriptive, diagnostic, predictive, and prescriptive 

analytics). In doing so the involved stakeholders will be able to determine the suitability and the 

effectiveness of the intervention and thus, perform any adjustments that may be required prior 

to designing or implementing new interventions. 

4.3. Practical implications 

The inadequacy of the literature to provide recommendations with regard to the data types that 

can be collected from immersive technologies as well as the absence of a distributed system—capable 

of collecting, analysing and determining the appropriateness and effectiveness of the VR-supported 

interventions in STEM education—motivated this initiative on the basis of which we provide a set of 

practical implications which could help developers to better understand the functional requirements 

of such VR-supported LA systems: 

1. VR technology produces a huge amount of data but not all of them are meaningful to the context 

of educational studies. For exemplification purposes we summarise the data sources that are 

pertinent to the aim of the proposed LA system followed by some indicative examples: 

• visual (e.g. eye motion tracking) 

• auditory (e.g. pitch/intensity of the environmental noise levels) 

• haptic (e.g. movement, rotation, force) 

• network (e.g. packet loss, time delay) 

2. The essence of the educational VR applications relies on the provision of immediate feedback 

which offers answer-revision opportunities and leads to errorless learning. In the same vein, a 

comprehensive implementation of a visual LA dashboard is expected to influence the learning 

dynamics (e.g. motivation, competitiveness, goal orientation) and impact positively learners’ 

outcomes, achievements, and performance. 

5. Discussion and Conclusion 
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The potential of VR in STEM education has already attracted practitioners’ interest by 

demonstrating its power to support the conduct of safe, interactive, and engaging learning 

experiences. At the same time, the LA domain is gaining more and more ground as it has immense 

potential to improve the teaching and learning practices [24,28,29]. However, while a substantial 

body of literature provides guidance and recommendations with regard to the potential of LA in 

various educational settings, the attempts to integrate LA in the context of immersive technologies 

are limited and scarce. 

Therein, in an effort to tackle this literature limitation, we outline the foundations of a four-

dimensional theoretical framework by accounting the multifaceted layers of the learning process 

(Technology, Pedagogy, Psychology) as well as the respective parameters and constructs that should 

be taken into account when gathering the so-called ‘big data’ (LA). To this notion, we pay particular 

attention on the impact that the different instructional strategies and methods have on students [16] 

and the opportunities they bring to create personalised learning patterns. In addition, we set the focus 

on the importance of assessing learners’ actions and interactions in real-time so as to provide timely 

feedback and feedforward. Finally, considering the complex difficulties that the global education 

system is currently facing due to the COVID-19 outbreak, it becomes imperative to propose and plan 

on the development of a prototype that will support educators and instructional designers to create 

engaging and cross-disciplinary online/remote learning activities both for formal and informal 

contexts. 

Conclusively, by highlighting these conceptual design and developmental elements, we 

envision that researchers, educators and educational technology entrepreneurs will further consider 

these relations—when evaluating the potential of the utilised instructional approach—so as to take 

full advantage of the data that can be collected from such tools and platforms and thus, reach the 

maximum potential of the VR technology especially when applied to STEM education subjects. 
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