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Abstract: Finding the proper entropy functional associated with the inelastic Boltzmann equation for
a granular gas is a yet unsolved challenge. The original H-theorem hypotheses do not fit here and
the H-functional presents some additional measure problems that are solved by the Kullback–Leibler
divergence (KLD) of a reference velocity distribution function from the actual distribution. The right
choice of the reference distribution in the KLD is crucial for the latter to qualify or not as a Lyapunov
functional, the “homogeneous cooling state” (HCS) distribution of the freely cooling system being a
potential candidate. Due to the lack of a formal proof, the aim of this work is to support this conjecture
aided by molecular dynamics simulations of inelastic hard disks and spheres in a wide range of values
for the coefficient of restitution (α). Our results reject the Maxwellian distribution as a possible reference,
whereas reinforce the HCS one. Moreover, the KLD is used to measure the amount of information lost on
using the former rather than the latter, and reveals a nonmonotonic dependence with α. Additionally,
a Maxwell-demon-like velocity-inversion experiment highlights the microscopic irreversibility of the
granular gas dynamics.
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1. Introduction

Thermodynamics and information theory are clearly connected via the entropy concept. This idea
allows physicists to understand plenty of details and consequences in the evolution and intrinsic behavior
of physical systems. However, finding the entropy functional for a given problem is not an easy task.
Thanksfully, information theory provides tools that one can use in physics problems proving a rewarding
feedback.

In this work, we address the quest of finding the Lyapunov functional (which describes entropy
production) of a monodisperse granular gas, modeled by identical inelastic and smooth hard disks (d = 2)
or hard spheres (d = 3) with constant coefficient of restitution (α). The interest of this study does not only
reside in the mathematical challenge, but also in the physical consequences for granular matter. Typically,
for a classical gas, Boltzmann’s H-theorem provides the desired entropy functional [1,2]. Nevertheless,
inelasticity plays a fundamental role in the dynamics, and the hypotheses of the latter theorem are not
applicable. Previous works have proposed the Kullback–Leibler divergence (KLD) [3,4] as the proper
alternative to the H functional [5–8]. One of the aims of this paper is to explore with molecular dynamics
(MD) simulations [9] the validity of the KLD as a Lyapunov functional in the whole range of definition of
α and for both disks and spheres.

The one-particle velocity distribution function (VDF) of our granular-gas model in the so-called
“homogenous cooling state” (HCS), fHCS, is unknown. There is a vast literature about it [10–18] and
recent experiments have demonstrated some of their properties [19]. The typical approach to fHCS is an
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infinite expansion around the Maxwellian VDF in terms of Sonine polynomials [1,10,11], even though
the expansion may break down for large inelasticities [20–22]. Here, we will revisit some well-known
results, in order to provide a complete description of the problem. Our own MD simulation results will
be compared with previous “direct simulation Monte Carlo” (DSMC) results [14,15] and with theoretical
predictions from a truncation in the Sonine expansion up to the sixth cumulant.

Additionally, a velocity-inversion experiment is performed in simulations. In the context of classical
mechanics, equations of motion of particles in an ordinary gas (elastic collisions) are time-reversible.
Therefore, by exactly reversing their velocities in the course of the system evolution, this sort of Maxwell
demon will make the particles return to their initial configuration (Loschdmit’s paradox [23]) if detailed
balance is ensured. However, this is not the case for dissipative grains. Thus, the possibility of rewinding
the evolution history of the grains is analyzed in this paper.

To sum up, the paper is structured as follows. In Section 2, the Sonine expansion formalism is
presented and simulation results for the fourth and sixth cumulants are provided. The measure problem
introduced by the original H-functional is established in Section 3, where additionally, the KLD for
two different reference VDFs is studied and compared with MD simulation outcomes. Section 4 shows
results for the velocity-inversion problem. Finally, in Section 5, some concluding remarks of this work are
presented and discussed.

2. Free Cooling Evolution of Velocity Cumulants

2.1. Boltzmann Equation and HCS

Consider a model of a monodisperse granular gas consisting of a collection of inelastic hard d-spheres
of mass m, diameter σ, and a constant coefficient of normal restitution α < 1. Under the molecular chaos
ansatz (Stosszahlansatz), the free cooling of a homogeneous and isotropic gas can be described by the
Boltzmann equation [10]

∂t f (v1; t) = nσd−1 I[v1| f , f ] ≡ nσd−1
∫

dv2

∫
+

dσ̂ (v12 · σ̂)
[
α−2 f (v′′1 ; t) f (v′′2 ; t)− f (v1; t) f (v2; t)

]
, (1)

where n is the number density, v12 = v1 − v2 is the relative velocity of the two colliding particles, σ̂ is a
unit vector along the line of centers from particle 1 to particle 2, the subscript + in the integral over σ̂

means the constraint v12 · σ̂ > 0, and

v′′1 = v1 −
1 + α

2α
(v12 · σ̂)σ̂, v′′2 = v2 +

1 + α

2α
(v12 · σ̂)σ̂ (2)

are precollisional velocities. Note that we have defined the VDF with the normalization condition∫
dv f (v; t) = 1.

An important quantity is the granular temperature defined as

T(t) =
m
d
〈v2〉 , 〈X(v)〉 ≡

∫
dv X(v) f (v; t). (3)

Taking moments in Equation (1), one finds the cooling equation

∂tT(t) = −ζ(t)T(t), (4)
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where the cooling rate is given by

ζ(t) = −mnσd−1

T(t)d

∫
dv v2 I[v| f , f ] = (1− α2)

mnσd−1

T(t)
π(d−1)/2

4dΓ( d+3
2 )
〈〈v3

12〉〉, (5a)

〈〈X(v1, v2)〉〉 ≡
∫

dv1

∫
dv2 X(v1, v2) f (v1; t) f (v2; t). (5b)

Let us introduce the thermal velocity vth(t) ≡
√

2T(t)/m, which allows us to define the rescaled VDF
φ(c; s) as

f (v; t) = v−d
th (t)φ(c; s), c ≡ v

vth(t)
, (6)

were the variable s in φ(c; s) is a scaled time defined by

s(t) =
1
2

∫ t

0
dt′ ν(t′), ν(t) ≡ κnσd−1vth(t), κ ≡

√
2π(d−1)/2

Γ( d
2 )

. (7)

Here, ν is the (nominal) collision frequency, so that s(t) represents the (nominal) accumulated number of
collisions per particle up to time t. In terms of these dimensionless quantities, the Boltzmann equation (1)
can be rewritten as

κ

2
∂sφ(c; s) +

µ2(s)
d

∂

∂c
· [cφ(c; s)] = I[c|φ, φ], µk(s) ≡ −

∫
dc ck I[c|φ, φ], (8)

where we have taken into account that ζ(t)/nσd−1vth(t) = 2µ2(s)/d. The associated hierarchy of moment
equations is

κ

2
∂s 〈ck〉 = Fk(s) ≡

kµ2(s)
d
〈ck〉 − µk(s). (9)

Note that F0 = F2 = 0, since µ0 = 0 and 〈c2〉 = d
2 .

In the long-time limit the free cooling is expected to reach an asymptotic regime (the HCS) in which
the scaled VCF is stationary, i.e., φ(c; s)→ φH(c), where φH(c) satisfies the integrodifferential equation1

µH
2
d

∂

∂c
· [cφH(c)] = I[c|φH, φH]. (10)

Within that regime, Equation (5a) shows that ζH(t)/
√

TH(t) = const, so that the solution to Equation (4)
gives rise to the well-known cooling Haff’s law [10,11,24]

TH(t) =
TH(t0)[

1 + 1
2 ζH(t0)(t− t0)

]2 , (11)

t0 being an arbitrary time belonging to the HCS regime. Also in the HCS regime, µ2(s)→ µH
2 = const and

thus Equation (4) becomes ∂sTH(s) = −(4/κd)µH
2 TH(s), whose solution is

TH(s) = TH(s0)e−4µH
2 (s−s0)/κd. (12)

1 Henceforth, a subscript or superscript H on a quantity means that the quantity is evaluated in the HCS.
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Therefore, in the HCS the temperature decays exponentially with the number of collisions per particle.

2.2. Sonine Expansion Formalism

The Maxwell–Boltzmann VDF φM(c) = π−d/2e−c2
is not a solution of the HCS Boltzmann equation

(10). While its analytic form has not been found, the HCS solution is known to be rather close to φM in the
domain of thermal velocities (c ∼ 1) [16]. Thus, it is convenient to represent the time-dependent VDF in
terms of a Sonine polynomial expansion,

φ(c; s) = φM(c)

[
1 +

∞

∑
k=2

ak(s)Sk(c2)

]
, (13)

where

Sk(x) = L( d
2−1)

k (x) =
k

∑
j=0

(−1)jΓ
(

d
2 + k

)
Γ
(

d
2 + j

)
(k− j)!j!

xj (14)

are Sonine (or generalized Laguerre) polynomials, which satisfy the orthogonalization condition

〈Sk|Sk′〉 ≡
∫

dc φM(c)Sk(c2)Sk′(c
2) = Nkδk,k′ , Nk ≡

Γ
(

d
2 + k

)
Γ
(

d
2

)
k!

. (15)

In Equation (13), the Sonine coefficient ak(s) is the 2k-th cumulant of the VDF at time s. According to
Equation (15),

ak(s) =
〈Sk(c2)〉
Nk

. (16)

In particular, a1(s) = 0 and

a2(s) =
4

d(d + 2)
〈c4〉 − 1, a3(s) = 1 + 3a2 −

8
d(d + 2)(d + 4)

〈c6〉. (17)

2.3. Truncated Sonine Approximation

Thus far, all the results presented in Sections 2.1 and 2.2 are formally exact within the framework of
the homogeneous Boltzmann equation (1). However, in order to obtain explicit results we need to resort to
approximations.

As usual [11,13–15,20,25], we will start by neglecting the coefficients ak with k ≥ 4 in Equation (13),
as well as the nonlinear terms a2

2, a2a3, and a2
3 in the bilinear collision operator I[c|φ, φ]. Given a functional

X[φ] of the scaled VDF φ(c), we will use the notation L3 {X} to denote the result of that truncation and
linearization procedure. Furthermore, if a3 is also neglected, the corresponding approximation will be
denoted by L2 {X}. In particular, in the case of the collisional moments µ2, µ4, and µ6 one has

L3 {µ2} = A0 + A2a2 + A3a3, L3 {µ4} = B0 + B2a2 + B3a3, L3 {µ6} = C0 + C2a2 + C3a3, (18)

where the expressions for the coefficients Ai, Bi, and Ci as functions of α and d can be found in Appendix
A of Ref. [15]. Obviously, L2 {µ2}, L2 {µ4}, and L2 {µ6} are obtained by formally setting A3 → 0, B3 → 0,
and C3 → 0, respectively.
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Let us first use the simple approximation L2 to estimate aH
2 . From Equation (9) we have that FH

4 = 0.
Thus the obvious approximation [13] consists of

L2

{
FH

4

}
= 0⇒ aH,a

2 =
(d + 2)A0 − B0

B2 − (d + 2)(A2 + A0)
=

16(1− α)(1− 2α2)

9 + 24d− (41− 8d)α + 30(1− α)α2 , (19)

where in the last steps use has been made of the explicit expressions of A0, A2, B0, and B2. However, this
is not by any means the only possibility of estimating aH

2 [14,15,26]. In particular, one can start from the
logarithmic time derivative of the fourth moment and then take

L2

{
FH

4
〈c4〉H

}
= 0⇒ aH,b

2 =
(d + 2)A0 − B0

B2 − B0 − (d + 2)A2
=

16(1− α)(1− 2α2)

25 + 24d− (57− 8d)α− 2(1− α)α2 . (20)

Note that
aH,a

2

aH,b
2

= 1 + aH,a
2 =

1

1− aH,b
2

. (21)

Both approximations (aH,a
2 and aH,b

2 ) are practically indistinguishable in the region 0.6 . α < 1, but aH,b
2 is

much more accurate than aH,a
2 for higher inelasticity [14,15].

Next, to estimate aH
3 , we start from the exact condition FH

6 = 0 and carry out either the linearization

L3

{
FH

6

}
= 0⇒ aH,a

3 = Ga(aH
2 ) ≡

C0 − 3
4 (d + 2)(d + 4)A0 +

[
C2 − 3

4 (d + 2)(d + 4)(3A0 + A2)
]

aH
2

3
4 (d + 2)(d + 4)(A3 − A0)− C3

(22)
or, alternatively,

L3

{
FH

6
〈c6〉H

}
= 0⇒ aH,b

3 = Gb(aH
2 ) ≡

C0 − 3
4 (d + 2)(d + 4)A0 +

[
C2 − 3C0 − 3

4 (d + 2)(d + 4)A2
]

aH
2

3
4 (d + 2)(d + 4)A3 − C3 − C0

.

(23)
In Equations (22) and (23), aH

3 is expressed in terms of aH
2 . Using Equations (19) and (20), four possibilities

in principle arise, namely

aH,aa
3 = Ga(aH,a

2 ), aH,ab
3 = Ga(aH,b

2 ), aH,ba
3 = Gb(aH,a

2 ), aH,bb
3 = Gb(aH,b

2 ). (24)

Comparison with DSMC results shows that the best general estimates are provided by aH,aa
3 and aH,ab

3 . In
what follows, we choose aH,b

2 for the fourth cumulant and, for the sake of consistency with that choice, we
adopt aH,ab

3 for the sixth cumulant. To simplify the notation, we make aH,b
2 → aH

2 and aH,ab
3 → aH

3 .
Once the (approximate) HCS values aH

2 and aH
3 have been obtained, we turn our attention to

the evolution equations of a2(s) and a3(s). Approximating Equation (9) with k = 4 as κ
2 ∂s ln 〈c4〉 =

L2
{

F4(s)/ 〈c4〉
}

, one obtains

∂sa2(s) = −K2 [1 + a2(s)]
[

a2(s)− aH
2

]
, K2 ≡

8
d(d + 2)κ

[B2 − B0 − (d + 2)A2] . (25)

Its solution is

a2(s) = aH
2 +

1 + aH
2

X0eγs − 1
, X0 ≡

1 + a2(0)
a2(0)− aH

2
, γ ≡

(
1 + aH

2

)
K2. (26)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2020                   



6 of 22

Analogously, if Equation (9) with k = 6 is approximated as κ
2 ∂s 〈c6〉 = L3 {F6(s)}, the resulting evolution

equation for a3 is
∂sa3(s) = 3∂sa2(s)− K′2

[
a2(s)− aH

2

]
− K3

[
a3(s)− aH

3

]
, (27)

where

K′2 ≡
16

d(d + 2)(d + 4)κ

[
3
4
(d + 2)(d + 4)(A2 + 3A0)− C2

]
, (28a)

K3 ≡
16

d(d + 2)(d + 4)κ

[
3
4
(d + 2)(d + 4)(A3 − A0)− C3

]
. (28b)

Taking into account Equation (26), the solution to Equation (27) is

a3(s) = aH
3 + Y0e−K3s +

(
1 + aH

2

) [ 3
X0eγs − 1

+

(
K′2
K3

+ 3
)

2F1

(
1,

K3

γ
;

K3

γ
+ 1; X0eγs

)]
, (29a)

Y0 ≡ a3(0)− aH
3 −

(
1 + aH

2

) [ 3
X0 − 1

+

(
K′2
K3

+ 3
)

2F1

(
1,

K3

γ
;

K3

γ
+ 1; X0

)]
, (29b)

where 2F1(a, b; c; z) is the hypergeometric function [27].

2.4. Comparison with MD simulations

The approximate theoretical predictions for aH
2 and aH

3 were tested against results obtained from
the DSMC simulation method in, for instance, Refs. [14,15]. However, since the DSMC method is a
stochastic scheme to numerically solve the Boltzmann equation [28], it does not prejudice by construction
the hypotheses upon which the Boltzmann equation is derived, in particular the molecular chaos ansatz.
Therefore, it seems important to validate the Sonine approximations for aH

2 and aH
3 by event-driven MD

simulations as well. Also, the theory allows us to solve the initial-value problem and predict the evolution
of the fourth and sixth cumulants, as shown by Equations (26) and (29), and an assessment of those
solutions is in order.

Figures 1(a) and 1(b) show the α-dependence of aH
2 and aH

3 , respectively, for both hard disks (d = 2)
and spheres (d = 3). An excellent agreement between the MD (with densities nσd = 5× 10−4 and 2× 10−4

for disks and spheres, respectively) and DSMC simulation results for the whole range of α is observed.
This means that the molecular chaos ansatz does not limit the applicability of the Boltzmann description,
even for large inelasticities [10], at least for dilute granular gases. As for the approximate theoretical
predictions, it is quite apparent that aH,b

2 [see Equation (20)] performs very well, even if it is not small
at all (aH,b

2 ∼ 0.2). The approximate sixth cumulant aH,ab
3 [see Equations (22) and (24)] is less accurate

at a quantitative level, especially in the case of disks, but captures quite well the general influence of
inelasticity. While aH

2 changes from negative to positive values at α ' 1/
√

2 ' 0.71, aH
3 is always negative.

Note that, for large inelasticity, the cumulants aH
2 and aH

3 are comparable in magnitude. Given that the
Sonine expansion (13) is only asymptotic [11,22], it is remarkable that a theoretical approach based on the
assumptions |aH

3 | � |aH
2 | � 1 does such a good job as observed in Figure 1.

Next, we study the evolution from a non-HCS state, as monitored by a2(s) and a3(s). We have chosen
an initial state very far from the HCS: the particles are arranged in an ordered crystalized configuration
and all have a common speed

√
d/2vth(0) along uniformly randomized directions. Therefore, at s = 0,

〈ck〉 = (d/2)k/2, so that a2(0) = − 2
d+2 and a3(0) = − 16

(d+2)(d+4) .
Figures 2 and 3 compare our MD results with the theoretical predictions (26) and (29), respectively.

Four representative values of the coefficient of restitution have been considered, namely α = 0.1 (very high
inelasticity), 0.4 (high inelasticity), 0.87 (moderately small inelasticity), and 1 (elastic collisions); α = 0.87
has been included because it is practically at this value where aH

2 presents a local minimum, both for
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Figure 1. Plot of (a) the HCS fourth cumulant aH
2 and (b) the HCS sixth cumulant aH

3 versus the coefficient
of restitution α. Symbols represent simulation results: MD (this work) for disks (◦) and spheres (M), and
DSMC [14,15,20] for disks (×) and spheres (�). The lines are the theoretical predictions aH,b

2 [see Equation
(20)] and aH,ab

3 [see Equations (22) and (24)]. The insets magnify the region 0.6 ≤ α ≤ 1. The error bars in
the simulation data are smaller than the size of the symbols.
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Figure 2. Evolution of the fourth cumulant a2(s) as a function of the number of collisions per particle for
(a) disks and (b) spheres. Symbols represent MD simulation results, while the lines correspond to the
theoretical prediction (26). The values of the coefficient of restitution are (from top to bottom) α = 0.1 (�),
0.4 (×), 1 (◦), and 0.87 (4). The error bars in the simulation data are smaller than the size of the symbols.
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Figure 3. Evolution of the sixth cumulant a3(s) as a function of the number of collisions per particle for
(a) disks and (b) spheres. Symbols represent MD simulation results, while the lines correspond to the
theoretical prediction (29). The values of the coefficient of restitution are (from bottom to top on the right
side) α = 0.1 (�), 0.4 (×), 0.87 (4), and 1 (◦). The error bars in the simulation data are smaller than the size
of the symbols, except in the stationary regime for α = 0.1.

disks and spheres [see Fig. 1(a)]. Note that, in the case of simulations, the quantity s represents the actual
number of collisions per particle and, consequently, is not strictly defined by Equation (7), in contrast
to the case of theory. From Figure 2 we observe that, despite the large magnitude of the initial fourth
cumulant [a2(0) = − 1

2 and − 2
5 for d = 2 and 3, respectively], the simple relaxation law (26) describes

very well the full evolution of the cumulant. Discrepancies with the simulation results are visible only
in the regions where the curves turn to their stationary values, especially in the case of disks. In what
concerns the sixth cumulant, which also has a large initial magnitude [a3(0) = − 2

3 and − 16
35 for d = 2 and

3, respectively], the theoretical expression (29) is able to capture, at least, the main qualitative features,
including the change from a nonmonotonic (α = 0.1 and 0.4) to a monotonic (α = 0.87 and 1) evolution.
Again, the agreement is better for spheres than for disks. Note also that the evolution curves for α = 0.87
and 1 are hardly distinguishable from each other.

3. KLD as a Lyapunov Functional

3.1. Boltzmann’s H-Functional

The introduction of the H-theorem by Ludwig Boltzmann [29] was a revolution in physics and became
an inspiration for new mathematical and physical concepts. This theorem is a direct consequence of the
Boltzmann kinetic equation for classical rarefied gases, derived under its molecular chaos assumption [1,2].
Beneath this hypothesis for a classical gas which evolves via elastic collisions, the functional H defined as2

H(t) =
∫

dv f (v; t) ln f (v; t) (30)

2 For simplicity, in this section we restrict ourselves to spatially homogeneous states.
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is proved to be a non-increasing quantity; in other words, S = −H, up to a constant, is a non-decreasing
and entropy-like functional for the assumed gaseous system. After almost a century, once Information
Theory was developed, Boltzmann’s H functional was interpreted as Shannon’s measure [30] for the
one-particle VDF of a rarefied gas.

Nonetheless, the model considered in this paper for a rarefied monocomponent granular gas (inelastic
and smooth hard d-spheres with a constant coefficient of restitution) violates Boltzmann’s hypothesis of
elastic collisions. In fact, a key role in the demonstration of the H-theorem for elastic collisions is played by
the condition of detailed balance [29]. Consider two colliding particles with precollision velocities {v′′1 , v′′2 }
and a relative orientation characterized by the unit vector −σ̂ (with v′′12 · σ̂ < 0). After collision, the
velocities are, in agreement with Equation (2), given by

C−σ̂{v′′1 , v′′2 } = {v1, v2}, v1,2 = v′′1,2 ∓
1 + α

2
(v′′12 · σ̂)σ̂. (31)

Next, suppose two colliding particles with precollision velocities {v1, v2} and a relative orientation
characterized by the unit vector σ̂ (with v12 · σ̂ > 0). In that case,

Cσ̂{v1, v2} = Cσ̂C−σ̂{v′′1 , v′′2 } = {v′1, v′2}, v′1,2 = v1,2 ∓
1 + α

2
(v12 · σ̂)σ̂. (32)

Comparison with Equation (2) shows that

v′1,2 = v′′1,2 ±
1− α2

2α
(v12 · σ̂)σ̂, v′12 · σ̂ = α2v′′12 · σ̂. (33)

Thus, Cσ̂C−σ̂{v′′1 , v′′2 } 6= {v′′1 , v′′2 } unless α = 1 and, therefore, the H-functional, as defined by Equation
(30), is not ensured to be non-increasing anymore if α < 1.

Furthermore, Boltzmann’s H-functional for the model of inelastic particles presents the so-called
measure problem [31]. Shannon’s measure is invariant under unitary transformations, but not for
rescalings. In fact, under the transformation (6),

H(s) =
∫

dv f (v, t) ln f (v, t) = H∗(s)− d
2

ln
2T(s)

m
, H∗(s) ≡

∫
dc φ(c, s) ln φ(c, s). (34)

From Haff’s law, Equation (12), it turns out that (in the HCS) H∗H is stationary but HH(s) grows linearly
with the number of collisions s. Then, one could naively think that a possible candidate to the Lyapunov
functional would be H∗(s), but the latter is still non-invariant under a change of variables c→ c̃ = w(c),
φ(c, s)→ φ̃(c̃, s) = J−1φ(c, s), where J ≡ |∂c̃/∂c| is the Jacobian of the invertible transformation c̃ = w(c).
As will be seen below, whereas Shannon’s measure presents a problematic weighting of the phase space,
the KLD solves this non-invariance issue.

3.2. KLD

In general, given two distribution functions f (x) and g(x), one defines the KLD from g to f (or relative
entropy of f with respect to g) as [3,4], as

DKL( f ‖g) =
∫

X
dx f (x) ln

f (x)
g(x)

, (35)

where x is a random vector variable defined on the set X. The quantity DKL( f ‖g) is convex and
non-negative, being identically zero if and only if f = g. While it is not a distance or metric function (it
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does not obey either symmetry or triangle inequality properties),DKL( f ‖g) somehow measures how much
a reference distribution g diverges from the actual distribution f or, equivalently, the amount of information
lost when g is used to approximate f .

Therefore, it seems convenient to define the KLD

DKL( f ‖ f0) = DKL(φ‖φ0) =
∫

dc φ(c; s) ln
φ(c; s)
φ0(c)

(36)

as the entropy-like functional for our problem, where the (stationary) reference function φ0 must be
an attractor to ensure the Lyapunov-functional condition. Thus, if we choose φ0(c) = lims→∞ φ(c; s),
assuming that this limit exists, it will minimize the KLD for asymptotically long times. In addition, the
definition (36) solves the measure problem established posed above, i.e., DKL(φ‖φ0) = DKL(φ̃‖φ̃0) for any
invertible transformation c→ c̃ = w(c).

If DKL(φ‖φ0) is indeed the Lyapunov functional of our problem, the natural conjecture is that
φ0(c) = φH(c) [7]. As a consequence, the challenge is to prove that ∂sDKL(φ‖φH) ≤ 0 [see Appendix A for
a formal expression of ∂sDKL(φ‖φ0)]. While in this paper we do not intend to address such a proof from a
mathematical point of view, we will provide support by means of MD simulations (see Appendix B for
technical details). Before doing that, and in order to put the problem in a proper context, we consider the
alternative choice φ0 = φM.

3.3. MD Simulations

3.3.1. Maxwellian Distribution as a Reference (φ0 = φM)

If φ0 = φM is chosen in Equation (36), one simply has

DKL(φ‖φM) = H∗(s) +
d
2
(1 + ln π) , (37)

where H∗(s) is defined in Equation (34). Thus, DKL(φ‖φM) differs from H∗(s) by a constant, so that
∂sDKL(φ‖φM) = ∂sH∗(s).

Note that ∂sDKL(φ‖φM) cannot be semi-definite negative for any initial condition. For instance, if
the initial condition is a Maxwellian, i.e., φ(c; 0) = φM(c), then it is obvious that DKL(φ‖φM)|s=0 = 0
and, given that lims→∞DKL(φ‖φM) = DKL(φH‖φM) > 0, it is impossible that ∂sDKL(φ‖φM) ≤ 0 for all
s. Nevertheless, in principle, it might happen that ∂sDKL(φ‖φM) ≤ 0 for the class of initial conditions
such that DKL(φ‖φM)|s=0 ≥ DKL(φH‖φM), while ∂sDKL(φ‖φM) ≥ 0 for the complementary class of
initial conditions such that DKL(φ‖φM)|s=0 ≤ DKL(φH‖φM). If that were the case, one could say that the
quantity [DKL(φ‖φM)−DKL(φH‖φM)]2 would always decrease for any initial condition, thus qualifying
as a Lyapunov functional. As will be seen below, this expectation is frustrated by our simulation results.

From the formal Sonine expansion (13), we can write

DKL(φ‖φM) =
∫

dc φM(c)

[
1 +

∞

∑
k=2

ak(s)Sk(c2)

]
ln

[
1 +

∞

∑
k=2

ak(s)Sk(c2)

]
. (38)

Now, in the spirit of the truncation approximation of Section 2.3, we can write

DKL(φ‖φM) ≈
∫

dc φM(c)
[
1 + a2(s)S2(c2) + a3(s)S3(c2)

]
ln
[
1 + a2(s)S2(c2) + a3(s)S3(c2)

]
, (39)
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Figure 4. Evolution of DKL(φ‖φM) (in logarithmic scale) as a function of the number of collisions per
particle for (a) disks and (b) spheres. Symbols represent MD simulation results, while the lines correspond
to the theoretical prediction (39) (the thin dashed lines for the first stage of the evolution mean that it was
necessary to take the real part). The values of the coefficient of restitution are (from top to bottom on the
right side) α = 0.1 (�), 0.4 (×), 0.87 (4), and 1 (◦). The error bars in the simulation data are smaller than
the size of the symbols, except when DKL(φ‖φM) . 10−4 for α = 1.

where a2(s) and a3(s) are given by Equations (26) and (29), respectively. Since the truncated Sonine
approximation is not positive definite, we will take the real part of the right-hand side of Equation (39) for
times such that 1 + a2(s)S2(c2) + a3(s)S3(c2) < 0 for a certain range of velocities.

Figure 4 shows the evolution of DKL(φ‖φM) for the same initial conditions and the same values of α

as in Figures 2 and 3, as obtained from our MD simulations (for details, see Appendix B) and from the
crude approximation (39). For that initial condition, one clearly has DKL(φ‖φM)|s=0 > DKL(φH‖φM). A
monotonic behavior ∂sDKL(φ‖φM) ≤ 0 is observed only in the cases of small or vanishing inelasticity. For
α = 0.1 and 0.4, however,DKL(φ‖φM) does not present a monotonic decay and tends to its asymptotic value
DKL(φH‖φM) from below, there existing a time (s ∼ 2) at which DKL(φ‖φM) exhibits a local minimum.
This nonmonotonic behavior is certainly exaggerated by the truncated Sonine approximation (39), but
it is clearly confirmed by our MD simulations, especially in the case of spheres. Therefore, it is quite
obvious that, not unexpectedly, both DKL(φ‖φM) and [DKL(φ‖φM)−DKL(φH‖φM)]2 must be discarded
as a Lyapunov functional for the free cooling of granular gases.

In order to examine how generic the nonmonotonic behavior of DKL(φ‖φM) is for high inelasticity,
we have taken the case α = 0.1 and considered five different initial conditions. The HCS values of the
fourth and sixth cumulants at α = 0.1 are {aH

2 , aH
3 } = {0.206,−0.143} and {0.150,−0.077} for d = 2 and

d = 3, respectively. Thus, taking a2(0) as a proxy of the initial distribution φ(c; 0), we have chosen the
same initial distribution (here labeled as δ) as in Figures 2–4 as a representative example of a2(0) < 0, the
Maxwellian distribution (labeled as M) with a2(0) = 0, another one (labeled as I) with 0 < a2(0) < aH

2 ,
and two more (labeled as Γ and S) with a2(0) > aH

2 . The details of those five distributions can be found
in Appendix C and the corresponding values of a2(0) and a3(0) are shown in Table A1. The results are
displayed in Figure 5, where we can observe that only the initial condition δ exhibits a nonmonotonic
behavior, whereas DKL(φ‖φM) decays (grows) monotonically in the cases of the initial conditions Γ and S
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Figure 5. Evolution of DKL(φ‖φM) (in logarithmic scale) for a coefficient of restitution α = 0.1 as a function
of the number of collisions per particle for hard (a) disks and (b) spheres. Symbols represent MD simulation
results. Five different initial conditions are considered (see Appendix C: δ (�), M (◦), Γ (×), I (�), and S
(4). The error bars are smaller than the size of the symbols, except when DKL(φ‖φM) . 10−4 for the initial
condition M.

(M and I). This shows that the nonmoniticity in the time evolution of DKL(φ‖φM) is a rather subtle effect
requiring high inelasticity and special initial conditions.

3.3.2. HCS Distribution as a Reference (φ0 = φH)

By using formal arguments from Refs. [32–34], García de Soria et al. [7] proved that φH is a unique
local minimizer of the entropy production in the quasielastic approximation, namely ∂sDKL(φ‖φH) ≤ 0.
Those authors also conjectured that this result keeps being valid in the whole inelasticity regime, this
conjecture being supported by simulations for α ≥ 0.8 in the freely cooling case.

By performing MD simulations for a wide range of inelasticities (α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1/
√

2,
0.8, 0.87, 0.95, and 0.99), we have found further support for the inequality ∂sDKL(φ‖φH) ≤ 0. As an
illustration, Figure 6 shows the evolution of DKL(φ‖φH) for α = 0.1, 0.4, 0.87, and 1, starting from the same
initial states as in Figures 2–4. Our MD results are compared with a theoretical approximation similar to
that of Equation (39), i.e.,

DKL(φ‖φH) ≈
∫

dc φM(c)
[
1 + a2(s)S2(c2) + a3(s)S3(c2)

]
ln

1 + a2(s)S2(c2) + a3(s)S3(c2)

1 + aH
2 S2(c2) + aH

3 S3(c2)
, (40)

where again the real part of the right-hand side is taken if 1 + a2(s)S2(c2) + a3(s)S3(c2) < 0 for a certain
range of velocities. The results (both from MD and from the approximate theory) displayed in Figure 6 show
that DKL(φ‖φH) indeed decays monotonically to 0, even for very strong inelasticity, thus supporting its
status as a very sound candidate of Lyapunov functional. It is also interesting to note that the characteristic
relaxation time is generally shorter for disks than for spheres and tends to decrease with increasing
inelasticity.

In order to reinforce the monotonic decay of DKL(φ‖φH) observed in Figure 6 for several
representative values of the coefficient of restitution, let us now take the most demanding case (α = 0.1)
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Figure 6. Evolution of DKL(φ‖φH) (in logarithmic scale) as a function of the number of collisions per
particle for (a) disks and (b) spheres. Symbols represent MD simulation results, while the lines correspond
to the theoretical prediction (40) (the thin dashed lines for the first stage of the evolution meaning that it
was necessary to take the real part). The values of the coefficient of restitution are α = 0.1 (�), 0.4 (×), 0.87
(4), and 1 (◦) The error bars in the simulation data are smaller than the size of the symbols, except when
DKL(φ‖φM) . 10−4.
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Figure 7. Evolution of DKL(φ‖φH) (in logarithmic scale) for a coefficient of restitution α = 0.1 as a function
of the number of collisions per particle for hard (a) disks and (b) spheres. Symbols represent MD simulation
results. Five different initial conditions are considered (see Appendix C: δ (�), M (◦), Γ (×), I (�), and S (4).
The error bars are smaller than the size of the symbols, except when DKL(φ‖φM) . 10−4.
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and choose the five initial conditions already considered in Figure 5. Figure 7 shows that the evolution
of DKL(φ‖φH) keeps being monotonic for this wide spectrum of representative initial conditions, the
relaxation to the HCS being again faster for disks than for spheres. It is also interesting to comment that,
although the largest initial divergence corresponds to the initial distribution δ, this divergence decays
more rapidly than the other four ones, and even seems to overtake the divergence associated with the
initial condition Γ.

While a rigorous mathematical proof of ∂sDKL(φ‖φH) ≤ 0 is still lacking,3 we will now prove this
inequality by using a simplified toy model. We start from the infinite series expansion (13) and imagine a
formal bookkeeping parameter ε in front of the Sonine summation. Then, to second order in ε,

φ(c; s)
φM(c)

ln
φ(c; s)
φH(c)

=ε
∞

∑
k=2

[
ak(s)− aH

k

]
Sk(c2) +

ε2

2

∞

∑
k,k′=2

[
ak(s)− aH

k

] [
ak′(s)− aH

k′
]

Sk(c2)Sk′(c
2)

+O(ε3). (41)

Next, taking into account the orthogonality condition (15), we get

DKL(φ‖φH) =
ε2

2

∞

∑
k
Nk

[
ak(s)− aH

k

]2
+O(ε3), (42a)

∂sDKL(φ‖φH) = ε2
∞

∑
k
Nk

[
ak(s)− aH

k

]
∂sak(s) +O(ε3). (42b)

Interestingly, this approximation preserves the positive-definiteness of the KLD. Note also that, to order ε2,
DKL(φ‖φH) is symmetric under the exchange φ ↔ φH, i.e., DKL(φ‖φH)−DKL(φH‖φ) = O(ε3). Finally,
in consistency with the derivation of Equations (20) and (25), we neglect the cumulants ak with k ≥ 3 and
apply Equation (25) to obtain

DKL(φ‖φH) ≈
d(d + 2)

16

[
a2(s)− aH

2

]2
, (43a)

∂sDKL(φ‖φH) ≈ −
d(d + 2)

8
K2 [1 + a2(s)]

[
a2(s)− aH

2

]2
≤ 0, (43b)

where we have formally set ε = 1. Although a certain number of approximations have been done to derive
the toy model (43), it undoubtedly provides further support to the conjecture ∂sDKL(φ‖φH) ≤ 0.

3.3.3. Relative Entropy of φH with Respect to φM

It is well known that, in a freely cooling granular gas, the HCS VDF is generally close (at least
within the range of thermal velocities) to a Maxwellian. In particular, the cumulants aH

k are rather small
in magnitude, except at large inelasticity (see Figure 1). On the other hand, the HCS VDF exhibits an
exponential high-velocity tail, ln φH(c) ∼ −c, with respect to the Maxwellian behavior, ln φM(c) ∼ −c2

[13,19,36].
Here, we have one more tool to measure how far φM(c) is from φH(c), namely the KLD from φM to

φH (or relative entropy of φH with respect to φM), i.e., DKL(φH‖φM). Note, however, that, as said at the

3 See, however, Ref. [35] for the sketch of a proof in the context of the linear Boltzmann equation.
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Figure 8. Plot of DKL(φH‖φM) as a function of the coefficient of restitution α for disks (– –, ◦) and spheres
(—,4). Symbols represent MD simulation results, while the lines correspond to the theoretical prediction
provided by Equation (39) with a2(s) → aH

2 and a3(s) → aH
3 . The inset magnifies the region 0.6 ≤ α ≤ 1.

The error bars in the simulation data are smaller than the size of the symbols.

beginning of this section, the KLD is not a real metric since it does not fulfill either symmetry or triangle
inequality properties of a distance.

Figure 8 displays the α-dependence of DKL(φH‖φM) for both disks and spheres, as obtained from
our MD simulations (see again Appendix B) and from the simple estimate (39) with a2(s) → aH

2 and
a3(s) → aH

3 . We can observe that the theoretical truncated approach successfully captures (i) a weak
influence of dimensionality (in contrast to the fourth and sixth cumulants plotted in Figure 1), (ii) a
crossover from DKL(φH‖φM)|d=2 < DKL(φH‖φM)|d=3 for very large inelasticity to DKL(φH‖φM)|d=2 >

DKL(φH‖φM)|d=3 for smaller inelasticity, and (ii) a non-monotonic dependence on α, with a (small but
nonzero) local minimum at about α = 1/

√
2 ' 0.71 and a local maximum at about α = 0.87. The latter

property implies that, in the region 0.6 . α < 1, three systems differing in the value of α may share the
same divergence of φM from φH. The qualitative shape of DKL(φH‖φM) as a function of α agrees with a
toy model analogous to that of Equation (43a), namely DKL(φH‖φM) ≈ d(d+2)

16 aH
2

2.

4. Velocity-Inversion Experiment

A discussion about entropy is not complete if the issue of irreversibility is not included. In the case of
elastic hard disks, a simulated velocity-inversion experiment (produced by a sort of Maxwell’s demon) was
proposed more than forty years ago [37–39], where schemes with “anti-kinetic” parts in the evolution were
tested [40] and Loschmidt’s paradox was discussed. In Orban and Bellemans’ pioneering works [37,38],
the velocities of all elastic disks (simulated by MD) were inverted at a given waiting time tw during the
evolution toward equilibrium and Boltzmann’s H-functional was analyzed and seen to revert its decay
by retracing its past values, in agreement with the underlying reversibility of the equations of motion.
However, due to unavoidable error propagation [41], the initial value of H was not exactly recovered if
the velocity inversion took place after a sufficiently long waiting time. In a study involving irreversible
particle dynamics, Aharony [39] observed that the anti-kinetic stage was not symmetric, the system rapidly
forgetting the correlations it had at tw, and thereafter continuing to approach equilibrium.

In this section we revisit the velocity-inversion experiment in a freely cooling granular gas. As
seen from Equations (31) and (32), the detailed balance condition is broken down by the inelasticity of
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Figure 9. Evolution of DKL(φ‖φH) in the velocity-inversion experiment (with a waiting time sw = 0.5) for
(a) disks and (b) spheres. Symbols represent MD simulation results (joined with straight lines as a guide to
the eye). The values of the coefficient of restitution are α = 0.1 (�), 0.4 (×), 1/

√
2 (+), 0.87 (4), 0.99 (�),

and 1 (◦). The insets magnify the behavior around s = 0.5. The error bars are smaller than the size of the
symbols.

collisions. This is closely related to a violation of microscopic reversibility. Consider two colliding particles
with precollision velocities {v1, v2} and a relative orientation characterized by the unit vector σ̂ (with
v12 · σ̂ > 0). In that case, Cσ̂{v1, v2} = {v′1, v′2} is given by Equation (32). Now, we invert the velocities
{v′1, v′2} and obtain the subsequent postcollision velocities,

Cσ̂{−v′1,−v′2} = {−v†
1 ,−v†

2}, v†
1,2 = v1,2 ∓

1− α2

2
(v12 · σ̂)σ̂, v†

12 · σ̂ = α2v12 · σ̂. (44)

Therefore, ICσ̂ICσ̂{v1, v2} 6= {v1, v2} (where I is the inversion-velocity operator) unless α = 1.
Figure 9 shows the time evolution of DKL(φ‖φH) when starting from the same initial conditions as

in Figures 2–6 and then applying a velocity inversion after 0.5 collisions per particle. The coefficients of
restitution considered are α = 0.1, 0.4, 1/

√
2, 0.87, 0.99, and 1. In the elastic case (α = 1), one recovers

the results of Ref. [37], i.e., the system almost reaches the original configuration at s = 1 but afterwards
it evolves toward equilibrium again. However, in the quasielastic case α = 0.99, although there is a
transient anti-kinetic period after the velocity inversion where DKL(φ‖φH) grows, this quantity rapidly
reaches a smooth maximum and then decreases monotonically. As inelasticity increases (α ≤ 0.87), the
influence of the velocity inversion is noticeable by a change of curvature only. The effect of inelasticity on
the microscopic irreversiblity reflected by the behavior of DKL(φ‖φH) is analogous to that observed by
Aharony [39] for the conventional H-functional in the evolution toward equilibrium.

5. Summary and Conclusions

In this work we have mainly focused on the role as a potential Lyapunov (or entropy-like) functional
played by the KLD of a reference VDF (φ0) with respect to the time-dependent VDF (φ), i.e., DKL(φ‖φ0),
as supported by MD simulations in a freely cooling granular-gas model.
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First, we have revisited the problem of obtaining, by kinetic theory methods, simple approximations
for the HCS fourth (aH

2 ) and sixth (aH
3 ) cumulants, and have derived explicit time-dependent solutions,

a2(s) and a3(s), for arbitrary (homogeneous) initial conditions. Comparison with our MD results shows
an excellent performance of aH

2 and a2(s) for values of the coefficient of restitution as low as α = 0.1. In the
case of the sixth cumulant, however, the agreement is only semi-quantitative. In any case, our MD data for
aH

2 and aH
3 agree very well with previous simulations of the inelastic Boltzmann equation [14,15,20], thus

validating the applicability of kinetic theory (including the Stosszahlansatz) even for high inelasticity.
As a first candidate to a Lyapunov functional, we have considered the KLD with a Maxwellian

reference VDF (φ0 = φM). But this possibility is clearly discarded as both simulation and a simple
theoretical approach show that DKL(φ‖φM) does not relax monotonically for highly inelastic systems and
certain initial conditions. On the other hand, when the asymptotic HCS VDF is chosen as a reference
(φ0 = φH), the results show that the relaxation of DKL(φ‖φH) is monotonic for a wide spectrum of
inelasticities and initial conditions. This is further supported by a simplified toy model, according to which
∂sDKL(φ‖φH) ∼ −[a2(s)− aH

2 ]
2 ≤ 0.

We have also used DKL(φH‖φM) to characterize the departure of the Maxwellian distribution as an
approximation to the actual HCS distribution. Interestingly, we found a nonmonotonic influence of the
coefficient of restitution on DKL(φH‖φM), with a (nonzero) local minimum at α ' 1/

√
2 ' 0.71 and a

(small) local maximum at α ' 0.87. This nonmonotonicity implies a degeneracy of DKL(φH‖φM) in the
sense that three different coefficients of restitution (within the region 0.6 . α < 1) may share a common
value of the KLD from φM to φH.

Finally, the classical velocity-inversion experiment [37–40], originally devised for systems relaxing
to equilibrium, has been applied on granular gases relaxing to the HCS and monitored via DKL(φ‖φH).
While, as expected, the initial configuration is almost perfectly recovered if the collisions are elastic (α = 1),
microscopic reversibility is frustrated by inelasticity, no matter how small. In fact, a (short) anti-kinetic
stage, where ∂sDKL(φ‖φH) > 0, is only possible in the quasielastic regime (e.g., α = 0.99) and disappears
for sufficiently high inelasticity (α . 0.9).

We expect that the results presented in this work may stimulate further studies on the quest of proving
(or disproving, if a counterexample is found) the extension of Boltzmann’s celebrated H-theorem to the
realm of dissipative inelastic collisions in homogeneous states.

Appendix. Formal Expression for ∂sDKL(φ‖φ0)

The aim of this appendix is to derive a formal expression for ∂sDKL(φ‖φ0) by following the same
steps as in the proof of the conventional H-theorem [2].

Let us consider a generic test function ψ(c). By standard steps, one can easily obtain [10]

J [ψ] ≡
∫

dc ψ(c)I[c1|φ, φ]

=
1
2

∫
dc1

∫
dc2

∫
+

dσ̂(c12 · σ̂)φ(c1)φ(c2)
[
ψ(c′1) + ψ(c′2)− ψ(c1)− ψ(c2)

]
. (A1)

Next, we perform the change of variables {c1, c2, σ̂} → {c′1, c′2,−σ̂} and take into account that dc′1dc′2 =

αdc1dc2 and c′12 · σ̂ = −αc12 · σ̂ to obtain

J [ψ] =
α−2

2

∫
dc′1

∫
dc′2

∫
+

dσ̂(c′12 · σ̂)φ(c1)φ(c2)
[
ψ(c′1) + ψ(c′2)− ψ(c1)− ψ(c2)

]
=

α−2

2

∫
dc1

∫
dc2

∫
+

dσ̂(c12 · σ̂)φ(c′′1 )φ(c′′2 )
[
ψ(c1) + ψ(c2)− ψ(c′′1 )− ψ(c′′2 )

]
, (A2)
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where in the second equality we have just renamed {c′1, c′2, c1, c2} → {c1, c2, c′′1 , c′′2 }. Taking the average
between Equations (A1) and (A2), we arrive at

J [ψ] =
1
4

∫
dc1

∫
dc2

∫
+

dσ̂(c12 · σ̂)
{

φ(c1)φ(c2)
[
ψ(c′1) + ψ(c′2)− ψ(c1)− ψ(c2)

]
− φ(c′′1 )φ(c

′′
2 )

α2

[
ψ(c′′1 ) + ψ(c′′2 )− ψ(c1)− ψ(c2)

] }
. (A3)

Now, we start from the KLD defined by Equation (36) and use the Boltzmann equation (8) to get

κ

2
∂sDKL(φ‖φ0) = J

[
ln

φ

φ0

]
− µ2

d

∫
dc ln

φ(c)
φ0(c)

∂

∂c
· cφ(c). (A4)

where we have taken into account that φ0(c) and
∫

dc φ(c) = 1 are independent of time. Integration by
parts of the second term on the right-hand side of Equation (A4) yields

κ

2
∂sDKL(φ‖φ0) = J

[
ln

φ

φ0

]
− µ2

[
1 +

1
d

∫
dc φ(c)c · ∂

∂c
ln φ0(c)

]
. (A5)

Finally, making use of Equation (A3) with ψ(c) = ln[φ(c)/φ0(c)], we obtain

κ

2
∂sDKL(φ‖φ0) =

1
4

∫
dc1

∫
dc2

∫
+

dσ̂(c12 · σ̂)
[

φ(c1)φ(c2) ln
φ(c′1)φ(c

′
2)φ0(c1)φ0(c2)

φ(c1)φ(c2)φ0(c′1)φ0(c′2)

− φ(c′′1 )φ(c
′′
2 )

α2 ln
φ(c′′1 )φ(c

′′
2 )φ0(c1)φ0(c2)

φ(c1)φ(c2)φ0(c′′1 )φ0(c′′2 )

]
− µ2

d

∫
dc φ(c)c · ∂

∂c
ln

φ0(c)
φM(c)

, (A6)

where we have taken into account that −
∫

dc φ(c)c · ∂
∂c ln φM(c) = 2

∫
dc c2φ(c) = d.

Equation (A6) does not particularly simplify if φ0 = φH. However, in the case φ0 = φM a somewhat
simpler expression can be found. First, the last term on the right-hand side of Equation (A6) vanishes
if φ0 = φM. Second, we can use the decomposition J [ln(φ/φM)] = J [ln φ] − J [ln φM] and take into
account that ln φM(c) = −c2 + const and, therefore, J [ln φM] = µ2 [see Equation (8)]. As a consequence,

κ

2
∂sDKL(φ‖φM) =

1
4

∫
dc1

∫
dc2

∫
+

dσ̂(c12 · σ̂)
[

φ(c1)φ(c2) ln
φ(c′1)φ(c

′
2)

φ(c1)φ(c2)

− φ(c′′1 )φ(c
′′
2 )

α2 ln
φ(c′′1 )φ(c

′′
2 )

φ(c1)φ(c2)

]
− µ2. (A7)

In the special case of elastic collisions (α = 1), one has µ2 = 0 and c′′i = c′i, so that one recovers the standard
H-theorem, namely

κ

2
∂sDKL(φ‖φM)

∣∣∣
α=1

=− 1
4

∫
dc1

∫
dc2

∫
+

dσ̂(c12 · σ̂)
[
φ(c′1)φ(c

′
2)− φ(c1)φ(c2)

]
ln

φ(c′1)φ(c
′
2)

φ(c1)φ(c2)
≤ 0.

(A8)

Appendix. Simulation and Numerical Details

Event-driven MD simulations were carried out using the DynamO software [9]. We chose N = 104

and N = 1.35× 104 particles for disks and spheres, respectively. The number densities were nσ2 = 5× 10−4
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(disks) and nσ3 = 2× 10−4 (spheres). Since the code is designed for three-dimensional setups, we used it
for the two-dimensional case by imposing a coordinate z = 0 to every particle and carefully avoiding any
overlap in the initial ordered arrangement. The system melted very quickly and no inhomogeneities were
observed thereafter. A velocity rescaling was done periodically in order to avoid numerical errors due to
the cooling process and extremely small numbers.

To represent the VDF and the KLD in simulations, let us first introduce the probability distribution
function of the velocity modulus,

Φ(c; s) = cd−1
∫

dĉ φ(c; s) = Ωdcd−1φ(c; s), Ωd ≡
2πd/2

Γ(d/2)
, (A9)

where in the second step we have assumed that the VDF φ(c; s) is isotropic and Ωd is the d-dimensional
solid angle. Thus, Equation (36) can be rewritten as

DKL(φ‖φ0) =
∫ ∞

0
dc Φ(c; s) ln

Φ(c; s)
Φ0(c)

. (A10)

The functions Φ(c; s) and ΦH(c) are numerically approximated by a discrete numerical histogram,
with a certain constant bin width ∆c, i.e.,

Φ(ci; s) ≈ Ni(s)
N∆c

, ΦH(ci) ≈
NH

i
N∆c

, ci =

(
i− 1

2

)
∆c, i = 1, 2, . . . , M. (A11)

Here, Ni(s) is the number of particles with a speed c inside the interval ci − ∆c/2 ≤ c < ci + ∆c/2, NH
i

is evaluated by averaging Ni(s) between s = 10 to s = 40 with a timestep δs = 0.2, and M is the total
number of bins considered. In consistency with Equation (A11), the Maxwellian VDF is also discretized as

ΦM(ci) ≈
π−d/2Ωd

∆c

∫ ci+∆c/2

ci−∆c/2
dc cd−1e−c2

=


e−(ci− ∆c

2 )
2
−e−(ci+

∆c
2 )

2

∆c , (d = 2),

erf(ci+
∆c
2 )−erf(ci− ∆c

2 )
∆c + 2√

π

(ci− ∆c
2 )e−(ci− ∆c

2 )
2
−(ci+

∆c
2 )e−(ci+

∆c
2 )

2

∆c , (d = 3),
(A12)

where erf(x) = 2√
π

∫ x
0 dt e−t2

is the error function.
Next, the KLD (A10) with φ0(c) = φM(c) and with φ0(c) = φH(c) are approximated in the simulations

by

DKL(φ‖φM) ≈
M

∑
i=1

Ni(s)
N

ln
Ni(s)/N∆c

ΦM(ci)
, DKL(φ‖φH) ≈

M

∑
i=1

Ni(s)
N

ln
Ni(s)
NH

i
, (A13)

where ΦM(ci) is given by Equation (A12). Analogously,

DKL(φH‖φM) ≈
M

∑
i=1

NH
i

N
ln

NH
i /N∆c

ΦM(ci)
. (A14)

A comment is now in order. In the case of elastic collisions (α = 1), one obviously should have
ΦH(ci) = ΦM(ci) and hence DKL(φH‖φM)|α=1 = 0. However, since ΦH(ci) is evaluated in simulations
by Equation (A11) for any α, the equality ΦH(ci) = ΦM(ci) for α = 1 is not identically verified bin to
bin due to fluctuations. As a consequence, in the simulations, DKL(φH‖φM)|α=1 ∼ 10−5 6= 0. This is an
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unavoidable background noise that we subtract from the KLD obtained by simulations, i.e., DKL(φ‖φ0)→
DKL(φ‖φ0)− DKL(φH‖φM)|α=1.

We have chosen the values ∆c = 0.03 and M = 200. The results presented in the main text for any
given quantity are obtained by averaging over 50 independent realizations.

Appendix. Initial Conditions

For the analysis of the evolution of DKL(φ‖φM) and DKL(φ‖φH) with α = 0.1, we have chosen five
different initial conditions. The first one is the same as considered in Figures 2–6, i.e., an ordered crystalized
configuration with isotropic velocities of a common magnitude. In terms of the distribution defined by
Equation (A9), this initial condition reads

Φ(c) = δ
(

c−
√

d/2
)

. (A15)

We label this initial condition with the Greek letter δ. The second initial distribution is just a Maxwellian
(label M), i.e.,

Φ(c) =
2

Γ( d
2 )

cd−1e−c2
. (A16)

Next, we choose the gamma distribution (label Γ) normalized to 〈c2〉 = d
2 , namely

Φ(c) =
2

θ
d
2θ Γ( d

2θ )
cd/θ−1e−c2/θ , (A17)

where θ > 0 can be freely chosen. The fourth- and sixth-order moments are 〈c4〉 = d(d+2θ)
4 and 〈c6〉 =

d(d+2θ)(d+4θ)
8 , so that a3 = 2(θ−1)

d+2 and a2 = − 8(θ−1)(θ−2)
(d+2)(d+4) . Here we have taken θ = 2.16 and 2.45 for d = 2

and 3, respectively.
The remaining two initial conditions are prepared by applying a coefficient of normal restitution α0

and allowing the system to reach the corresponding steady state (in the scaled quantities). Then, at s = 0,
the coefficient of restitution is abruptly changed to α = 0.1 and the evolution toward the corresponding
HCS is monitored. We have taken two classes of values of α0: (a) α0 < 1, corresponding to dissipative
inelastic collisions (label I), and (b) α0 > 1 [42], corresponding to “super-elastic” collisions (label S). More
specifically, for the preparation of the initial state I we have chosen α0 = 0.29 and 0.27 for d = 2 and 3,
respectively; the state S has been prepared with α0 = 1.29 and 1.47 for d = 2 and 3, respectively.

Table A1. Values of the fourth and sixth cumulants for the initial distributions δ, M, I, Γ, and S (see text).

δ M I Γ S

a2(0)
−0.500 (d = 2)
−0.400 (d = 3) 0

0.151 (d = 2)
0.111 (d = 3)

0.580 (d = 2)
0.580 (d = 3)

0.742 (d = 2)
0.713 (d = 3)

a3(0)
−0.667 (d = 2)
−0.457 (d = 3) 0

−0.080 (d = 2)
−0.046 (d = 3)

−0.062 (d = 2)
−0.149 (d = 3)

−1.499 (d = 2)
−1.242 (d = 3)

Table (A1) displays the values of a2 and a3 corresponding to, in order of increasing a2, the initial states
δ, M, I, Γ, and S.
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