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Abstract: Only two percent of Glioblastoma multiforme (GBM) patients respond to standard care and
survive beyond 36 months (long-term survivors, LTS) while the majority survive less than 12 months
(short-term survivors, STS). To understand the mechanism leading to poor survival, we analyzed
publicly available datasets of 113 STS and 58 LTS. This analysis revealed 198 differentially expressed
genes (DEGs) that characterize aggressive tumor growth and may be responsible for the poor
prognosis. These genes belong largely to the GO-categories “epithelial to mesenchymal transition” and
“response to hypoxia”. In this paper we applied upstream analysis approach which involves state-of-
art promoter analysis and network analysis of the dysregulated genes potentially responsible for short
survival in GBM. Binding sites for transcription factors associated with GBM pathology like NANOG,
NF-kB, REST, FRA-1, PPARG and seven others were found enriched in the promoters of the
dysregulated genes. We reconstructed the gene regulatory network with several positive feedback
loops controlled by five master regulators — IGFBP2, VEGFA, VEGF165, PDGFA, AEBP1 and OSMR
which can be proposed as biomarkers and as therapeutic targets for enhancing GBM prognosis. Critical
analysis of this gene regulatory network gives insights on mechanism of gene regulation by IGFBP2 via
several transcription factors including the key molecule of GBM tumor invasiveness and progression,
FRA-1. All the observations are validated in independent cohorts and their impact on overall survival
is studied.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common, highly malignant primary brain tumor 2.
Despite huge developments in treatment strategies, GBM poses unique treatment challenges due to
tumor recurrence (34%) and drug resistance leading to poor survival rates of less than 15 months even
after advanced chemoradiotherapy 3. There are as little as 2% of patients who actually respond to
standard care and survive beyond 36 months (3years) 3* clinically called as long-term survivors (LTS).
Another group termed as short-term survivors (STS) are those who survive less than 12 months 5. The
factors that predict the long survival are not completely known.

Though several factors like age, gender, Karnofsky performance score, extent of tumor resection,
radiotherapy, and chemotherapy are associated with survival and treatment responses®? , it is evident
from recent research that there are certain molecular signatures which might be driving treatment
responses and thereby survival. Therefore, understanding these extreme survivor groups at molecular
level may shed important light towards biological aspects driving their malignancy and survival.
Promoter methylation of the gene MGMT, mutations in the genes IDH1/2 and loss of heterozygosity in
chromosome 1p/19q are confirmed to be highly informative about survival and treatment responses
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3481013 Furthermore, CHI3L1, FBLN4, EMP3, IGFBP2, IGFBP3, LGALS3, MAOB, PDPN, SERPINGI
and TIMP1 gene expression is decreased in patients with long survival 1121415, Understanding these
extreme survivor groups at molecular level may shed important light towards biological aspects
driving their malignancy and survival.

With the advent of gene expression profiling and remarkable developments in high- throughput
technologies, it is possible for us to achieve higher level molecular insights into disease biology.
Databases like GEO'6, Array Express!” and The Cancer Genome Atlas - TCGA'® serve as open platforms
for retrieving high quality multi-omics data to find markers in cancer research. Identification of
differentially expressed genes (DEGs) already serves as an important in silico strategy towards finding
potential drivers of cellular state transitions. For a more refined analysis, functional annotation of genes
of interest, using a priori known biological categories from the Gene Ontology' — GO and pathway
databases e.g. TRANSPATH® 20, KEGG?,PANTHER?and Reactome? has proven to be an effective
hypothesis-driven approach in cancer research. Moreover, with the advent of state-of-art promoter
analysis it is now possible to establish gene regulatory networks that have been used to understand the
causes for gene dysregulation and identifying potential master regulators driving them. In this regard,
we applied Genome-Enhancer (https://genexplain.com/genome-enhancer/), multi-omics analysis
TOOL which makes use of an open source BioUML? programming environment and incorporates an
automated pipeline for such an analysis called “upstream analysis”?>% and newest advanced approach
called “walking pathways”?. “This strategy comprises two major steps: (1) analysis of promoters of
DEGs to identify transcription factors (TFs) involved in the process under study (done with the help of
the TRANSFAC® database”?2¢ and the binding site identification algorithms, Match®30 and CMA 31;
(2) reconstruction of signaling “pathways that activate these TFs and identification of master regulators
on the top of such pathways (done with the help of the TRANSPATH® signaling pathway database” 20
and special graph search algorithms) that are characterized by positive feedback loops?.

In this paper we applied upstream analysis on publicly available datasets of GBM - Molecular
Brain Neoplasia Data (REMBRANDT) cohort and GSE53733 to understand the gene-regulatory
networks driving short-survival in GBM. This regulatory network revealed set of 12 transcription
factors binding at the regulatory regions of genes of interest and 5 master regulators regulating them,
namely - (a) VEGFA, mediator of angiogenesis®, promoter of stem like cells in GBM, (b) PDGF - highly
amplified gene® and key player of tumorigenesis, (c) OSMR —that orchestrates feed-forward signalling
with EGFR and STAT3? to regulate tumor growth, (d) AEBP1 which has key role in pathogenesis via
NF-kB activation® and (e) IGFBP2.

IGFBP2 had higher expression in STS, and was found to have an impact on overall survival as well
as an established molecule of interest in GBM. IGFBP2 expression is higher in all GBM subtypes35, but
is said to drive gene programs for immunosuppression in mesenchymal subtype and is suggested as
an immunotherapeutic target® , whereas modulates cell proliferation in non-mesenchymal (Classical,
Proneural and neural) subtypes® 3. It is also found to be a marker of aggressive behavior and prognostic
marker for survival®. However, the molecular mechanism by which IGFBP-2 affects disease
progression and patient prognosis is not yet clear.

The current work focuses on understanding gene regulatory networks which drive short-survival
in GBM and their master regulators which can potentially act as biomarkers and therapeutic targets.
Later, we critically discuss the role of IGFBP2 in gene regulatory network.

2. Results

2.1. Identification of differentially expressed genes
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Identifying the DEGs gives us insight on the biological semantics of a cellular state and helps to
identify promising biomarkers of various disease states. The differential gene expression analysis
between STS and LTS groups of GBM, from the batch corrected GSE dataset was performed using
Limma* with FDR cutoff of 5%. The analysis revealed 957 genes which are significantly differentially
expressed (DEGs) (adj.p-value<0.05).The analysis revealed 115 significantly (adj.p-value<0.05)
upregulated (log2FC>0.5) and 83 significantly downregulated (log2FC<(-0.5)) genes. Top 5 upregulated
and downregulated genes and their corresponding log2FC are shown in Tablel and the full list is given
in Table S1-A.

Table 1. The list of top 5 significantly upregulated and downregulated genes in STS identified in the GSE

dataset.
Gene Symbol Description log2FC p-value adj. p-value
Upregulated genes
CHI3L1 Chitinase-3-like 1 1.371 9.73E-05 0.013
PDPN Podoplanin 1.241 7.88E-07 0.002
MEOX2 Mesenchyme homeobox 1.159 6.45E-04 0.028
2
IGFBP2 Insulin-like growth 1.149 4.87E-05 0.010
factor-binding protein 2
COL6A2 Collagen Type VI Alpha 1.0479 5.79E-05 0.011
2 Chain
Downregulate

genes

KLRC2 Killer cell lectin-like -1.2187 3.63E-04 0.022
receptor C2
KLRC1 Killer cell lectin-like -1.2187 3.63E-04 0.022
receptor C1
FUT9 Fucosyl-transferase 9 -1.0709 1.15E-04 0.014
DPP10 Dipeptidyl peptidase- -1.02781 2.97E-05 0.008
like 10
GABRB3 Gamma-aminobutyric -0.96352 6.73E-05 0.011
acid type A receptor

beta3 subunit

2.2. Functional annotation of differentially expressed genes

Functional annotation was performed to investigate biological roles of these DEGs. As shown in
Figure S1A, the top GO Biological process are extracellular structure and matrix organization with 30
DEG hits. Figure S1B shows the results for GO Cellular Component enrichment which revealed
dysregulation of genes that belong to extracellular matrix and synaptic membrane. The important
molecular function GO terms enriched are channel activity and transmembrane transporter activity
(Figure S1C). The disruption in extracellular matrix organization is one of the important signatures in
glioblastoma treatment response dealing with invasiveness and malignancy 5. Deeper biological
insights are required in this aspect. It is interesting to see enrichment of genes known to be involved in
glioma (Figure 1A). Gene signature enrichment based on hallmark gene sets of MSigDB clearly signifies
the enrichment of epithelial to mesenchymal transition depicted in Figure 1B. The process of epithelial
to mesenchymal transition plays a very important role in GBM survival by driving tumor invasiveness
and drug resistance 4. Important pathways like Aurora signaling, G2/M phase transition, TGF- are
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found to be enriched in Table 2 according TRANSPATH® pathways. The full list of enrichment results

can be found in Table S1-B.

(A)

Glioma

Malignant neoplasm of lung
Liver carcinoma

Colorectal Cancer

Neoplasm Metastasis
Prostate carcinoma

Breast Carcinoma

Malignant neoplasm of breast
Carcinogenesis

Malignant necplasm of prostate
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Figure 1: Functional enrichment analysis of DEGs (A) Enrichment for known Disease-Gene Networks
in different diseases. Y-axis represents enriched ontology categories and X-axis represents GeneRatio.
Gene ratio is count/set-size.The 'count' is the number of genes that belong to a given gene set, while 'set-
size' is the total number of genes in the gene set. Y-axis is sorted based on Leading-edge. Leading edge

is subset of genes which contribute most to the Enrichment Score. The dots are sized based on gene ratio

and are coloured according to their adj.p-value. (B) Enrichment for Hallmark gene sets in the Molecular

signature database similar to A.

Table 2: Pathway enrichment using TRANSPATH® Pathway (2019.3) for differentially expressed genes

ID . Group Expected Nominal p- Rank at Number of

(TRANSPATH) Title size hits value ES max NES ~ FDR hits

CHO000001004 Aurora-A cell cycle 68 67.262 0 0422 8347 4138 0 68

regulation
CHO000000919 Cyclosome 77 76.164 0 0349 7336 3728 0 77
regulatory network
CHO000000694 G2/M phase (cyclin 66 65.284 0 0375 6641 3587 0 66
B: Cdk1)
CHO000000879 Caspase network 83 82.099 0 0333 8414 3523 0 83
CH000000711 TGFbeta pathway 153 151.340 0 0232 8431 3346 0 151
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2.3. Identifying the master regulators of dysregulated gene networks

Reconstruction of the disease-specific regulatory networks can help to identify potential master
regulators which may serve as mechanism based biomarkers or as therapeutic targets to block a specific
pathological regulatory cascade. Using the gene regulatory analysis as a first step we analyzed
enrichment of transcription factor binding sites in promoters of upregulated genes of STS using DNA-
binding motifs listed in the TRANSFAC® library. 274 transcription factors (Table S1-C) enriched for
CCKR signaling, interleukin signaling, PDGF signaling, WNT signaling were found to have their
binding sites enriched, full enrichment results can be found in Table S1-D.

Next, we applied the Composite Module Analyst (CMA) and identified-two modules involving 12
transcription factor binding site combinations that regulate the expression of genes of interest. CMA
revealed the following modules comprising clustering binding sites for the following TFs: Modulel:
HNF3B, NANOG, NFKAPPAB, TAF1, TCF4, FRA-1; Module2: PPARG, TAL1, REST, POU6F1, FOSJUN
& PBX. The modules, transcription factors and their significance are depicted in Figure S2. Differential
expression statistics for the 12 transcription factors are given in Table S2. Among them, FRA-1
transcription factor (also known as FOSL1) was found to be p-value significant and upregulated in
short-term survivors of GBM (log2FC=0.023, p-value = 0.008, adj.p-value =0.093) Table S2.

Figure 2 validates the predicted cluster of TF binding sites from the composite modules identified in
the promoter of IGFBP2 gene. We can see that four binding sites in this cluster (for TFs: c-Fos/c-Jun,
Nanog, Tal-1, HNF3/FoxA1) can be confirmed by publicly available ChIP-seq data of GTRD database'.
In addition, Fra-1 binding site can be confirmed by a cluster of mapped reads of independent publicly
available ChIP-seq data (FRAl__t;:?Ck on (th[e Figure( 2? (Full map is shown in the Figure S4).
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Figure 2. Map of the cluster of TF binding sites of the composite model identified within the promoter of IGFBP2
gene (-1000 to +100bp relative to transcription start site (TSS)). Position of the TSS (the beginning of the first exon
on IGFBP2 gene) is shown by the vertical dotted line. Track "yes track" represents the cluster of identified TF
binding sites of the composite model within the promoter. The direction of the arrows gives the orientation of the
PWMs. The names of TFs binding to these sites are shown above the arrows. The track "FRA1" represents the
mapped reads of the FRAI(also called FOSL1) ChIP-seq data of GEO, GSM803382. The reads were maped on the
hg38 human genome using Subread-aligner*> with default parameters.

The track "all meta clusters" shows all known meta-clusters in this region from GTRD database41 that represent
the overlapping fragments of peaks for one particular TF from several ChIP-seq experiments. The name of TF is
shown above each meta-cluster. Several predicted TF binding sites in the composite model are confirmed in
independent ChIP-seq experiments: several overlapping reads of FRA1 ChIP-seq data in the "FRA1" track and
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FOSL2 meta- cluster in the GTRD confirm predicted site for Fra-1; FOS and JUN meta-clusters in the GTRD confirm
the predicted c-Fos:c-Jun binding sites; NANOG meta-cluster confirms the predicted Nanog binding site; TAL1
meta-cluster confirms the predicted Tal-1 binding site; FOXA2 and FOXA1 meta-clusters of GTRD confirms the
HNF3beta binding site.

Finally, we reconstructed the signaling network that activates the TFs revealed by CMA analysis and
thereby identifying the top regulators in these networks using TRANSPATH® database. The process
identified five important master regulators that are plausible drivers of short survival in GBM: IGFBP2,
VEGFA/VEGF165, PDGFA, AEBP1 and OSMR. All the master regulators were found to be significantly
upregulated in short-term survivors. The genes that encode the master regulator proteins are controlled
by the transcription factors revealed by CMA in their promoters, which maintains the multiple positive
feedback loops in the system. It should be underlined here, that in such networks with positive
feedback loops, the identified key transcription factors, such as Fra-1, are both upstream of their target
genes, such as IGFBP2, as well as downstream from the master regulator proteins, such as IGFBP-2.
(encoded by these genes). The regulatory network reconstructed along with six master regulators is
shown in Figure 3, the master regulators and their LogFC in STS are listed in Table 3. Since VEGF165
is a splice variant of VEGF-A, only the latter will be considered further on.
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Figure 3. Signal transduction and Gene regulatory network of six master regulators (red nodes) regulating two
transcription factor modules (purple nodes) enriched in promoters of highly upregulated genes of STS. The dotted
lines from genes to such signalling proteins represents the transcription and translation processes (positive
feedback loops). The outside box filling is based on LogFC and are filled red when upregulated (log2FC>0.2 & p-
value<0.05) and filled blue when downregulated (log2FC<0.2 & p-value<0.05) in the current study®.
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Table 3. Table of the master regulators identified, their description, log2FC in STS and number of TFs

regulated.
Molecule Gene Description HGNC Gene log2FC in STS No. of TEs
Name symbol regulated
[GFBP-2 Insulin like growt.h factor binding IGFBP2 1.149 9
protein 2
ACLP AE binding protein 1 AEBP1 0.782 9
VEGF-A  vascular endothelial growth factor A VEGFA 0.778 9
VEGF-165 vascular endothelial growth factor A VEGFA 0.778 9
OSMRbeta Oncostatin M receptor OSMR 0.634 8
PDGE-A platelet derived growth factor subunit PDGFA 0.529 9

A

2.4. Validating the expression of master regulators in other cohorts

Expression patterns of the above identified master regulators have been validated in two different
cohorts. A) TCGA-GBM microarray'® data and B) GSE160114. The expression patterns were similar and
there is a significant upregulation of all master regulators except for VEGFA (GSE16011: adj.p-
value=0.069, TCGA-GBM: adj.p-value=0.075) Table S1-E & S1-F. The differential expression values are
given in Table 4.

Table 4. Expression of master regulators across survival groups (STS and LTS resp.,) and across 3
datasets — GSE, TCGA-GBM microarray and GSE16011.

Rzglslt;;r GSE GSE16011 TCGA

log2FC (STS vs adj.p- log2FC (STS vs adj.p- log2FC (STS vs adj.p-

LTS) value LTS) value LTS) value
IGFBP2 1.149 4.87E-05 2.030 4.598E-04 1.098 5.00E-06
AEBP1 0.782 7.75E-05 1.723 0.001 0.971 3.96E-06
PDGFA 0.529 4.55E-04 1.680 4.709E-09 0.825 2.07E-05
VEGFA 0.778 5.20E-04 0.884 0.069 0.500 0.0752
OSMR 0.634 8.65E-04 1.957 4.24E-05 0.486 0.0318

2.5 Validating the master regulators in TCGA-GBM cohort

The TCGA-GBM microarray data containing 258 STS and 49LTS is used to validate the above identified
drivers of short survival. The data is pre-processed, adjusted for batch effects (Figure S3) and
differential gene expression analysis is performed. Same cut-offs for log2FC and adj.p-value are used.
We identified 171 genes upregulated in STS of GBM (log2FC>0.5 & adj.p-val<0.05) full list in Table S1-
E. 49 of them were in common between GSE dataset and TCGA-GBM, full differential gene expression
analysis results are given in Table §1-G. Composite models selected by CMA algorithm across the two
datasets were expected to vary. We identified a model that includes set of 16 transcription factors Table
S3 and 12 master regulators upstream (Table S4) of them regulating the signal transduction and gene
regulatory network in STS.
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As a result, the TCGA-GBM dataset validates IGFBP2, AEBP1(ACLP) and PDGFA as master regulators
driving dysregulated gene network in STS. We also found that binding sites for FRA-1 transcription
factor are statistically significantly enriched at the regulatory regions of dysregulated genes including
IGFBP2 in TCGA-GBM cohort (Table S5).

2.6. Impact of master regulators on survival in GBM

Univariate survival analysis was used to study the impact of these master regulators and their regulated
transcription factors on overall survival in GBM based on TCGA-RNA-seq data. Patients are split into
non-overlapping 50% upper and lower quantiles. Additionally, Cox regression for univariate survival
analysis is performed, hazard ratio (HR) and corresponding p-values are shown in Figure 4. Univariate
Cox regression analysis on other microarray datasets is given in Table S1-I. All master regulators were
found to have significant impact upon survival except VEGFA. FRA1(FOSL1) was found to have
significant cox hazard ratio (HR).
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Figure 4. Survival analysis using 152 RN A-seq data of TCGA GBM cohort. Out of five master regulators,
all but VEGFA (AEBP1, OSMR, PDGFA and IGFBP2) had a statistically significant impact on survival
based on 50% upper and lower quantiles. Hazard ratio (HR) and statistical significance(p(HR))
according to Cox survival estimates are mentioned.
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2.7 Master regulator expression patterns across GBM Subtypes

Based on regulatory landscape of GBM, there are 4 subtypes — Classical, Mesenchymal, Proneural and
Neural*. There is a significant level of intertumoral as well as intra-tumoral heterogeneity within each
of them**. Molecular subtypes of GBM in GSE dataset is given in Table S6. Differentially expressed
genes between STS and LTS within each subtype is given in Supplementary file 3. Expression patterns
of master regulators across subtypes and across survival groups is depicted as boxplot in Figure S5.
None of the master regulators were found to be significantly differentially expressed between survivor
groups in any subtypes.

3. Discussion

Gene regulatory networks represent the causal regulatory relationships between transcription factors
(TFs) and their gene targets, which enables us to discover dysregulated genes in certain biological
states*. Comparative studies of short-term survivors and long-term survivors of GBM showed that
gene-expression programs executed across survival groups vary significantly. In the light of these
findings, we sought to apply an upstream analysis approach to gain insight about gene regulatory
networks driving the short survival.

In the promoter analysis, we identified a set of 12 TFs in composite clusters that are enriched in the
promoters regions of dysregulated genes in short term survivors (upregulated in STS). The TFs
NANOG and REST have been said to be critical for self-renewal and maintenance of oncogenic
signatures in glioblastoma stem-like cells*>#’, PPARG has emerged as a promising therapeutic target as
its agonists increased median survival in GBM patients*, NF-kB is implicated in several processes like
invasion, epithelial-mesenchymal transition®, resistance to radiotherapy*® and maintenance of cancer
stem-like cells®’, FRA-1/FOSL1 has been reported to be important in maintenance/progression of
malignant glioma®. FRA-1 along with JUN-B modulates malignant feature of GBM by regulating
expression of metalloproteinases like MMP-2 and MMP-9%. Among these 12 TFs, we found that FRA-1
has a significant impact upon survival and has higher expression in STS. Debinski et al., (2005)>
hypothesized that any AP1 stimulating signals like epidermal growth factor (EGF), leukemia inhibitory
factor, Oncostatin M, FGF-2 can positively regulate FRA-1. VEGF-D was shown to be regulated by FRA-
1 (supporting the feedback loop found in our work) and is a known prognostic factor in other
aggressive cancers 545

Graph analysis of the signal transduction network upstream of these transcription factors identified
five potential master regulators that might explain gene dysregulation in STS, namely - insulin like
growth factor binding protein (IGFBP2), vascular endothelial growth factor A (VEGEF-A), its isoform
VEGF165, platelet Derived growth Factor A (PDGFA), Oncostatin M (OSMR) and Adipocyte Enhancer
binding protein (AEBP1).All the identified master regulators were upregulated in STS and their
expression patterns were validated in two other independent cohorts. We found that all master
regulators except VEGFA has an impact on overall survival in the GBM patients. IGFBP2, AEBP1 and
PDGFA master regulators driving short survival were validated in TCGA-GBM microarray cohort. Out
of them, IGFBP2 had higher expression in STS. The insulin-like growth factor binding protein 2
(IGFBP2) is said to be one of most potential glioma oncogene and functions as a hub of oncogenic
signalling pathways by regulating pro-tumorigenic signals of tumor initiation and progression. Earlier
studies have suggested IGFBP2 to drive EMT and as a potential therapeutic target in mesenchymal
GBM#%. It is established that exogenous IGFBP2 promotes proliferation, invasion, and
chemoresistance to temozolomide in glioma cells via integrin 31 by promoting ERK phosphorylation
and nuclear translocation 5%.IGFBP2 is considered as one of the strongest biomarkers of aggressive
behavior in GBM¥*and also a prognostic marker for survival®,
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Here, we propose that IGFBP2 can be a potential regulator of FRA-1 transcription factor. IGFBP2
induced RAF/MAPK signalling (Figure 3) activates FRA-1. It is earlier shown that IGFBP2 and FRA-1
regulated transcription of VEGF>%¢!, which is the second most dysregulated master regulator in our
network. It is reported that enhanced ERK signalling, that may be triggered by these master-regulators,
may lead to mitogen-induced FRA-1 transcription ¢ as well as its protection from proteasomal
degradation . As per the gene regulatory network developed, it is possible that FRA-1 mediates the
positive feedback loop where FRA-1 activates transcription of master regulator genes in cooperation
with other TFs and in turn master regulator gene products enhance/potentiate FRA-1. We find that
promoters of the genes of all the five master regulators reported in the study have binding sites for
FRA-1 transcription factor. Experimental evidences are available showing that IGFBP2 can enhance
GBM invasion by enhancing MMP2 expression®. This validates our computationally predicted
hypothesis that IGFBP2 be a therapeutic target. The novelty of the work is that we are able to establish
through the gene regulatory networks that FRA-1 can be a downstream transcription factor of IGFBP2
in GBM. Kesari, S. et al.,2011 confirms our hypothesis that IGFBP2 can enhance GBM invasion via
AP1(FOS-JUN) transcription factor. Metalloproteinases like MMP-2/MMP-9 are earlier reported 648 to
be regulated by FRA-1 transcription factor in several cancers including GBM. Taken together, our work
proposes that the regulation of IGFBP2 gene expression via AP1(FOS-JUN) transcription factor can be
an important mechanism of GBM invasion. In this study, Figure 5 combines prior knowledge in the
field and gene regulatory network developed in our study (Figure 3 and 5).

In summary, the current work proposes a gene regulatory network in STS regulated by five master
regulators — IGFBP2, VEGFA, PDGFA, OSMR and AEBP1 which can potentially act as biomarkers of
GBM prognosis and as therapeutic targets for enhancing GBM prognosis. The work also proposes a
novel mechanism of gene dysregulation by IGFBP2 by modulating a key molecule of tumor
invasiveness and progression - FRA-1 transcription factor. All the genes encoding these five master
regulators have binding sites for FRA-1 in their promoters. FRA-1 and the master regulators are in a
positive feedback loop to orchestrate a complex tumorigenic program leading to poor survival in GBM.
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Figure 5: Diagram combining prior knowledge about of role of IGFBP2 in GBM and the gene regulatory
network developed in the study. The hexagons are master regulators identified in our analysis. All the intermediates
of the gene regulatory network are colored red if uprequlated in STS, and black if not present in the network. Dotted
black line if the knowledge is through literature, continuous black line if known through gene regulatory network. Blue
dotted lines represent gene regulatory connections between master regulators and their corresponding genes transcribed
by target transcription factors.

VEGFA, PDGFA, IGFs and IL-31 activate RAF/MEK/ERK signalling which mediates cell survival through PI3K-AKT
pathway®”, MEK2/RAF1/ERK5 and AKT-1 are found to be upregulated in STS, suggestive of activated ERK
signalling which can contribute to drug resistance 772 IGFBP2 activates IGFR either by increasing bioavailability of
IGFs or by direct interaction with its functional domain. Integrin acts as receptor for IGFBP2 extracellular signals 5758
and modulates NF-xB signalling. IGFBP2 by nuclear translocation ©' is involved in transcriptional regulation of the
VEGF gene and modulates angiogenesis ®. STAT3 and NF-«B are said to be the two major downstream transcription
factors of IGFBP2 that direct tumorigenic intracellular signalling 7 via EGFR signalling. Oncostatin M, receptor for
cytokine IL31 is a regulator of EGFR signalling® . FRA-1 is required for AKT activation in cancers to promote AKT-
dependent cell growth™, NF-«xB can regulate AP1(FOS & JUN) thereby VEGF expression in pancreatic tumor cell
lines™. All the 5 master regulators have binding sites for FRA-1. In the figure we depicted the possible positive feedback
loop between FRA-1 and the master regulators to orchestrate complex tumorigenic program of invasiveness, migration,
drug resistance and angiogenesis.

4. Materials and Methods

4.1. Data Collection

The genome wide expression profiles based on Human Genome U133 plus 2.0 array and clinical
information of patients with GBM were collected from public repository of GEO database —
GSE1084747(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474) = and  GSE53733'3
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53733). The 2 datasets were pooled together
leading to 113 and 58 samples corresponding to short-term survivors (STS; survival < 12 months) and
long-term survivors (LTS; survival > 36 months) with GBM, respectively Table 5. Duplicates were not
removed. Sample information and cleaned datasets are given in Supplementary file 4

Table 5. Statistics of datasets studied in this work. The datasets with labels GSE’ were collected from
GEO database.

Short-term  Long-term

Platform . .
survivors survivors
HU133 plus
GSE5373312 2.0 arrays 16 23
HU133 plus
GSE1084745 2.0 arrays 97 35

4.2. Affymetrix microarray data pre-processing

The raw data files (. CEL format) for GSE108474 and GSE53733 were collected from GEO database-
from here on called as GSE dataset. RMA algorithm is used in R (affy package) for background
correction, quality check and normalization to obtain log2 transformed expression values 77. Batch
correction of the pooled expression data was performed using empirical Bayes framework is performed
78 . This batch corrected file is used for further analysis. Multiple Affymetrix ids were summarized to
genes ids by choosing the maximum out of probe intensities of multiple probes belonging to single
gene. The final expression matrix comprised 21526 probes and 171 samples.

4.3 Differential gene expression (DEG) analysis

LIMMA (Linear Models for Microarray Data) method was applied to identify differentially
expressed genes . It is an efficient tool which is stable even for experiments with small samples.
Differential gene expression analysis of 171 samples of GSE dataset was performed with Benjamini-
Hochberg adjusted P_value. 957 genes were significantly (adj.p-value<0.05) differentially expressed
(DEGs). 115 of them were significantly upregulated (adj.p-value <0.05 & log2FC>0.5) and 83 were
significantly downregulated (adj.p-value<0.05 & log2FC<(-0.5).

4.4. Databases used in the study

Transcription factor binding sites in promoters and enhancers of differentially expressed genes
were analyzed using known DNA-binding motifs described in the TRANSFAC® library, release 2019.3
(geneXplain GmbH, Wolfenbiittel, Germany) (https://genexplain.com/transfac)”. The master regulator
search uses the TRANSPATH® database , release 2019.3 (geneXplain GmbH, Wolfenbiittel, Germany)
(https://genexplain.com/transpath)®. A comprehensive signal transduction network of human cells is
built by Genome Enhancer software based on reactions annotated in TRANSPATH®. The information
about drugs corresponding to identified drug targets and clinical trials references were extracted from
HumanPSD™ database®, release 2020.2 (https://genexplain.com/humanpsd). The Ensembls' database
build 99.38 (hg38) (http://www.ensembl.org) was used for gene IDs representation and Gene
Ontology" (GO) (http://geneontology.org) was used for functional classification of the studied gene set.

4.5. Functional Annotation

To explore the biological importance of gene signatures, gene set enrichment analysis is
performed. All the adj.p-value significant genes were used. GSEA is an efficient method to determine
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whether the genes of interest show statistically significant enrichment between different biological
states. Gene ontology enrichments for cellular component, biological process and molecular functions
were performed. To investigate the top enriched ontology terms 1000 random permutations were done
and adj.p-value cutoff of 0.05 is used. The dysregulated gene networks enrichment also gives useful
insight about known disease signatures 8. The hallmark gene set of MsigDB#? defines specific biological
states or processes. Enrichment analysis is performed in R using DOSE# package. PANTHER pathway
enrichment of the identified transcription factors was performed using EnrichR tool 8. TRANSPATH?2
pathway enrichment was performed using geneXplain platform.

4.6. Genome Enhancer pipeline

The approaches mentioned above helps us in understanding the impact of the differentially
expressed genes in GBM biology. To understand the reason behind this dysregulation, Genome
enhancer pipeline of geneXplain is used (my-genome-enhancer.com). Genome Enhancer is a multi-
omics analysis service (https://genexplain.com/genome-enhancer/) which is build using an open source
BioUML programming environment? (www.biouml.org) and incorporates an automated pipeline for
“upstream analysis”?? and newest advanced approach called “walking pathways”? .Significantly
upregulated genes in STS were used in this workflow.

The workflow works in 2 steps.

A. Analysis of enriched transcription factor binding sites and composite modules

Binding of transcription factors to the transcription factor binding sites in promoters and like
enhancers is key to mediation of transcriptional regulation of genes. Classically, enhancers are defined
as regions in the genome that increase transcription of one or several genes when inserted in either
orientation at various distances upstream or downstream of the gene 3'. Enhancers typically have a
length of several hundreds of nucleotides and are bound by multiple transcription factors 2.

Identifying such clusters of binding sites for such transcription factors (composite-modules) that
act as potential condition-specific enhancers of the target genes in their upstream regulatory regions (-
1000 bp upstream of transcription start site (TSS)) and the transcription factors which regulate the genes
through such enhancers is a determining step to understand regulatory mechanism that are binding to
clusters of co-localized TF binding sites (composite regulatory modules)s

We use Composite Module Analyst (CMA) 31 method to detect such potential enhancers, as targets of
multiple TFs bound in a to the regulatory regions of the genes of interest. CMA applies a genetic
algorithm to construct a generalized model of the enhancers by specifying combinations of TF motifs
(from TRANSFAC®) whose sites are most frequently clustered together in the regulatory regions of the
studied genes. The transcription factors are ranked based on (a)The Yes-No ratio: given a set of
promoter sequences of dysregulated genes, denoted as Yes set, and promoter sequences of unchanged
genes in the experimental condition, denoted as No set, motifs are considered important if they have a
high Yes/No ratio, the ratio of motif occurrences per promoter in Yes and No sets, and a statistically
significant enrichment of occurrences in Yes sequences assessed by the binomial p-value”. (b)
Regulatory score, which is a measure of involvement of a transcription factor in controlling expression
of genes that encode master regulators. CMA identifies the transcription factors that through their
cooperation provide a synergistic effect and thus have a great influence on the gene regulation process.

B. Finding master regulators in networks

The second step involves the signal transduction database TRANSPATH® and special graph
search algorithms to identify common regulators of the revealed transcription factors. These master
regulators appear to be the key candidates for therapeutic targets as they have a master effect on
regulation of intracellular pathways that activate the pathological process of our study. Master
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regulators regulating the above revealed transcription factors are not only ranked based on (a) LogFC
but also (b)CMA score - which signifies how strong is the potential for this gene to be regulated by
transcription factors of interest and (c) Master regulator score — which signifies how strong is the
potential of this gene product to regulate activity of those transcription factors. Selected master
regulators can also be visualized and with possibility to map the LogFC, p value on the created
regulatory network.

4.7. Validation of observed gene signatures

The raw microarray data of 560 TCGA-GBM samples were downloaded from TCGA legacy. The
GSE16011 raw. CEL data was downloaded from GEO repository. Both raw datasets were processed
and analyzed independently following same steps as mentioned earlier. These two datasets are used to
observe and validate the expression pattern of master regulators across the two survival groups (see
Table 6). GSE16011 comprises of data generated at a single center and is used in several studies 624,
unlike TCGA. TCGA-GBM microarray data PCA plots are given Figure S3 and no significant batch
effects in the context of survival groups were found.

Table 6. Statistics of two validation datasets.

Short-term  Long-term

Datasets Platform R i
survivors survivors
HU133 plus
GSE160114 2.0 arrays 93 16
T(;GA—GBM HU133 71 49
microarray!®

4.8. Validation of Master regulators

The TCGA-GBM microarray data downloaded from TCGA legacy archive is processed in same
fashion as GSE. Similar cutoffs (log2FC, p-value) and parameters are used to identify enriched
transcription factors and network analysis in-order to understand drivers of gene regulatory networks
in short survival.

4.9. Impact on survival

Master regulators and their target transcription factors affect the whole regulatory network and
therefore can have an independent impact on survival in GBM patients. Level 3 RNA-seq data and
clinical data for 152 TCGA GBM cohort is downloaded using TCGAbiolinks package in R. Survival and
Survminer libraries in R are used to perform univariate survival analysis. Univariate survival analysis
is used to understand the impact of individual master regulator on survival in GBM with non-
overlapping 50% upper and lower quantiles. Additionally, Univariate Cox regression for survival
analysis is performed using coxph function of Survival package to calculate Hazard ratio (HR) with
pvalue cutoff of 0.05 for significance.

5. Conclusion

In the work presented, we have identified candidate master regulators responsible for gene
dysregulation in short-term survivors. These candidates have sufficient experimental evidence towards
their role in GBM. Out of reported five master regulators, IGFBP2 is established as the most promising
master regulator. Through the gene regulatory network analysis, we propose that IGFBP-2 and FRA-1
are in a positive feedback loop that may lead to a pathological autocatalytic process responsible for
poor survival in GBM.
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