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Abstract: Only two percent of Glioblastoma multiforme (GBM) patients respond to standard care and 

survive beyond 36 months (long-term survivors, LTS) while the majority survive less than 12 months 

(short-term survivors, STS). To understand the mechanism leading to poor survival, we analyzed 

publicly available datasets of 113 STS and 58 LTS. This analysis revealed 198 differentially expressed 

genes (DEGs) that characterize aggressive tumor growth and may be responsible for the poor 

prognosis. These genes belong largely to the GO-categories “epithelial to mesenchymal transition” and 

“response to hypoxia”. In this paper we applied upstream analysis approach which involves state-of-

art promoter analysis and network analysis of the dysregulated genes potentially responsible for short 

survival in GBM. Binding sites for transcription factors associated with GBM pathology like NANOG, 

NF-κB, REST, FRA-1, PPARG and seven others were found enriched in the promoters of the 

dysregulated genes. We reconstructed the gene regulatory network with several positive feedback 

loops controlled by five master regulators – IGFBP2, VEGFA, VEGF165, PDGFA, AEBP1 and OSMR 

which can be proposed as biomarkers and as therapeutic targets for enhancing GBM prognosis. Critical 

analysis of this gene regulatory network gives insights on mechanism of gene regulation by IGFBP2 via 

several transcription factors including the key molecule of GBM tumor invasiveness and progression, 

FRA-1. All the observations are validated in independent cohorts and their impact on overall survival 

is studied.   

Keywords:  Glioblastoma; master regulators; upstream analysis; IGFBP2; FRA-1; FOSL1;short term 
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1. Introduction 

Glioblastoma multiforme (GBM) is the most common, highly malignant primary brain tumor 2. 

Despite huge developments in treatment strategies, GBM poses unique treatment challenges due to 

tumor recurrence (34%) and drug resistance leading to poor survival rates of less than 15 months even 

after advanced chemoradiotherapy 3. There are as little as 2% of patients who actually respond to 

standard care and survive beyond 36 months (3years)  3,4 clinically called as long-term survivors (LTS). 

Another group termed as short-term survivors (STS) are those who survive less than 12 months 5. The 

factors that predict the long survival are not completely known.  

 

Though several factors like age, gender, Karnofsky performance score, extent of tumor resection, 

radiotherapy, and chemotherapy are associated with survival and treatment responses6–9 , it is evident 

from recent research that there are certain molecular signatures which might be driving treatment 

responses and thereby survival. Therefore, understanding these extreme survivor groups at molecular 

level may shed important light towards biological aspects driving their malignancy and survival. 

Promoter methylation of the gene MGMT, mutations in the genes IDH1/2 and loss of heterozygosity in 

chromosome 1p/19q are confirmed to be highly informative about survival and treatment responses 
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3,4,8,10–13 . Furthermore, CHI3L1, FBLN4, EMP3, IGFBP2, IGFBP3, LGALS3, MAOB, PDPN, SERPING1 

and TIMP1 gene expression is decreased in patients with long survival 11,12,14,15. Understanding these 

extreme survivor groups at molecular level may shed important light towards biological aspects 

driving their malignancy and survival. 

 

With the advent of gene expression profiling and remarkable developments in high- throughput 

technologies, it is possible for us to achieve higher level molecular insights into disease biology. 

Databases like GEO16,Array Express17 and The Cancer Genome Atlas – TCGA18 serve as open platforms 

for retrieving high quality multi-omics data to find markers in cancer research. Identification of 

differentially expressed genes (DEGs) already serves as an important in silico strategy towards finding 

potential drivers of cellular state transitions. For a more refined analysis, functional annotation of genes 

of interest, using a priori known biological categories from the Gene Ontology19 – GO and pathway 

databases e.g. TRANSPATH® 20,KEGG21,PANTHER22and Reactome23 has proven to be an effective 

hypothesis-driven approach in cancer research. Moreover, with the advent of state-of-art promoter 

analysis it is now possible to establish gene regulatory networks that have been used to understand the 

causes for gene dysregulation and identifying potential master regulators driving them. In this regard, 

we applied Genome-Enhancer (https://genexplain.com/genome-enhancer/), multi-omics analysis 

TOOL which makes use of an open source BioUML24 programming environment and incorporates an 

automated pipeline for such an analysis called “upstream analysis”25,26 and newest advanced approach 

called “walking pathways”27. “This strategy comprises two major steps: (1) analysis of promoters of 

DEGs to identify transcription factors (TFs) involved in the process under study (done with the help of 

the TRANSFAC® database”20,28 and the binding site identification algorithms, Match29,30 and CMA 31; 

(2) reconstruction of signaling “pathways that activate these TFs and identification of master regulators 

on the top of such pathways (done with the help of the TRANSPATH® signaling pathway database” 20 

and special graph search algorithms) that are characterized by positive feedback loops27.  

 

In this paper we applied upstream analysis on publicly available datasets of GBM - Molecular 

Brain Neoplasia Data (REMBRANDT) cohort and GSE53733 to understand the gene-regulatory 

networks driving short-survival in GBM. This regulatory network revealed set of 12 transcription 

factors binding at the regulatory regions of genes of interest and 5 master regulators regulating them, 

namely - (a) VEGFA, mediator of angiogenesis32, promoter of stem like cells in GBM, (b) PDGF – highly 

amplified gene33  and key player of tumorigenesis, (c) OSMR –that orchestrates feed-forward signalling 

with EGFR and STAT334 to regulate tumor growth, (d) AEBP1 which has key role in pathogenesis via 

NF-κB activation35 and (e) IGFBP2.   

IGFBP2 had higher expression in STS, and was found to have an impact on overall survival as well 

as an established molecule of interest in GBM. IGFBP2 expression is higher in all GBM subtypes35, but 

is said to drive gene programs for immunosuppression in mesenchymal subtype and is suggested as 

an immunotherapeutic target36 , whereas modulates cell proliferation in non-mesenchymal (Classical, 

Proneural and neural) subtypes37,38. It is also found to be a marker of aggressive behavior and prognostic 

marker for survival39. However, the molecular mechanism by which IGFBP-2 affects disease 

progression and patient prognosis is not yet clear. 

The current work focuses on understanding gene regulatory networks which drive short-survival 

in GBM and their master regulators which can potentially act as biomarkers and therapeutic targets. 

Later, we critically discuss the role of IGFBP2 in gene regulatory network.  

 

2. Results  

2.1. Identification of differentially expressed genes   
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Identifying the DEGs gives us insight on the biological semantics of a cellular state and helps to 

identify promising biomarkers of various disease states. The differential gene expression analysis 

between STS and LTS groups of GBM, from the batch corrected GSE dataset was performed using 

Limma40 with FDR cutoff of 5%. The analysis revealed 957 genes which are significantly differentially 

expressed (DEGs) (adj.p-value<0.05).The analysis revealed 115 significantly (adj.p-value<0.05) 

upregulated (log2FC>0.5) and 83 significantly downregulated (log2FC<(−0.5)) genes. Top 5 upregulated 

and downregulated genes and their corresponding log2FC are shown in Table1 and the full list is given 

in Table S1-A. 

Table 1. The list of top 5 significantly upregulated and downregulated genes in STS identified in the GSE 

dataset. 

Gene Symbol Description log2FC p-value adj. p-value 

Upregulated genes   

CHI3L1 Chitinase-3-like 1 1.371 9.73E-05 0.013 

PDPN Podoplanin 1.241 7.88E-07 

 

0.002 

MEOX2 Mesenchyme homeobox 

2 

1.159 6.45E-04 

 

0.028 

 

IGFBP2 Insulin-like growth 

factor-binding protein 2 

1.149 4.87E-05 

 

0.010 

COL6A2 

 

Collagen Type VI Alpha 

2 Chain 

1.0479 

 

5.79E-05 

 

0.011 

 

Downregulate 

genes 

    

         KLRC2                  Killer cell lectin-like              -1.2187                     

                                              receptor C2 

          3.63E-04                                                     0.022  

KLRC1 Killer cell lectin-like 

receptor C1 

-1.2187 3.63E-04 0.022 

FUT9 Fucosyl-transferase 9 

 

-1.0709 1.15E-04 

 

0.014 

 

DPP10 Dipeptidyl peptidase-

like 10 

-1.02781 2.97E-05 

 

0.008 

 

GABRB3 Gamma-aminobutyric 

acid type A receptor 

beta3 subunit 

-0.96352 6.73E-05 

 

0.011 

 

     

        

2.2. Functional annotation of differentially expressed genes 

Functional annotation was performed to investigate biological roles of these DEGs. As shown in 

Figure S1A, the top GO Biological process are extracellular structure and matrix organization with 30 

DEG hits. Figure S1B shows the results for GO Cellular Component enrichment which revealed 

dysregulation of genes that belong to extracellular matrix and synaptic membrane. The important 

molecular function GO terms enriched are channel activity and transmembrane transporter activity 

(Figure S1C). The disruption in extracellular matrix organization is one of the important signatures in 

glioblastoma treatment response dealing with invasiveness and malignancy 15. Deeper biological 

insights are required in this aspect. It is interesting to see enrichment of genes known to be involved in 

glioma (Figure 1A). Gene signature enrichment based on hallmark gene sets of MSigDB clearly signifies 

the enrichment of epithelial to mesenchymal transition depicted in Figure 1B. The process of epithelial 

to mesenchymal transition plays a very important role in GBM survival by driving tumor invasiveness 

and drug resistance 41. Important pathways like Aurora signaling, G2/M phase transition, TGF-β are 
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found to be enriched in Table 2 according TRANSPATH® pathways. The full list of enrichment results 

can be found in Table S1-B. 

 

(A) 

 

                                                                                                            

 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Functional enrichment analysis of DEGs (A) Enrichment for known Disease-Gene Networks 

in different diseases. Y-axis represents enriched ontology categories and X-axis represents GeneRatio. 

Gene ratio is count/set-size.The 'count' is the number of genes that belong to a given gene set, while 'set-

size' is the total number of genes in the gene set. Y-axis is sorted based on Leading-edge. Leading edge 

is subset of genes which contribute most to the Enrichment Score. The dots are sized based on gene ratio 

and are coloured according to their adj.p-value.  (B) Enrichment for Hallmark gene sets in the Molecular 

signature database similar to A. 

Table 2:  Pathway enrichment using TRANSPATH® Pathway (2019.3) for differentially expressed genes 

 

ID 

(TRANSPATH) 
Title 

Group 

size 

Expected 

hits 

Nominal p-

value 
ES 

Rank at 

max 
NES FDR 

Number of 

hits 

CH000001004 
Aurora-A cell cycle 

regulation 
68 67.262 0 0.422 8347 4.138 0 68 

CH000000919 
Cyclosome 

regulatory network 
77 76.164 0 0.349 7336 3.728 0 77 

CH000000694 
G2/M phase (cyclin 

B: Cdk1) 
66 65.284 0 0.375 6641 3.587 0 66 

CH000000879 Caspase network 83 82.099 0 0.333 8414 3.523 0 83 

CH000000711 TGFbeta pathway 153 151.340 0 0.232 8431 3.346 0 151 
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2.3. Identifying the master regulators of dysregulated gene networks  

Reconstruction of the disease-specific regulatory networks can help to identify potential master 

regulators which may serve as mechanism based biomarkers or as therapeutic targets to block a specific 

pathological regulatory cascade. Using the gene regulatory analysis as a first step we analyzed 

enrichment of transcription factor binding sites in promoters of upregulated genes of STS using DNA-

binding motifs listed in the TRANSFAC® library. 274 transcription factors (Table S1-C) enriched for 

CCKR signaling, interleukin signaling, PDGF signaling, WNT signaling were found to have their 

binding sites enriched, full enrichment results can be found in Table S1-D. 

Next, we applied the Composite Module Analyst (CMA) and identified two modules involving 12 

transcription factor binding site combinations that regulate the expression of genes of interest. CMA 

revealed the following modules comprising clustering binding sites for the following TFs: Module1: 

HNF3B, NANOG, NFKAPPAB, TAF1, TCF4, FRA-1; Module2: PPARG, TAL1, REST, POU6F1, FOSJUN 

& PBX. The modules, transcription factors and their significance are depicted in Figure S2. Differential 

expression statistics for the 12 transcription factors are given in Table S2. Among them, FRA-1 

transcription factor (also known as FOSL1) was found to be p-value significant and upregulated in 

short-term survivors of GBM (log2FC=0.023, p-value = 0.008, adj.p-value =0.093) Table S2.  

 

Figure 2 validates the predicted cluster of TF binding sites from the composite modules identified in 

the promoter of IGFBP2 gene. We can see that four binding sites in this cluster (for TFs: c-Fos/c-Jun, 

Nanog, Tal-1, HNF3/FoxA1) can be confirmed by publicly available ChIP-seq data of GTRD database1. 

In addition, Fra-1 binding site can be confirmed by a cluster of mapped reads of independent publicly 

available ChIP-seq data (FRA1 track on the Figure 2). (Full map is shown in the Figure S4).    

 
 
Figure 2. Map of the cluster of TF binding sites of the composite model identified within the promoter of IGFBP2 

gene (-1000 to +100bp relative to transcription start site (TSS)). Position of the TSS (the beginning of the first exon 

on IGFBP2 gene) is shown by the vertical dotted line.  Track "yes track" represents the cluster of identified TF 

binding sites of the composite model within the promoter. The direction of the arrows gives the orientation of the 

PWMs. The names of TFs binding to these sites are shown above the arrows. The track "FRA1" represents the 

mapped reads of the FRA1(also called FOSL1) ChIP-seq data of GEO, GSM803382. The reads were maped on the 

hg38 human genome using Subread-aligner42 with default parameters.  

The track "all meta clusters" shows all known meta-clusters in this region from GTRD database41 that represent 

the overlapping fragments of peaks for one particular TF from several ChIP-seq experiments. The name of TF is 

shown above each meta-cluster. Several predicted TF binding sites in the composite model are confirmed in 

independent ChIP-seq experiments: several overlapping reads of FRA1 ChIP-seq data in the "FRA1" track and 
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FOSL2 meta- cluster in the GTRD confirm predicted site for Fra-1; FOS and JUN meta-clusters in the GTRD confirm 

the predicted c-Fos:c-Jun binding sites; NANOG meta-cluster confirms the predicted Nanog binding site; TAL1 

meta-cluster confirms the predicted Tal-1 binding site; FOXA2 and FOXA1 meta-clusters of GTRD confirms the 

HNF3beta binding site. 

 
 

Finally, we reconstructed the signaling network that activates the TFs revealed by CMA analysis and 

thereby identifying the top regulators in these networks using TRANSPATH® database.  The process 

identified five important master regulators that are plausible drivers of short survival in GBM: IGFBP2, 

VEGFA/VEGF165, PDGFA, AEBP1 and OSMR. All the master regulators were found to be significantly 

upregulated in short-term survivors. The genes that encode the master regulator proteins are controlled 

by the transcription factors revealed by CMA in their promoters, which maintains the multiple positive 

feedback loops in the system. It should be underlined here, that in such networks with positive 

feedback loops, the identified key transcription factors, such as Fra-1, are both upstream of their target 

genes, such as IGFBP2, as well as downstream from the master regulator proteins, such as IGFBP-2. 

(encoded by these genes). The regulatory network reconstructed along with six master regulators is 

shown in Figure 3, the master regulators and their LogFC in STS are listed in Table 3. Since VEGF165 

is a splice variant of VEGF-A, only the latter will be considered further on. 

 

 

Figure 3. Signal transduction and Gene regulatory network of six master regulators (red nodes) regulating two 

transcription factor modules (purple nodes) enriched in promoters of highly upregulated genes of STS. The dotted 

lines from genes to such signalling proteins represents the transcription and translation processes (positive 

feedback loops).  The outside box filling is based on LogFC and are filled red when upregulated (log2FC>0.2 & p-

value<0.05) and filled blue when downregulated (log2FC<0.2 & p-value<0.05) in the current study68.  
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Table 3. Table of the master regulators identified, their description, log2FC in STS and number of TFs 

regulated.  

Molecule 

Name 
Gene Description 

HGNC Gene 

symbol 
log2FC in STS 

No. of TFs 

regulated 

IGFBP-2 
Insulin like growth factor binding 

protein 2 
IGFBP2 1.149 9 

ACLP AE binding protein 1 AEBP1 0.782 9 

VEGF-A vascular endothelial growth factor A VEGFA 0.778 9 

VEGF-165 vascular endothelial growth factor A VEGFA 0.778 9 

OSMRbeta Oncostatin M receptor OSMR 0.634 8 

PDGF-A 
platelet derived growth factor subunit 

A 
PDGFA 0.529 9 

 

2.4. Validating the expression of master regulators in other cohorts 

Expression patterns of the above identified master regulators have been validated in two different 

cohorts. A) TCGA-GBM microarray18 data and B) GSE1601143. The expression patterns were similar and 

there is a significant upregulation of all master regulators except for VEGFA (GSE16011: adj.p-

value=0.069, TCGA-GBM: adj.p-value=0.075) Table S1-E & S1-F. The differential expression values are 

given in Table 4. 

 

 

Table 4. Expression of master regulators across survival groups (STS and LTS resp.,) and across 3 

datasets – GSE, TCGA-GBM microarray and GSE16011. 

Master 

Regulator 
GSE  GSE16011 TCGA 

 

 log2FC (STS vs 

LTS) 

adj.p-

value 

log2FC (STS vs 

LTS) 

adj.p-

value 

log2FC (STS vs 

LTS) 

adj.p-

value 

 

IGFBP2 1.149 4.87E-05 2.030 4.598E-04 1.098 5.00E-06  

AEBP1 0.782 7.75E-05 1.723 0.001 0.971 3.96E-06  

PDGFA 0.529 4.55E-04 1.680 4.709E-09 0.825 2.07E-05  

VEGFA 0.778 5.20E-04 0.884 0.069 0.500 0.0752  

OSMR 0.634 8.65E-04 1.957 4.24E-05 0.486 0.0318  

 

2.5 Validating the master regulators in TCGA-GBM cohort 

The TCGA-GBM microarray data containing 258 STS and 49LTS is used to validate the above identified 

drivers of short survival. The data is pre-processed, adjusted for batch effects (Figure S3) and 

differential gene expression analysis is performed. Same cut-offs for log2FC and adj.p-value are used. 

We identified 171 genes upregulated in STS of GBM (log2FC>0.5 & adj.p-val<0.05) full list in Table S1-

E. 49 of them were in common between GSE dataset and TCGA-GBM, full differential gene expression 

analysis results are given in Table S1-G. Composite models selected by CMA algorithm across the two 

datasets were expected to vary. We identified a model that includes set of 16 transcription factors Table 

S3 and 12 master regulators upstream (Table S4) of them regulating the signal transduction and gene 

regulatory network in STS.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

https://doi.org/10.20944/preprints202010.0046.v3


As a result, the TCGA-GBM dataset validates IGFBP2, AEBP1(ACLP) and PDGFA as master regulators 

driving dysregulated gene network in STS. We also found that binding sites for FRA-1 transcription 

factor are statistically significantly enriched at the regulatory regions of dysregulated genes including 

IGFBP2 in TCGA-GBM cohort (Table S5).  

2.6. Impact of master regulators on survival in GBM 

Univariate survival analysis was used to study the impact of these master regulators and their regulated 

transcription factors on overall survival in GBM based on TCGA-RNA-seq data. Patients are split into 

non-overlapping 50% upper and lower quantiles. Additionally, Cox regression for univariate survival 

analysis is performed, hazard ratio (HR) and corresponding p-values are shown in Figure 4. Univariate 

Cox regression analysis on other microarray datasets is given in Table S1-I. All master regulators were 

found to have significant impact upon survival except VEGFA. FRA1(FOSL1) was found to have 

significant cox hazard ratio (HR).   

 

Figure 4. Survival analysis using 152 RNA-seq data of TCGA GBM cohort. Out of five master regulators, 

all but VEGFA (AEBP1, OSMR, PDGFA and IGFBP2) had a statistically significant impact on survival 

based on 50% upper and lower quantiles. Hazard ratio (HR) and statistical significance(p(HR)) 

according to Cox survival estimates are mentioned.  
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2.7 Master regulator expression patterns across GBM Subtypes 

Based on regulatory landscape of GBM, there are 4 subtypes – Classical, Mesenchymal, Proneural and 

Neural44. There is a significant level of intertumoral as well as intra-tumoral heterogeneity within each 

of them44,45. Molecular subtypes of GBM in GSE dataset is given in Table S6. Differentially expressed 

genes between STS and LTS within each subtype is given in Supplementary file 3. Expression patterns 

of master regulators across subtypes and across survival groups is depicted as boxplot in Figure S5. 

None of the master regulators were found to be significantly differentially expressed between survivor 

groups in any subtypes.  

3. Discussion   

Gene regulatory networks represent the causal regulatory relationships between transcription factors 

(TFs) and their gene targets, which enables us to discover dysregulated genes in certain biological 

states46. Comparative studies of short-term survivors and long-term survivors of GBM showed that 

gene-expression programs executed across survival groups vary significantly. In the light of these 

findings, we sought to apply an upstream analysis approach to gain insight about gene regulatory 

networks driving the short survival.  

 

In the promoter analysis, we identified a set of 12 TFs in composite clusters that are enriched in the 

promoters regions of dysregulated genes in short term survivors (upregulated in STS). The TFs 

NANOG and REST have been said to be critical for self-renewal and maintenance of oncogenic 

signatures in glioblastoma stem-like cells45,47, PPARG has emerged as a promising therapeutic target as 

its agonists increased median survival in GBM patients48, NF-κB is implicated in several processes like 

invasion, epithelial-mesenchymal transition49, resistance to radiotherapy50 and maintenance of cancer 

stem-like cells51, FRA-1/FOSL1 has been reported to be important in maintenance/progression of 

malignant glioma52. FRA-1 along with JUN-B modulates malignant feature of GBM by regulating 

expression of metalloproteinases like MMP-2 and MMP-953.Among these 12 TFs, we found that FRA-1 

has a significant impact upon survival and has higher expression in STS. Debinski et al., (2005)52 

hypothesized that any AP1 stimulating signals like epidermal growth factor (EGF), leukemia inhibitory 

factor, Oncostatin M, FGF-2 can positively regulate FRA-1. VEGF-D was shown to be regulated by FRA-

1 (supporting the feedback loop found in our work) and is a known prognostic factor in other 

aggressive cancers 54,55 

 

Graph analysis of the signal transduction network upstream of these transcription factors identified 

five potential master regulators that might explain gene dysregulation in STS, namely - insulin like 

growth factor binding protein (IGFBP2), vascular endothelial growth factor A (VEGF-A), its isoform 

VEGF165, platelet Derived growth Factor A (PDGFA), Oncostatin M (OSMR) and Adipocyte Enhancer 

binding protein (AEBP1).All the identified master regulators were upregulated in STS and their 

expression patterns were validated in two other independent cohorts. We found that all master 

regulators except VEGFA has an impact on overall survival in the GBM patients. IGFBP2, AEBP1 and 

PDGFA master regulators driving short survival were validated in TCGA-GBM microarray cohort. Out 

of them, IGFBP2 had higher expression in STS. The insulin-like growth factor binding protein 2 

(IGFBP2) is said to be one of most potential glioma oncogene and functions as a hub of oncogenic 

signalling pathways by regulating pro-tumorigenic signals of tumor initiation and progression. Earlier 

studies have suggested IGFBP2 to drive EMT and as a potential therapeutic target in mesenchymal 

GBM49,56. It is established that exogenous IGFBP2 promotes proliferation, invasion, and 

chemoresistance to temozolomide in glioma cells via integrin β1 by promoting ERK phosphorylation 

and nuclear translocation 57,58.IGFBP2 is considered as one of the strongest biomarkers of aggressive 

behavior in GBM37,59 and also a prognostic marker for survival37,60.  
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Here, we propose that IGFBP2 can be a potential regulator of FRA-1 transcription factor. IGFBP2 

induced RAF/MAPK signalling (Figure 3) activates FRA-1. It is earlier shown that IGFBP2 and FRA-1 

regulated transcription of VEGF54,55,61, which is the second most dysregulated master regulator in our 

network. It is reported that enhanced ERK signalling, that may be triggered by these master-regulators, 

may lead to mitogen-induced FRA-1 transcription 62 as well as its protection from proteasomal 

degradation 63. As per the gene regulatory network developed, it is possible that FRA-1 mediates the 

positive feedback loop where FRA-1 activates transcription of master regulator genes in cooperation 

with other TFs and in turn master regulator gene products enhance/potentiate FRA-1. We find that 

promoters of the genes of all the five master regulators reported in the study have binding sites for 

FRA-1 transcription factor. Experimental evidences are available showing that IGFBP2 can enhance 

GBM invasion by enhancing MMP2 expression64. This validates our computationally predicted 

hypothesis that IGFBP2 be a therapeutic target. The novelty of the work is that we are able to establish 

through the gene regulatory networks that FRA-1 can be a downstream transcription factor of IGFBP2 

in GBM. Kesari, S. et al.,2011 confirms our hypothesis that IGFBP2 can enhance GBM invasion via 

AP1(FOS-JUN) transcription factor. Metalloproteinases like MMP-2/MMP-9 are earlier reported 65–68 to 

be regulated by FRA-1 transcription factor in several cancers including GBM. Taken together, our work 

proposes that the regulation of IGFBP2 gene expression via AP1(FOS-JUN) transcription factor can be 

an important mechanism of GBM invasion. In this study, Figure 5 combines prior knowledge in the 

field and gene regulatory network developed in our study (Figure 3 and 5).  

 

In summary, the current work proposes a gene regulatory network in STS regulated by five master 

regulators – IGFBP2, VEGFA, PDGFA, OSMR and AEBP1 which can potentially act as biomarkers of 

GBM prognosis and as therapeutic targets for enhancing GBM prognosis. The work also proposes a 

novel mechanism of gene dysregulation by IGFBP2 by modulating a key molecule of tumor 

invasiveness and progression - FRA-1 transcription factor. All the genes encoding these five master 

regulators have binding sites for FRA-1 in their promoters. FRA-1 and the master regulators are in a 

positive feedback loop to orchestrate a complex tumorigenic program leading to poor survival in GBM. 
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Figure 5: Diagram combining prior knowledge about of role of IGFBP2 in GBM and the gene regulatory 

network developed in the study. The hexagons are master regulators identified in our analysis. All the intermediates 

of the gene regulatory network are colored red if upregulated in STS, and black if not present in the network. Dotted 

black line if the knowledge is through literature, continuous black line if known through gene regulatory network. Blue 

dotted lines represent gene regulatory connections between master regulators and their corresponding genes transcribed 

by target transcription factors.  

VEGFA, PDGFA, IGFs and IL-31 activate RAF/MEK/ERK signalling which mediates cell survival through PI3K-AKT 

pathway69,70. MEK2/RAF1/ERK5 and AKT-1 are found to be upregulated in STS, suggestive of activated ERK 

signalling which can contribute to drug resistance 71,72. IGFBP2 activates IGFR either by increasing bioavailability of 

IGFs or by direct interaction with its functional domain. Integrin acts as receptor for IGFBP2 extracellular signals 57,58 

and modulates NF-κB signalling. IGFBP2 by nuclear translocation 61 is involved in transcriptional regulation of the 

VEGF gene and modulates angiogenesis 61. STAT3 and NF-κB are said to be the two major downstream transcription 

factors of IGFBP2 that direct tumorigenic intracellular signalling 73  via EGFR signalling. Oncostatin M, receptor for 

cytokine IL31 is a regulator of EGFR signalling34.FRA-1 is required for AKT activation in cancers to promote AKT-

dependent cell growth74, NF-κB can regulate AP1(FOS & JUN) thereby VEGF expression in pancreatic tumor cell 

lines75. All the 5 master regulators have binding sites for FRA-1. In the figure we depicted the possible positive feedback 

loop between FRA-1 and the master regulators to orchestrate complex tumorigenic program of invasiveness, migration, 

drug resistance and angiogenesis.  

4. Materials and Methods  

4.1. Data Collection  

The genome wide expression profiles based on Human Genome U133 plus 2.0 array and clinical 

information of patients with GBM were collected from public repository of GEO database – 

GSE10847476(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474) and GSE5373313 
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53733). The 2 datasets were pooled together 

leading to 113 and 58 samples corresponding to short-term survivors (STS; survival < 12 months) and 

long-term survivors (LTS; survival > 36 months) with GBM, respectively Table 5. Duplicates were not 

removed. Sample information and cleaned datasets are given in Supplementary file 4  

Table 5. Statistics of datasets studied in this work. The datasets with labels GSE’ were collected from 

GEO database. 

 

 Platform 
Short-term 

survivors 

Long-term 

survivors 

GSE5373312 

HU133 plus 

2.0 arrays 

 

16 23 

GSE10847456 

HU133 plus 

2.0 arrays 

 

97 35 

4.2. Affymetrix microarray data pre-processing  

The raw data files (. CEL format) for GSE108474 and GSE53733 were collected from GEO database- 

from here on called as GSE dataset. RMA algorithm is used in R (affy package) for background 

correction, quality check and normalization to obtain log2 transformed expression values 77. Batch 

correction of the pooled expression data was performed using empirical Bayes framework is performed 

78 . This batch corrected file is used for further analysis. Multiple Affymetrix ids were summarized to 

genes ids by choosing the maximum out of probe intensities of multiple probes belonging to single 

gene. The final expression matrix comprised 21526 probes and 171 samples.  

4.3 Differential gene expression (DEG) analysis 

LIMMA (Linear Models for Microarray Data) method was applied to identify differentially 

expressed genes 40. It is an efficient tool which is stable even for experiments with small samples. 

Differential gene expression analysis of 171 samples of GSE dataset was performed with Benjamini-

Hochberg adjusted P_value. 957 genes were significantly (adj.p-value<0.05) differentially expressed 

(DEGs). 115 of them were significantly upregulated (adj.p-value <0.05 & log2FC>0.5) and 83 were 

significantly downregulated (adj.p-value<0.05 & log2FC<(-0.5). 

4.4. Databases used in the study 

Transcription factor binding sites in promoters and enhancers of differentially expressed genes 

were analyzed using known DNA-binding motifs described in the TRANSFAC® library, release 2019.3 

(geneXplain GmbH, Wolfenbüttel, Germany) (https://genexplain.com/transfac)79. The master regulator 

search uses the TRANSPATH® database , release 2019.3 (geneXplain GmbH, Wolfenbüttel, Germany) 

(https://genexplain.com/transpath)20.  A comprehensive signal transduction network of human cells is 

built by Genome Enhancer software based on reactions annotated in TRANSPATH®. The information 

about drugs corresponding to identified drug targets and clinical trials references were extracted from 

HumanPSD™ database80, release 2020.2 (https://genexplain.com/humanpsd). The Ensembl81 database 

build 99.38 (hg38) (http://www.ensembl.org) was used for gene IDs representation and Gene 

Ontology19 (GO) (http://geneontology.org) was used for functional classification of the studied gene set. 

4.5. Functional Annotation 

To explore the biological importance of gene signatures, gene set enrichment analysis is 

performed. All the adj.p-value significant genes were used. GSEA is an efficient method to determine 
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whether the genes of interest show statistically significant enrichment between different biological 

states. Gene ontology enrichments for cellular component, biological process and molecular functions 

were performed. To investigate the top enriched ontology terms 1000 random permutations were done 

and adj.p-value cutoff of 0.05 is used. The dysregulated gene networks enrichment also gives useful 

insight about known disease signatures 82. The hallmark gene set of MsigDB83 defines specific biological 

states or processes. Enrichment analysis is performed in R using DOSE84 package. PANTHER pathway 

enrichment of the identified transcription factors was performed using EnrichR tool 85. TRANSPATH20 

pathway enrichment was performed using geneXplain platform. 

4.6. Genome Enhancer pipeline  

The approaches mentioned above helps us in understanding the impact of the differentially 

expressed genes in GBM biology. To understand the reason behind this dysregulation, Genome 

enhancer pipeline of geneXplain is used (my-genome-enhancer.com). Genome Enhancer is a multi-

omics analysis service (https://genexplain.com/genome-enhancer/) which is build using an open source 

BioUML programming environment24 (www.biouml.org) and incorporates an automated pipeline for 

“upstream analysis”25,26 and newest advanced approach called “walking pathways”27.Significantly 

upregulated genes in STS were used in this workflow.  

 

The workflow works in 2 steps.  

A. Analysis of enriched transcription factor binding sites and composite modules 

Binding of transcription factors to the transcription factor binding sites in promoters and like 

enhancers is key to mediation of transcriptional regulation of genes. Classically, enhancers are defined 

as regions in the genome that increase transcription of one or several genes when inserted in either 

orientation at various distances upstream or downstream of the gene 31. Enhancers typically have a 

length of several hundreds of nucleotides and are bound by multiple transcription factors 20. 

Identifying such clusters of binding sites for such transcription factors (composite-modules) that 

act as potential condition-specific enhancers of the target genes in their upstream regulatory regions (-

1000 bp upstream of transcription start site (TSS)) and the transcription factors which regulate the genes 

through such enhancers is a determining step to understand regulatory mechanism that are binding to 

clusters of co-localized TF binding sites (composite regulatory modules)86 

We use Composite Module Analyst (CMA) 31 method to detect such potential enhancers, as targets of 

multiple TFs bound in a to the regulatory regions of the genes of interest. CMA applies a genetic 

algorithm to construct a generalized model of the enhancers by specifying combinations of TF motifs 

(from TRANSFAC®) whose sites are most frequently clustered together in the regulatory regions of the 

studied genes. The transcription factors are ranked based on (a)The Yes-No ratio: given a set of 

promoter sequences of dysregulated genes, denoted as Yes set, and promoter sequences of unchanged 

genes in the experimental condition, denoted as No set, motifs are considered important if they have a 

high Yes/No ratio, the ratio of motif occurrences per promoter in Yes and No sets, and a statistically 

significant enrichment of occurrences in Yes sequences assessed by the binomial p-value”. (b) 

Regulatory score, which is a measure of involvement of a transcription factor in controlling expression 

of genes that encode master regulators. CMA identifies the transcription factors that through their 

cooperation provide a synergistic effect and thus have a great influence on the gene regulation process. 

B. Finding master regulators in networks 

The second step involves the signal transduction database TRANSPATH® and special graph 

search algorithms to identify common regulators of the revealed transcription factors. These master 

regulators appear to be the key candidates for therapeutic targets as they have a master effect on 

regulation of intracellular pathways that activate the pathological process of our study. Master 
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regulators regulating the above revealed transcription factors are not only ranked based on (a) LogFC 

but also (b)CMA score - which signifies how strong is the potential for this gene to be regulated by 

transcription factors of interest and (c) Master regulator score – which signifies how strong is the 

potential of this gene product to regulate activity of those transcription factors. Selected master 

regulators can also be visualized and with possibility to map the LogFC, p value on the created 

regulatory network.    

4.7. Validation of observed gene signatures 

The raw microarray data of 560 TCGA-GBM samples were downloaded from TCGA legacy. The 

GSE16011 raw. CEL data was downloaded from GEO repository. Both raw datasets were processed 

and analyzed independently following same steps as mentioned earlier. These two datasets are used to 

observe and validate the expression pattern of master regulators across the two survival groups (see 

Table 6). GSE16011 comprises of data generated at a single center and is used in several studies 62-64, 

unlike TCGA. TCGA-GBM microarray data PCA plots are given Figure S3 and no significant batch 

effects in the context of survival groups were found. 

 

Table 6. Statistics of two validation datasets. 

Datasets      Platform 
Short-term 

survivors 

Long-term 

survivors 

GSE1601143 

HU133 plus 

2.0 arrays 

 

93 16 

TCGA-GBM 

microarray18 

HU133 

 
271 49 

4.8. Validation of Master regulators 

   The TCGA-GBM microarray data downloaded from TCGA legacy archive is processed in same 

fashion as GSE. Similar cutoffs (log2FC, p-value) and parameters are used to identify enriched 

transcription factors and network analysis in-order to understand drivers of gene regulatory networks 

in short survival. 

4.9.  Impact on survival  

   Master regulators and their target transcription factors affect the whole regulatory network and 

therefore can have an independent impact on survival in GBM patients. Level 3 RNA-seq data and 

clinical data for 152 TCGA GBM cohort is downloaded using TCGAbiolinks package in R. Survival and 

Survminer libraries in R are used to perform univariate survival analysis. Univariate survival analysis 

is used to understand the impact of individual master regulator on survival in GBM with non-

overlapping 50% upper and lower quantiles. Additionally, Univariate Cox regression for survival 

analysis is performed using coxph function of Survival package to calculate Hazard ratio (HR) with 

pvalue cutoff of 0.05 for significance.   

5. Conclusion 

In the work presented, we have identified candidate master regulators responsible for gene 

dysregulation in short-term survivors. These candidates have sufficient experimental evidence towards 

their role in GBM. Out of reported five master regulators, IGFBP2 is established as the most promising 

master regulator. Through the gene regulatory network analysis, we propose that IGFBP-2 and FRA-1 

are in a positive feedback loop that may lead to a pathological autocatalytic process responsible for 

poor survival in GBM.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

https://doi.org/10.20944/preprints202010.0046.v3


 

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation 

programme under the Marie Skłodowska-Curie grant agreement No 766069. 

Availability of software, data and materials: The datasets analyzed during the current study are available from 

the previous publications 60,61. The results of the analysis performed using pipeline Genome Enhancer in 

geneXplain platform are available here. 

https://github.com/genexplain/Manasa_KP_et_al_IGFBP2_regulatory_networks_in_Gliobastoma 

The source code of the open source BioUML platform used for creation of the Genome Enhancer pipeline is 

available for download at www.biouml.org. Data are also available in the Additional files provided in the 

Supplement to the publication.  

Conflicts of Interest: The authors Manasa KP, Darius Wlochowitz and Tim Beißbarth are from Department of 

Medical Bioinformatics, University Medical Center Göttingen, Manasa KP, Alexander Kel and Edgar Wingender 

are employees of geneXplain GmbH, which maintains and distributes the geneXplain//BioUML platform and 

Genome Enhancer used in this study. 

 

References 

 

1. Kolmykov, S. et al. Gtrd: An integrated view of transcription regulation. Nucleic Acids Research 

vol. 49 D104–D111 (2021). 

2. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. New England Journal of Medicine vol. 359 

492–507 (2008). 

3. Krex, D. et al. Long-term survival with glioblastoma multiforme. Brain 130, 2596–2606 (2007). 

4. Das, P. et al. A clinicopathological and molecular analysis of glioblastoma multiforme with 

long-term survival. J. Clin. Neurosci. 18, 66–70 (2011). 

5. Shinawi, T. et al. DNA methylation profiles of long- and short-term glioblastoma survivors. 

Epigenetics 8, 149–156 (2013). 

6. Sonoda, Y. et al. Long-term survivors of glioblastoma: Clinical features and molecular analysis. 

Acta Neurochir. (Wien). 151, 1349–1358 (2009). 

7. Scott, J. N. et al. Which glioblastoma multiforme patient will become a long-term survivor? A 

population-based study. Ann. Neurol. 46, 183–188 (1999). 

8. Zhang, X., Zhang, W., Cao, W. D., Cheng, G. & Zhang, Y. Q. Glioblastoma multiforme: 

Molecular characterization and current treatment strategy (Review). Experimental and 

Therapeutic Medicine vol. 3 9–14 (2012). 

9. Lee, Y. et al. Gene expression analysis of glioblastomas identifies the major molecular basis for 

the prognostic benefit of younger age. BMC Med. Genomics 1, 52 (2008). 

10. Chen, J. R., Yao, Y., Xu, H. Z. & Qin, Z. Y. Isocitrate dehydrogenase (IDH)1/2 mutations as 

prognostic markers in patients with glioblastomas. Med. (United States) 95, (2016). 

11. Franceschi, S. et al. Investigating molecular alterations to profile short- and long-term 

recurrence-free survival in patients with primary glioblastoma. Oncol. Lett. 10, 3599–3606 

(2015). 

12. Han, S., Meng, L., Han, S., Wang, Y. & Wu, A. Plasma IGFBP-2 Levels after Postoperative 

Combined Radiotherapy and Chemotherapy Predict Prognosis in Elderly Glioblastoma 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

http://www.biouml.org/
https://doi.org/10.20944/preprints202010.0046.v3


Patients. PLoS One 9, e93791 (2014). 

13. Reifenberger, G. et al. Molecular characterization of long-term survivors of glioblastoma using 

genome- and transcriptome-wide profiling. Int. J. Cancer 135, 1822–1831 (2014). 

14. Bi, W. L. & Beroukhim, R. Beating the odds: Extreme long-term survival with glioblastoma. 

Neuro-Oncology vol. 16 1159–1160 (2014). 

15. De Vega, S., Iwamoto, T. & Yamada, Y. Fibulins: Multiple roles in matrix structures and tissue 

functions. Cellular and Molecular Life Sciences vol. 66 1890–1902 (2009). 

16. Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets - Update. Nucleic Acids 

Res. 41, D991–D995 (2013). 

17. Athar, A. et al. ArrayExpress update - From bulk to single-cell expression data. Nucleic Acids 

Res. 47, D711–D715 (2019). 

18. Grossman, R. L. et al. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 375, 

1109–1112 (2016). 

19. Ashburner, M. et al. Gene ontology: Tool for the unification of biology. Nature Genetics vol. 25 

25–29 (2000). 

20. Krull, M. et al. TRANSPATH®: An integrated database on signal transduction and a tool for 

array analysis. Nucleic Acids Research vol. 31 97–100 (2003). 

21. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating 

viruses and cellular organisms. Nucleic Acids Res. (2020) doi:10.1093/nar/gkaa970. 

22. Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by 

function. Genome Res. (2003). 

23. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020). 

24. Kolpakov, F. et al. BioUML: an integrated environment for systems biology and collaborative 

analysis of biomedical data. Nucleic Acids Res. 47, W225–W233 (2019). 

25. Boyarskikh, U. et al. Computational master-regulator search reveals mTOR and PI3K 

pathways responsible for low sensitivity of NCI-H292 and A427 lung cancer cell lines to 

cytotoxic action of p53 activator Nutlin-3. BMC Med. Genomics 11, (2018). 

26. Koschmann, J., Bhar, A., Stegmaier, P., Kel, A. & Wingender, E. “Upstream Analysis”: An 

Integrated Promoter-Pathway Analysis Approach to Causal Interpretation of Microarray Data. 

Microarrays 4, 270–286 (2015). 

27. Kel, A. et al. Walking pathways with positive feedback loops reveal DNA methylation 

biomarkers of colorectal cancer. BMC Bioinformatics 20, (2019). 

28. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in 

eukaryotes. Nucleic Acids Res. 34, D108-10 (2006). 

29. Kel, A. E. et al. MATCHTM: A tool for searching transcription factor binding sites in DNA 

sequences. Nucleic Acids Res. 31, 3576–3579 (2003). 

30. Kel, A., Voss, N., Jauregui, R., Kel-Margoulis, O. & Wingender, E. Beyond microarrays: 

Finding key transcription factors controlling signal transduction pathways. BMC Bioinformatics 

7, S13 (2006). 

31. Waleev, T. et al. Composite Module Analyst: Identification of transcription factor binding site 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

https://doi.org/10.20944/preprints202010.0046.v3


combinations using genetic algorithm. Nucleic Acids Res. 34, W541 (2006). 

32. Xu, C., Wu, X. & Zhu, J. VEGF promotes proliferation of human glioblastoma multiforme 

stem-like cells through VEGF receptor 2. Sci. World J. 2013, (2013). 

33. Martinho, O. & Reis, R. M. Malignant Gliomas: Role of Platelet-Derived Growth Factor 

Receptor A (PDGFRA). in Tumors of the Central Nervous System, Volume 1 109–118 (Springer 

Netherlands, 2011). doi:10.1007/978-94-007-0344-5_12. 

34. Jahani-As, A. et al. Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. 

Nat. Neurosci. 19, 798–806 (2016). 

35. Majdalawieh, A. F., Massri, M. & Ro, H. S. AEBP1 is a Novel Oncogene: Mechanisms of Action 

and Signaling Pathways. Journal of Oncology vol. 2020 (2020). 

36. Liu, Y., Song, C., Shen, F., Zhang, J. & Song, S. W. IGFBP2 promotes immunosuppression 

associated with its mesenchymal induction and FcγRIIB phosphorylation in glioblastoma. 

PLoS One 14, (2019). 

37. Phillips, L. M. et al. Glioma progression is mediated by an addiction to aberrant IGFBP2 

expression and can be blocked using anti-IGFBP2 strategies. J. Pathol. 239, 355–364 (2016). 

38. Cai, J. et al. Immune heterogeneity and clinicopathologic characterization of IGFBP2 in 2447 

glioma samples. Oncoimmunology 7, e1426516 (2018). 

39. Lindström, M. S. Expanding the scope of candidate prognostic marker IGFBP2 in 

glioblastoma. Bioscience Reports vol. 39 (2019). 

40. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and 

microarray studies. Nucleic Acids Res. 43, e47–e47 (2015). 

41. Iwadate, Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncology Letters 

vol. 11 1615–1620 (2016). 

42. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: Fast, accurate and scalable read mapping 

by seed-and-vote. Nucleic Acids Res. 41, e108 (2013). 

43. Gravendeel, L. A. M. et al. Intrinsic gene expression profiles of gliomas are a better predictor of 

survival than histology. Cancer Res. 69, 9065–9072 (2009). 

44. Verhaak, R. G. W. et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of 

Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 

17, 98–110 (2010). 

45. Bradshaw, A. et al. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Frontiers in 

Surgery vol. 3 1 (2016). 

46. Marbach, D. & Stolovitzky, G. Robert Küffner 6,11 , Nicole M Vega 3-5. Robert J Prill 11, (2012). 

47. Kamal, M. M. et al. REST regulates oncogenic properties of glioblastoma stem cells. Stem Cells 

30, 405–414 (2012). 

48. Ellis, H. P. & Kurian, K. M. Biological Rationale for the Use of PPARÎ3 Agonists in 

Glioblastoma. Front. Oncol. 4, 52 (2014). 

49. Yamini, B. NF-κB, Mesenchymal Differentiation and Glioblastoma. Cells 7, 125 (2018). 

50. Avci, N. G. et al. NF-κB inhibitor with Temozolomide results in significant apoptosis in 

glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Sci. Rep. 10, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

https://doi.org/10.20944/preprints202010.0046.v3


13352 (2020). 

51. da Hora, C. C. et al. Sustained NF-κB-STAT3 signaling promotes resistance to Smac mimetics 

in Glioma stem-like cells but creates a vulnerability to EZH2 inhibition. Cell Death Discov. 5, 72 

(2019). 

52. Debinski, W. & Gibo, D. M. Fos-related antigen 1 modulates malignant features of glioma 

cells. Mol. Cancer Res. 3, 237–249 (2005). 

53. Kesari, S. & Bota, D. A. Fos-related antigen-1 (Fra-1) is a regulator of glioma cell malignant 

phenotype. Cancer Biology and Therapy vol. 11 307–310 (2011). 

54. Debinski, W. et al. VEGF-D is an X-linked/AP-1 regulated putative onco-angiogen in human 

glioblastoma multiforme. Mol. Med. 7, 598–608 (2001). 

55. Azar, W. J., Zivkovic, S., Werther, G. A. & Russo, V. C. IGFBP-2 nuclear translocation is 

mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in 

cancer cells. Oncogene 33, 578–588 (2014). 

56. Liu, Y., Song, C., Shen, F., Zhang, J. & Song, S. W. IGFBP2 promotes immunosuppression 

associated with its mesenchymal induction and FcγRIIB phosphorylation in glioblastoma. 

PLoS One 14, (2019). 

57. Yau, S. W., Azar, W. J., Sabin, M. A., Werther, G. A. & Russo, V. C. IGFBP-2 - taking the lead in 

growth, metabolism and cancer. J. Cell Commun. Signal. 9, 125–142 (2015). 

58. Schütt, B. S., Langkamp, M., Rauschnabel, U., Ranke, M. B. & Elmlinger, M. W. Integrin-

mediated action of insulin-like factor binding protein-2 in tumor cells. J. Mol. Endocrinol. 32, 

859–868 (2004). 

59. Holmes, K. M. Elucidating the IGFBP2 signaling pathway in glioma development Elucidating the 

IGFBP2 signaling pathway in glioma development and progression and progression. 

https://digitalcommons.library.tmc.edu/utgsbs_dissertations (2012). 

60. McDonald, K. L. et al. IQGAP1 and IGFBP2. J. Neuropathol. Exp. Neurol. 66, 405–417 (2007). 

61. Azar, W. J. et al. IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of 

angiogenesis by neuroblastoma cells. Endocrinology 152, 3332–3342 (2011). 

62. Adiseshaiah, P., Peddakama, S., Zhang, Q., Kalvakolanu, D. V. & Reddy, S. P. Mitogen 

regulated induction of FRA-1 proto-oncogene is controlled by the transcription factors binding 

to both serum and TPA response elements. Oncogene 24, 4193–4205 (2005). 

63. Vial, E. & Marshall, C. J. Elevated ERK-MAP kinase activity protects the FOS family member 

FRA-1 against proteasomal degradation in colon carcinoma cells. J. Cell Sci. 116, 4957–4963 

(2003). 

64. Wang, H. et al. Insulin-like Growth Factor Binding Protein 2 Enhances Glioblastoma Invasion by 

Activating Invasion-enhancing Genes 1. CANCER RESEARCH vol. 63 

www.mdanderson.org/genomics. (2003). 

65. Debinski, W. & Gibo, D. M. Fos-related antigen 1 modulates malignant features of glioma 

cells. Mol. Cancer Res. 3, 237–249 (2005). 

66. Kimura, R., Ishikawa, C., Rokkaku, T., Janknecht, R. & Mori, N. Phosphorylated c-Jun and Fra-

1 induce matrix metalloproteinase-1 and thereby regulate invasion activity of 143B 

osteosarcoma cells. Biochim. Biophys. Acta - Mol. Cell Res. 1813, 1543–1553 (2011). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

https://doi.org/10.20944/preprints202010.0046.v3


67. Adiseshaiah, P., Vaz, M., Machireddy, N., Kalvakolanu, D. V. & Reddy, S. P. A Fra-1-

dependent, matrix metalloproteinase driven EGFR activation promotes human lung epithelial 

cell motility and invasion. J. Cell. Physiol. 216, 405–412 (2008). 

68. Prywes, R. & Henckels, E. Fra-1 regulation of Matrix Metallopeptidase-1 (MMP-1) in 

metastatic variants of MDA-MB-231 breast cancer cells. F1000Research 2, (2013). 

69. Simpson, A., Petnga, W., Macaulay, V. M., Weyer-Czernilofsky, U. & Bogenrieder, T. Insulin-

Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and 

Opportunities for Future Combination Studies. Target. Oncol. 12, 571–597 (2017). 

70. Yao, X., Sun, S., Zhou, X., Guo, W. & Zhang, L. IGF-binding protein 2 is a candidate target of 

therapeutic potential in cancer. Tumor Biology vol. 37 1451–1459 (2016). 

71. Salaroglio, I. C., Mungo, E., Gazzano, E., Kopecka, J. & Riganti, C. ERK is a pivotal player of 

chemo-immune-resistance in cancer. International Journal of Molecular Sciences vol. 20 (2019). 

72. Abrams, S. L. et al. The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and 

sensitivity to targeted therapy. Cell Cycle 9, 1781–1791 (2010). 

73. Phillips, L. M. et al. Glioma progression is mediated by an addiction to aberrant IGFBP2 

expression and can be blocked using anti-IGFBP2 strategies. J. Pathol. 239, 355–364 (2016). 

74. Zhang, X., Wu, J., Luo, S., Lechler, T. & Zhang, J. Y. FRA1 promotes squamous cell carcinoma 

growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget 7, 

34371–34383 (2016). 

75. Fujioka, S. et al. NF-κB and AP-1 Connection: Mechanism of NF-κB-Dependent Regulation of 

AP-1 Activity. Mol. Cell. Biol. 24, 7806–7819 (2004). 

76. Gusev, Y. et al. Data descriptor: The REMBRANDT study, a large collection of genomic data 

from brain cancer patients. Sci. Data 5, (2018). 

77. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy--analysis of Affymetrix GeneChip 

data at the probe level. Bioinformatics 20, 307–315 (2004). 

78. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The SVA package for 

removing batch effects and other unwanted variation in high-throughput experiments. 

Bioinformatics 28, 882–883 (2012). 

79. Wingender, E., Dietze, P., Karas, H. & Knüppel, R. TRANSFAC: A database on transcription 

factors and their DNA binding sites. Nucleic Acids Research vol. 24 238–241 (1996). 

80. Integrating pathway data for systems pathology - PubMed. 

https://pubmed.ncbi.nlm.nih.gov/17822386/. 

81. Aken, B. L. et al. The Ensembl gene annotation system. Database 2016, baw093 (2016). 

82. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for 

interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 

(2005). 

83. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 

(2011). 

84. Yu, G., Wang, L.-G., Yan, G.-R. & He, Q.-Y. DOSE: an R/Bioconductor package for disease 

ontology semantic and enrichment analysis. Bioinformatics 31, 608–609 (2015). 

85. Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

https://doi.org/10.20944/preprints202010.0046.v3


tool. BMC Bioinformatics 14, (2013). 

86. Kel-Margoulis, O. V., Kel, A. E., Reuter, I., Deineko, I. V. & Wingender, E. TRANSCompel®: A 

database on composite regulatory elements in eukaryotic genes. Nucleic Acids Res. 30, 332–334 

(2002). 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2021                   doi:10.20944/preprints202010.0046.v3

https://doi.org/10.20944/preprints202010.0046.v3

