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Abstract: Manual evaluation of crop injury to herbicides is time-consuming. 

Unmanned aircraft systems (UAS) and high-resolution multispectral sensors and 

machine learning classification techniques have the potential to save time and 

improve precision in the evaluation of herbicide injury in crops, including grain 

sorghum (Sorghum bicolor L. Moench). The objectives of this research were to (1) 

evaluate three supervised classification algorithms (support vector machine, 

maximum likelihood, and random forest) for categorizing high-resolution UAS 

imagery to aid in data extraction and (2) evaluate the use of vegetative indices (VIs) 

collected from UAS imagery as an alternative to traditional methods of visual 

herbicide injury assessment in mesotrione-tolerant grain sorghum breeding trials. 

An experiment was conducted in a randomized complete block design using a 

factorial treatment arrangement of three genotypes by four mesotrione doses. 

Herbicide injury was rated visually on a scale of 0 (no injury) to 100 (complete plant 

mortality). The UAS flights were flown at 9, 15, 21, 27, and 35 days after treatment. 

Results show the SVM algorithm to be the most consistently accurate, and high 

correlations (r = -0.83 to -0.94; p < 0.0001) were observed between the normalized 

difference vegetative index (NDVI) and ground-measured herbicide injury. 

Therefore we conclude that VIs collected with UAS coupled with machine learning 

image classification, has the potential to be an effective method of evaluating 

mesotrione injury in grain sorghum. 

Keywords: unmanned aerial vehicle, grain sorghum, herbicide injury, remote sensing, sorghum 

breeding 

 

 

1. Introduction 

Grain sorghum (Sorghum bicolor L. Moench) is an important crop with diverse 

uses throughout the world [1]. Sorghum is known to have originated from sub-
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Saharan Africa, where it has been used as a major food crop [2]. Grain sorghum 

has a vast genetic diversity with many genotypes possessing agronomically-

desirable traits [3]. Traditionally, sorghum is used in the Western Hemisphere as 

animal feed; however, other uses include biofuel, forage production, and as a 

gluten-free alternative for human consumption [3-4]. In the United States, grain 

sorghum ranks the fifth-most important grain crop with 1.9 million hectares 

harvested in 2019 [5]. As sorghum is adapted to semi-arid regions of the world, it 

has been shown to have distinct yield advantages over corn (Zea mays L.) in such 

environments [6]. 

 Weed competition is a common biotic pestilence that interferes with grain 

sorghum production. Prior research has demonstrated that infestations of weeds in 

grain sorghum can reduce yields ranging from 8 to 56%, depending on the type of 

weeds [7]. Despite other methods of weed control such as crop rotation and row 

cultivation, herbicides are the most common method of weed control in grain 

sorghum in the United States [7-8]. Several herbicides are registered for use in 

grain sorghum as pre (PRE)- or post (POST)-emergence treatments. For example, 

herbicides such as atrazine and mesotrione can be used as a PRE, and 2,4-D and 

dicamba as POST treatments [9]. Despite having several herbicides used for PRE 

treatments, the options for POST treatments are limited in grain sorghum, 

especially those used for grass weed control. More options for POST grass control 

herbicides are needed for grain sorghum cropping systems. 

 The 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (e.g. 

mesotrione, tembotrione) are widely used for POST emergence grass weed control 

in corn [10] but not registered for POST use in grain sorghum because of crop 

injury [11]. These herbicides are used both as soil and foliar applied, and control a 

broad spectrum of grass and broadleaf species while providing soil residual 

activity for extended protection [10, 12-13]. These herbicides inhibit the HPPD 

enzyme in the plastoquinone biosynthesis pathway, leading to the depletion of 

plastoquinone levels. This results in the inhibition of carotenoids biosynthesis and 

subsequent plant death by photo-oxidation of chloroplasts. Because of this photo-

oxidation, the main symptom after treatment with these herbicides is the bleaching 

of plant tissue, although additional symptoms including stunting of growth, leaf 

chlorosis and necrosis are also common in susceptible plants [8, 10]. HPPD-

inhibiting herbicides are widely used as POST in corn, which can actively 

metabolize these herbicides into non-phytotoxic compounds [10]. 

 Mesotrione is an HPPD-inhibitor in the triketone chemical family [14], and can 

be used as a pre-emergence treatment in grain sorghum. However, it has been 

shown to cause damage including 20% chlorosis in sorghum when applied POST 

[8, 15]. Recent research has identified grain sorghum genotypes with elevated 

tolerance to post-emergence applications of mesotrione with minimal crop damage 

[16]. These grain sorghum genotypes are valuable for the development of 

mesotrione-tolerant varieties in breeding programs. Although herbicide-tolerant 

traits could be quite useful for growers, implementing herbicide tolerance to grain 

sorghum breeding operations can be difficult. This is because several combinations 
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of herbicides rates and genetic lines need to be fully investigated to quantify the 

data of herbicide injury level [17]. In addition, previous methods to assess plant 

responses to herbicides, including visual scoring, portable chlorophyll sensors, and 

biomonitoring [18-20] are labor-intensive and time-consuming. New methods of 

evaluation of herbicide damage are warranted to support and hasten the screening 

large number of genotypes and populations in the breeding programs for the 

development of herbicide-tolerant technology in grain sorghum. 

 The use of high-resolution remote sensing techniques coupled with machine 

learning image classification algorithms is one of the promising methods for 

quantification of plant response to various biotic or abiotic stresses [21-22]. Image 

classification via remote sensing has been explored extensively, with the majority 

of platforms using either satellite, piloted aircraft, or unmanned aerial systems 

(UAS) [19, 23]. Images collected from these platforms can then be separated into 

distinct classes through various algorithms, allowing extraction of data from 

individual classes for external analysis [24-26]. A highly accurate sect of image 

classification includes a supervised approach, which uses user-defined training 

samples to make these feature classifications [23, 27]. In addition to image 

classification, vegetative indices such as the normalized difference vegetation 

index (NDVI) can be computed, which have been shown to be useful in predicting 

plant parameters such as biomass, nitrogen status and chlorophyll content [28-30]. 

The quality of the data enhances with improved image resolution, making UAS a 

useful platform for collecting high-resolution remote sensing imagery in 

agricultural settings [31-34]. 

 Proposed uses of UAS imagery in weed science, include weed pressure 

mapping, quantifying herbicide damage on non-target crops, herbicide 

applications, and site-specific weed management [32-33, 35-38]. However, very few 

studies have been carried out using UAS imagery to quantify herbicide tolerance in 

grain sorghum. Therefore, the objectives of this study were to (1) specify a 

methodology to aid in the image processing, data extraction, and statistical 

analysis of mesotrione tolerant herbicide trials, including evaluating three 

algorithms for image classification, and (2) investigate the use of UAS imagery as 

an alternative to traditional methods of assessing visual mesotrione injury in grain 

sorghum. 

2. Materials and Methods 

2.1. Field Experiment 

 

 A field study was conducted in 2019 at the Kansas State University Ashland 

Bottoms Research Farm in Manhattan, Kansas (Figure 1). The soil type at the study 

location was a Reading silt loam with 2.42% organic matter and a pH of 6.07. A grain 

sorghum genotype (G-1) identified with tolerance to mesotrione [16] was planted 

along with a known mesotrione- susceptible genotype (S-1) and a Pioneer® (Corteva 

Agriscience, Wilmington, Delaware; USA) sorghum hybrid (84G62) for comparison. 

The experiment was arranged in a randomized complete block design (with three 
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replications) with a two-way factorial arrangement of treatments, consisting of three 

genotypes and four herbicide rates. The genotypes were planted on June 8, 2019 at a 

rate of 173,000 seeds ha-1, with a row spacing of 76 cm and a planting depth of 5 cm. 

The experiment plots were 2 m wide and 6.5 m long, consisting of four sorghum rows. 

The two middle rows consisted of each genotype (G-1, S-1, 84G62), and two outside 

border rows of Pioneer 84G62 were planted to act as a buffer between treatments. 

Mesotrione (Callisto® SC; Syngenta Crop Protection, LLC, Greensboro, North 

Carolina, USA) rates of 0, 105, 420, and 840 g ai ha-1 were applied at the 3-4 leaf growth 

stage using a CO2-pressurized backpack sprayer consisting of a four nozzle boom 

fitted with 110-02 flat-fan nozzles (TeeJet Spraying Systems Co., Wheaton, Illinois, 

USA) calibrated to deliver 187 L ha-1 at 276 kPa. Fertilizer applications followed the 

recommendations determined from a pre-plant soil test, and pests and diseases were 

controlled on an as-needed basis. 
 

 

Figure 1. Location of the field trial in Manhattan, Kansas (US) evaluating 84G62, S-1, and G-2 spectral 

responses to mesotrione. The genotypes were planted in two rows, as denoted by the red rectangles. 

Plot numbers are denoted below each rectangle. 

 

2.2. Image Acquisition 

 

 Prior to seedling emergence, 10 ground control points (GCPs) were placed 

within the experiment, and real-time kinematic (RTK) points were collected to aid 
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in image processing. In addition to GCPs, each plot received two diagonally-placed 

ground targets indicating the sub-plots where ground-truth measurements were 

taken. Dimensions of the sub-plots were approximately 1.5 m x 1m. After processing, 

geo-centered border polygons could then be drawn over these sub-plots to allow for 

data extraction (Figure 2). 
 

 
Figure 2. View of individual plots consisting of sorghum rows and sub-plots. Sub-plots were 

indicated by two ground targets placed within the north end of each plot to identify the plants on 

which ground-truth injury ratings were taken. Sub-plot dimensions were approximately 1.5 m x 1 m. 

Border polygons were drawn over each sub-plot to allow for data extraction. 

 

The Imagery was collected with a DJI Matrice 200 (DJI Inc., Shenzhen, China; 

https://www.micasense.com/) multi-rotor aircraft equipped with a Micasense 

RedEdge-MX multispectral camera (Micasense Inc., Seattle, Washington, USA; 

https://www.micasense.com/). The camera is capable of capturing five spectral 

bands of the visible and invisible electromagnetic spectrum (blue, 465-485 nm; green, 

550-570 nm; red, 663-673 nm; red edge, 712-722 nm; near infrared, 820-860 nm [40]). 

Each band is captured independently with a separate camera lens, and is capable of 

capturing images with a spatial resolution of 8 cm/pixel at an altitude of 120 m. To 

measure fluctuations in ambient lighting conditions, a down-welling light sensor 

(DLS) was included on the top of the aircraft. 

Flights were flown 9, 15, 21, 27, and 35 days after treatment (DAT) for data 

collection. Flights were flown under clear, sunny conditions with no cloud cover. 

These conditions were selected to standardize lighting across all measurement dates, 

ensuring differences in data due to lighting conditions would be minimized. Flight 

dates were taken in order to obtain data as close to weekly measurements as 
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possible, as dictated by our chosen lighting conditions. All flights were taken within 

± 2.5 hours of solar noon as recommended by the camera manufacturers. 

Radiometric calibration was performed using the calibration panel before and after 

each flight to ensure image quality. Each flight was flown at an altitude of 15 m and 

was flown using a pre-programmed GPS waypoint mapping mission using the DJI 

Pilot application. To ensure image quality, each flight was flown with an 80% front 

overlap and a 75% side overlap. The camera was set to capture images every 2 

seconds to ensure adequate amounts of images were taken for processing. Images 

collected in flight were stored on an SD card and transferred to a desktop computer 

for further processing. 

 

2.3. Image Processing 

 

Data processing followed a workflow involving image orthomosaic generation 

in Agisoft Metashape (Agisoft LLC., St. Petersburg, Russia) and data extraction in 

ArcGIS Pro (ESRI Headquarters, Redlands, California, USA) (Figure 3). UAS images 

processed using Metashape were processed with the slight modifications discussed 

in Holman et al. [39]: When aligning images and generating the sparse point cloud, 

alignment accuracy was set to high as opposed to ultra-high to reduce processing 

time and decrease levels of noise. When generating the dense point cloud, depth 

filtering was disabled to prevent any smoothing of the sorghum canopy. In addition, 

the quality of the dense point cloud was also set to high instead of ultra-high to 

reduce processing time. The resulting orthomosaic spatial resolution was between 

1.1-1.3 cm/pixel for each of the 5 flight dates. 
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Figure 3. Image processing and data extraction workflow. 

 

The image orthomosaic was exported to ArcGIS Pro for further data analysis. 

Ground targets within each plot were located, and sub-plots were defined. The sub-

plots were then clipped from the original image, and vegetative indices (VIs) were 

computed on the sub-plots. The vegetative indices (VIs) computed were NDVI, 

enhanced normalized difference vegetation index (ENDVI), simple ratio (SR), and 

enhanced vegetation index 2 (EVI2) (Table 1). These VIs were chosen for their close 

relations to plant greenness and canopy chlorophyll content [41]. 

 

Table 1. Equations and common uses for vegetative indices used in this study. 

Vegetative Index Formula Use Reference 

NDVI 
ρNIR-ρR

ρNIR+ρR
 

Green biomass, 

chlorophyll 
[40, 42-44]] 

ENDVI 
((ρNIR+ρG)-(2×ρR))

((ρNIR+ρG)+(2×ρR))
 Chlorophyll content [41, 44] 

SR 
ρNIR

ρR
 

Chlorophyll, leaf 

area index 
[45] 

EVI2 2.5×
ρNIR-ρR

ρNIR+(2.4×ρR)+1
 

Chlorophyll, 

canopy cover 
[41, 43, 46-47] 

Acronyms: NDVI, normalized difference vegetation index; ENDVI, enhanced normalized difference 

vegetation index; SR, simple ratio; EVI2, enhanced vegetation index 2. ρ indicates spectral reflectance. 
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2.4. Machine Learning Classification 
 

A supervised classification approach was chosen over unsupervised methods 

because of the classification accuracy advantage over unsupervised methods [26-27]. 

Due to high image resolutions and standardized lighting conditions on each 

measurement date, we chose to use pixel-based classification algorithms, as opposed 

to other methods such as object based. After computing VI imagery, each sub-plot was 

classified into three categories: Sorghum leaves, shadows, and soil. To test for 

differences between accuracies in classification algorithms, we chose three different 

algorithms: support vector machine (SVM), random forest (RF), and maximum 

likelihood (ML). These three algorithms were chosen because they are all the options 

offered for pixel-based classifications in ArcGIS Pro. In order to classify the imagery, 

we followed a similar approach described by Tay et al. and Makanza et al. [47-48]. 

First, a classification scheme consisting of three categories was created. Twenty 

representative training samples were taken at random from the sub-plot, grouping 

similar pixels based on visual similarity and assigning them to each class. The training 

dataset and classification schema was then saved as a signature file and used to 

classify each sub-plot using each machine learning algorithm. In order to achieve 

maximum accuracy across each measurement day, this process was repeated with 

new representative training samples generated for each day. All algorithms were run 

with the default settings provided by ArcGIS Pro. 

 

2.5. Ground Truth Measurements 

 

Herbicide injury was assessed visually by using a scale of 0 (no visual injury) to 

100 (complete plant mortality). Injury ratings were based on the presence of foliar 

bleaching, growth stunting, leaf chlorosis and tissue necrosis [8, 10, 49]. Ratings were 

taken within sub-plots so data from flights could be taken from the same plants in 

which the ratings were assigned. Each rating was taken ± 1 day of flight 

measurements. 

Accuracy assessments were conducted on the classification methods by 

computing confusion matrices [50-51]. For each measurement day, 300 accuracy 

assessment points were generated via stratified random sampling. Each point was 

manually designated to the class to which it belonged, relative to the original 

orthomosaic image, creating ground reference points. When overlaid onto each 

classified raster, overall accuracy (OA) percentages were then computed by dividing 

the total number of correctly classified pixels by the total number of reference pixels. 

Accuracies at or above 85% were considered to be accurate classifications, which is a 

commonly-used target accuracy when classifying imagery [50]. For this study, we 

selected the most consistently-accurate algorithm across all 5 treatment dates to use 

for further data extraction (see results section). 
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2.6. Data Extraction 

 

The process of data extraction from each sub-plot is shown in Figure 4. To prevent 

extraction from background features, data from each sub-plot was extracted using a 

conditional statement. Using the selected classified image, a conditional statement 

was built to allow for data from each computed VI to be extracted only from the 

sorghum plants. The average value of each VI was then extracted and exported for 

further analysis. 

 

 

Figure 4. Methodology for vegetative indices (VI) data extraction based on the results of the 

image classification. (A) Original red-green-blue (RGB) sub-plot image; (B) each VI was computed 

from the original RGB images, creating a new raster layer for each VI; (C) RGB images were 

classified via supervised, pixel-based algorithms into leaves, shadows, and soil; and (D) each VI 

raster was combined with the classified image to create a new raster layer, allowing for VI data 

from only the sorghum leaves to be extracted for statistical analysis. 

2.7. Statistical Analysis 

All data were exported for analysis in R statistical program (R Core Team, 

Vienna, Austria; https://www.R-project.org). Data analysis was completed in two 

stages. First, statistical differences between mean overall classification accuracies 

(per algorithm) were tested with the Shapiro-Wilks test to verify assumptions of 

analysis of variance (ANOVA) [52]. The classification accuracy dataset failed to 

meet ANOVA assumptions and was therefore analyzed using the Kruskal-Wallis 

chi-squared goodness of fit test [53]. Significant differences between algorithms 

were found with a post-hoc analysis using the Dunn test [54]. Second, relationships 

between VIs and ground truth injury ratings were investigated and tested for 
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significance with Pearson correlation coefficients [40, 48, 55-57]. Correlations were 

then used to detect differences in spectral values between genotypes and 

application rates. To examine statistical difference in spectral responses of 

genotypes, a two-way ANOVA was conducted comparing the effects of 

genotype/hybrid and rate on VI values, with means being separated using a Tukey 

Honest Significant Difference test. All significance levels were set at α = 0.05. 

 

3. Results 

 

3.1. Classification Accuracy 

 Overall classification accuracies ranged from 82 to 93% across algorithms, 

which can be seen in Table 2. The SVM was the most consistent across all dates 

with accuracies of 90% (27 DAT) to 92% (9 DAT). The algorithm with the most 

variability was ML, while the lowest accuracies were achieved with RF (82%, 15 

DAT; 88%, 9 DAT). The Kruskal-Wallis test revealed significant differences 

between groups (Chi-square = 7.41, p-value = 0.025), and the RF algorithm was 

found to be less accurate when compared with SVM and ML (Table 3). Because 

SVM was consistently the most accurate classification algorithm, it was chosen to 

continue to extract data for further analysis. When comparing the overall accuracy 

means of each algorithm, all algorithms accurately classified the imagery into three 

established classes (leaves, shadows, and soil), as compared to the threshold of 

85%. However, RF was found to be significantly less accurate than SVM and ML, 

suggesting that RF may not be the best choice in similar supervised, pixel-based 

classifications. 

 
Table 2. Overall accuracies for each algorithm on each measurement date. 

DAT 
Algorithm 

SVM RF ML 

9 92 88 85 

15 91 82 92 

21 91 87 93 

27 90 87 92 

35 91 82 90 

Acronyms: DAT, days after treatment; SVM, support vector machine; RF, random forest; ML, 

maximum likelihood. Accuracies are expressed in percentages. 
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Table 3. Results of the Dunn test indicating significant differences between mean overall 

classification accuracy percentages. No significant differences were found between the SVM-ML 

algorithms, but the RF algorithm was significantly less than the others. 

Algorithm P-value Significance1 

ML-RF 0.02 * 

ML-SVM 0.94 ns 

RF-SVM 0.02 * 

ML, maximum likelihood; RF, random forest; SVM, support vector machine. 
1 Asterisks indicate significant differences (p < 0.05); “ns” indicates non-significance. 

 

3.2. Relation of Vegetative Indices to Ground Truth Injury 

 Significant negative correlations were observed across all measurement dates 

with each VI. High negative correlations were observed between UAS-based VI 

data and ground truth herbicide injury across all measurement dates (Table 4). The 

NDVI coefficients (r = -0.94 to -0.83) consistently displayed the highest correlations 

with visual injury symptoms on every measurement day. ENDVI (r = -0.92 to -0.82) 

and EVI2 (r = -0.94 to -0.82) correlations were very similar to NDVI values and thus 

were also very highly correlated with injury symptoms. The SR demonstrated the 

most variability in each measurement date (r = -0.92 to -0.70). In addition to VI 

data, individual spectral bands were tested for significance with ground-measured 

injury scores, with significances not higher than what was determined for VIs (data 

not shown). 

Table 4. Pearson correlation coefficients between vegetative indices and ground truth visual injury 

ratings. 

 

As NDVI was shown to be the most consistently related to mesotrione injury, it 

was chosen for the ANOVA analysis. Across all treatment dates, there was no 

significant interaction effect between genotype and rate (data not shown). Despite 

this, the main effect models demonstrated significant differences, with the results of 

the post-hoc test shown in Figure 5. When looking at the main effects model for 

genotypes, the NDVI response for the G-1 genotype across all mesotrione doses was 

not statistically different from the commercial hybrid response until 35 DAT. 

However, in all cases, the NDVI values for the G-1 genotype and commercial hybrid 

VI 
9 DAT 15 DAT 21 DAT 27 DAT 35 DAT 

r p-value r p-value r p-value r p-value r p-value 

NDVI -0.94 < 0.0001 -0.91 < 0.0001 -0.85 < 0.0001 -0.83 < 0.0001 -0.83 < 0.0001 

ENDVI -0.92 < 0.0001 -0.90 < 0.0001 -0.84 < 0.0001 -0.83 < 0.0001 -0.82 < 0.0001 

EVI2 -0.94 < 0.0001 -0.90 < 0.0001 -0.84 < 0.0001 -0.81 < 0.0001 -0.82 < 0.0001 

SR -0.92 < 0.0001 -0.83 < 0.0001 -0.79 < 0.0001 -0.68 < 0.0001 -0.70 < 0.0001 
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were statistically different from the S-1 genotype, which was to be expected given 

the S-1 susceptibility to mesotrione. For the rate main effect model, plants treated 

with 0 and 105 g ae ha-1 were not statistically different from one another on each 

measurement date, indicating that a low dose of mesotrione did not significantly 

injury the lines used in this study. Interestingly, on the 27 and 35 DAT, it appeared 

that the plots treated with a higher rate of mesotrione (420 and 840 g ai ha-1) started 

to recover from their injuries, but were always significantly lower than the control 

and 105 g ae ha-1 dose. 
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Figure 5. ANOVA results for main effect models, genotype and rate. Means were separated using 

Tukey’s HSD test at the 0.05 significance level, and error bars denote standard error of the mean. 
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4. Discussion 

 UAS imagery has been used to monitor various agronomic traits, including 

plant response to stress [48]. Supervised machine learning algorithms are 

commonly used to classify remote sensing imagery, and have been shown to be 

highly accurate in terms of overall classification accuracies [24, 58]. Our current 

research shows that machine learning algorithms, most notably the SVM 

algorithm, could be an effective method of extracting VI values from grain 

sorghum treated with different rates of mesotrione (Table 3). 

 Key to this finding is the use of high-resolution UAS imagery coupled with 

plots across uniform lighting conditions. Within each plot, there were three classes 

identified in each classification schema: leaves, shadows, and soil. A stark contrast 

between pixel brightness values occurred throughout each of the classes, allowing 

for the SVM algorithm to effectively segregate each class throughout the plots with 

high accuracy percentages. As SVM and ML were not statistically different in 

terms of overall accuracy, relationships between VI data and ground-measured 

injury are not expected to be statistically different if ML were to be used instead of 

SVM for data extraction. We expect that this classification schema could be used in 

grain sorghum to assess injury of other HPPD-inhibitor herbicides, such as 

tembotrione, because similar classes would be expected, regardless of the location 

of study or genotypes. As pixel-based classifications were studied, we did not 

compare these results with other methods of segregating vegetation from 

background noise, including using the Otsu algorithm [59] for binary thresholding 

and object based image analysis. Further research for vegetation classification in 

screening for herbicide tolerance studies should compare classification accuracies 

of pixel-based, object-based, and binary thresholding algorithms. 

 The classification method chosen for this study was supervised, which are 

often more accurate than unsupervised in some situations [27]. One of the main 

benefits of unsupervised classifications is that large areas of land can be classified 

in a very short time frame [60]. In addition, as supervised classification methods 

require a training dataset to be collected from the imagery itself, unsupervised 

classification algorithms would be able to bypass this step and potentially hasten 

the classification process [61]. However, as demonstrated by our study, segregating 

sorghum vegetation in herbicide breeding trials does not require many classes or 

training samples due to the relative homogeneity of features within the field. 20 

training samples were used here, as is the recommended minimum sample size for 

parametric classifiers such as ML [62]. However, it is entirely possible that an even 

smaller amount of samples could be used when using SVM, which is much less 

sensitive to background interference and can be used when few training samples 

are present [63]. As supervised classification algorithms performed well in this 

study, more research is needed to compare supervised classifications with 

unsupervised classifications in herbicide tolerance trials to see if statistically 

significant differences exist between overall accuracies. 
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 Using the NDVI values and an ANOVA, it was observed that differences in 

spectral values existed for genotypes with respect to mesotrione application rates. 

The ability to detect spectral responses of plots treated with mesotrione could aid 

in quickly assessing the variable responses of multiple sorghum genotypes to 

mesotrione treatment. To be useful for sorghum breeders, differences in plant 

responses to mesotrione must be detected by the camera and able to be seen after 

data extraction. Even though the EVI2 and ENDVI indices were found to be similar 

in correlations with NDVI, we chose to evaluate only the NDVI as it is one of the 

most widely used vegetative indices [64]. This study could be improved upon by 

testing other indices in future studies. Our data demonstrates that a multispectral 

camera was able to detect differences among genotype responses, which could 

allow breeders to know which genotypes are responding to herbicide treatment. 

This prevents a large-scale assessment of the entire operation, leading to reduced 

time, labor, and resources to achieve the desired objective. 

It should be noted that all VIs showed the strongest correlations on 9 and 15 

DAT, and showed slightly weaker correlations for the rest of the measurement 

days. This is most likely because reductions in chlorophyll due to herbicide injury 

were clearly visible on the canopy early during the experiment, but were 

overshadowed by new growth as the growing season progressed. As a result, 

injury symptoms were still visible during ground truth ratings but were not visible 

to the camera. As healthy plants absorb light in the visible spectrum and reflect 

near infrared (NIR) energy, higher NDVI values are observed with healthier 

plants, whereas lower NDVI values are recorded as plant health declines [36]. This 

explains the negative correlations, as plants injured by mesotrione applications 

experienced a loss of green pigmentation [65]. In addition, bleaching symptoms 

due to mesotrione were not directly classified with machine learning algorithms 

due to spectral similarities with soil values. Instead, the reduction in leaf greenness 

showed to be sufficient in determining correlations with ground truth injury 

ratings. 

VIs have been successfully correlated with herbicide injury involving 

chlorophyll pigmentation loss in previous research. Huang et al. [66] found that 

NDVI values were highly related to cotton (Gossypium hirsutum L.) injury from 

aerial applications of glyphosate, with very strong correlations observed between 

increased frequencies of spray drift droplets and NDVI values. Dicke et al. [35] 

found reductions in NDVI values in plots treated with sulfonylurea herbicides as 

well as significant correlations between NDVI values and corn yield, suggesting 

that low NDVI values in herbicide-damaged plots can be used as predictor of final 

yield. Duddu et al. [67] reported strong correlations between the optimized soil 

adjusted vegetation index (OSAVI) and visual injury ratings of faba beans (Vicia 

faba L.) treated with 9 different herbicide tank mixtures. Faba bean visual injury 

ratings were based on visible growth reduction and tissue chlorosis. Our data is 

consistent with these findings in that the increase in herbicide foliar injury is 

strongly related to changes in VI scores. As a final recommendation for future 

studies, relationships between UAS data and other herbicide modes of action 
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should be determined to investigate how useful UAS would be for determining 

grain sorghum tolerance to other herbicides. 

Herbicide injury in grain sorghum breeding trials is traditionally been assessed 

with visual injury ratings, which can be prone to error due to variations among 

evaluators. For trials consisting of thousands of grain sorghum plots, traditional 

injury assessment methods would take many hours or days to complete. 

Alternatively, UAS imagery can be taken in as little as 20-25 minutes, and while the 

data extraction methodology may seem to take a long time, the methodology can 

actually be completed quickly once the process is established. 

Limitations of this study that could be addressed in future studies are 

centered on the lack of use of more number of herbicides, genotypes tested and 

geographic restrictions. As there was only one herbicide used in this study, it 

remains to be determined if tolerance/susceptibility to other herbicides could be 

detected with UAS. Mesotrione injury was well-detected due to foliar bleaching 

symptoms, resulting from the destruction of phyto-oxidation of chloroplasts. This 

resulted in stark differences between treated and untreated plants, which were able 

to be detected with the camera due to differences in chlorophyll pigmentation loss. 

As other herbicides do not directly result in stark pigmentation losses (i.e. auxins), 

the ability to detect sorghum responses to these herbicides remains to be 

determined. 

Additional limitations involve use of genotypes that are not bred similarly 

for cultivation. While Pioneer 84G62 is a commercially grown hybrid with 

desirable agronomic traits, the genotypes G-1 and S-1 represent sorghum diversity 

panel which are do not possess agronomically suitable traits. The other limitation 

includes, use of only one year data at one geographic location. This experiment 

was conducted in one field (Manhattan, KS), and has only been replicated across 

one year. This methodology remains to be tested across multiple years/locations to 

determine the robustness of detecting differences in mesotrione tolerance. Further 

studies should determine UAS injury characterization across multiple locations 

and growing conditions. 

Although significant spectral difference existed between certain genotypes 

and rates of herbicide applications, the differences were not as pronounced as 

would be expected between mesotrione tolerant and susceptible genotypes. A 

likely explanation can be found in precipitation patterns. Rainfall was plentiful for 

the 2019 growing season in central KS, enabling adequate growth and 

development for all sorghum lines studied. This further demonstrates the need for 

additional replications across different geographic regions, as greater spectral 

differences between tolerant and susceptible genotypes could potentially be 

observed in different growing conditions. 
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5. Conclusions 

 This study suggests a methodology to aid in the image processing, data 

extraction, and statistical analysis for future research with multispectral evaluation 

of herbicide tolerance in grain sorghum. Additionally, we suggests that VIs 

(notably NDVI in this study) collected from high-resolution imagery, coupled with 

image classification, may be a useful tool for sorghum breeders to quantify the 

degree of mesotrione injury in grain sorghum. Across all measurement dates, a 

supervised, pixel-based SVM classifier was shown to be accurate and consistent 

when classifying imagery into sorghum leaves, shadows, and soil. The high 

correlation between VI data and ground-measured injury scores indicates that 

high-resolution multispectral imagery can detect reductions in chlorophyll due to 

mesotrione injury. As NDVI values were shown to be the most correlated to 

herbicide injury, we have demonstrated that the most widely-used VI in 

agriculture is capable of detecting these changes. Therefore, cost-effective NDVI 

sensors of varying types could potentially be used to measure mesotrione injury or 

possibly other herbicide injury symptoms that can be quantifiable. Further research 

is necessary to determine the ability of different sensors to measure such injury, as 

well as compare other means of vegetation segmentation such as using the Otsu 

algorithm or object-based image analysis. Additional research is also necessary to 

determine if high-resolution imagery is capable of detecting damage symptoms of 

herbicides with differing modes of action. 
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